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ON THE EXISTENCE OF BESICOVITCH ALMOST PERIODIC SOLUTIONS
FOR A CLASS OF NEUTRAL DELAY DIFFERENTIAL EQUATIONS

Moez Ayachi and Dhaou Lassoued

Abstract. We study the existence of a Besicovitch almost periodic solution for a class of
second order neutral delay differential equations

u′′(t − r) +D1F(u(t − r),u(t − 2r), t − r) +D2F(u(t),u(t − r), t) = 0,

in a Hilbert space, under some hyptoheses on the function F(·, ·, t). Here, F : H×H×R→ R
denotes a differentiable function, Dj, j = 1, 2, denotes the partial differential with respect
to the jth vector variable and r ∈ (0,∞) is a fixed real number. The approach we use is
based on a variational method applied on a Hilbert space of Besicovitch almost periodic
functions.

1. Introduction

The variational method with retarded argument is a subject tracing its origins
in the early papers of Elsgolc and Sabbagh. Later on, some new improvements
have been established by Hughes and Sabbagh. For further details, we refer the
reader to [16, 17, 23].

Using variational methods, Shu and Xu [24] and Yung Li [20] study the periodic
solutions of the second order neutral differential equations.

Moreover, a new variational formalism has been established later by J. Blot
(See [9], [10], [11]) in order to study the almost periodic solutions of Lagrangian
system. This formalism, also called calculus of variations in mean, can be extended
in the frame of the retarded functional differential equations, [3, 4, 5, 6]. More
recently, inspired by the works of Blot, Parasyuk and Rustamova [22] have used a
variational approach to study the almost periodic solutions of Lagragian system in
the framework of Riemannian manifolds.

In this article, we aim to study the weak almost periodic solutions of a class of
second order neutral delay differential equations having the following form:

(1.1) u′′(t − r) +D1F(u(t − r), u(t − 2r), t − r) +D2F(u(t), u(t− r), t) = 0.
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Here, F : H ×H ×R→ R denotes a differentiable function, Dj, j = 1, 2, denotes
the partial differential with respect to the jth vector variable and r ∈ (0,∞) is a fixed
real number. H stands for a Hilbert space.

By a weak almost periodic solution of 1.1 we mean a function u : R→ H which
is a.p. in the sense of Besicovitch [8, 21] and which possesses a first-order and a
second-order generalized derivative and such that the equality in 1.1 is equivalent
to the fact that the difference between the two members has a quadratic mean value
equal to zero.

In order to study the almost periodic solutions of 1.1, we use here a variational
formalism which we apply on a Hilbert space of almost periodic functions via the
following functional:

(1.2) J(u) := lim
T→∞

1
2T

∫ T

−T

(1
2
‖∇u(t)‖2H − F(u(t), u(t− r), t)

)
dt

where ∇u is a generalized derivative of u.
The present paper is organized as follows. In Section 2, we review some known

results on almost periodic functions, we provide our notations and we give our
fundamental hypotheses which will be the main ingredients to prove the main
result. In Section 3, we state our main theorem. In Section 4, we prove a list of basic
lemmas which will be used. The main result will be proved in the last section.

2. Definitions, Notations and Hypotheses

Throughout this paper, H stands for a Hilbert space endowed with a norm ‖ · ‖H :=
〈·, ·〉1/2H associated to its inner product 〈·, ·〉H. The set of nonnegative integer numbers
is denoted byN∗, that isN∗ :=N \ {0}.

Our first assumption is that we can find a nonempty subset S in H such that:

(2.1) S is convex, closed, and bounded.

For R := sup
{
‖(x1, x2)‖H×H; (x1, x2) ∈ S × S

}
, we suppose that the following

hypothesis holds true:

(2.2)
{

There exists R̃ ∈ (R,∞) s.t. ∀t ∈ R,∀(x1, x2) ∈ S × S
∀(y1, y2) ∈ BH×H(0, R̃) \ (S × S), F(x1, x2, t) ≥ F(y1, y2, t).

Here, we recall that for a fixed nonnegative number ρ > 0,

BH×H(0, ρ) := {(x1, x2) ∈ H ×H; ‖(x1, x2)‖H×H < ρ}
and

B(0, ρ) := {(x ∈ H; ‖(x1, x2)‖H < ρ}.
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The idea is to find critical points of the functional J defined as 1.2. Indeed, we
shall obtain the existence of a minimizer on a subset of almost periodic functions
taking their values into S and using the hypothesis 2.2 we show that this minimizer
is a critical point of the functional J on a space of functions with values into the whole
space H. We conclude finally that the minimizer that we found is a Besicovitch
almost periodic solution to the equation 1.1.

Now, let us recall some useful results about almost periodic functions.

Definition 2.1. A continuous function u : R → H (respectively u : R → R) is said to
be a Bohr-almost periodic function if for any ε > 0, there is a constant lε > 0 such that any
interval of length lε contains at least a number τ satisfying

sup
t∈R
‖u(t + τ) − u(t)‖H ≤ ε

(respectively sup
t∈R
|u(t + τ) − u(t)| ≤ ε).

AP0(H) (respectively AP0(R)) denotes the space of the Bohr almost periodic
functions from R into H (respectively R). When equipped with the norm ‖u‖∞ :=
sup
t∈R
‖u(t)‖H (respectively ‖u‖∞ := sup

t∈R
|u(t)|), AP0(H) (respectively AP0(R)) is a Ba-

nach space.

Definition 2.2. When u ∈ AP0(H) (respectively AP0(R)), its mean value

M{u} =Mt{u(t)} := lim
T→∞

1
2T

∫ T

−T
u(t)dt

exists in H (respectively R).

For more details about these notions, we refer the reader to [8, 13].

Definition 2.3. For a given integer k ∈ N∗, Ck(R,H) denotes the space of the k-times
continuously differentiable functions from R into H and

APk(H) := {u ∈ Ck(R,H) : ∀ j = 0, · · · , k, u( j) ∈ AP0(H)}

where u( j)(t) := dju(t)
dtj if j ≥ 1 and u(0) = u.

Endowed with the norm ‖u‖C1 := ‖u‖∞ + ‖u′‖∞, AP1(H) is a Banach space [14,
Corollary 2.12].

If A is a subset of H, we denote by AP0(A) := {u ∈ AP0(H) : u(R) ⊂ A} and by
APk(A) := APk(H) ∩AP0(A).
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Definition 2.4. [12, page 45] Let X and Y be two Banach spaces, a function f : X×R→ Y
belongs to APU(X × R,Y) when f is continuous and it satisfies the following condition:
for all ε > 0, for all compact subset K in X, there exists � = �(ε,K) such that, for all α ∈ R,
there exists τ ∈ [α, α + �] satisfying ‖ f (x, t + τ) − f (x, t)‖Y ≤ ε for all t ∈ R and for all
x ∈ K.

Definition 2.5. When p = 1, 2, Bp(H) denotes the closure of AP0(H) into the Lebesgue
space Lp

loc(R,H) for the semi-norm

M{‖u‖p}1/p :=
(

lim
T→∞

1
2T

∫ T

T
‖u(t)‖pHdt

)1/p

and Bp(H) is the quotient space Bp(H)/ ∼p where u ∼p v meansM{‖u − v‖p} = 0.

Endowed with the inner product (u | v)B2 :=Mt{〈u(t), v(t)〉H}, B2(H) is a Hilbert
space; its norm is denoted by ‖u‖B2 := ((u | u)B2)1/2. Endowed with the norm
‖u‖B1 := M{‖u‖}, B1(H) is a Banach space. The (classes of) functions of B2(H) and
B1(H) are Besicovitch almost periodic functions, [8], [21, pages 11-13]. Thanks to
the Cauchy-Schwarz-Buniakovski inequality [8, page 69] we have: B2(H) ⊂ B1(H)
and ‖u‖B1 ≤ ‖u‖B2 for all u ∈ B2(H).

Definition 2.6. B1,2(H) is the space of the u ∈ B2(H) such that

∇u := lim
τ→0

1
τ

(u(· + τ) − u)

exists in B2(H).

Equipped with the inner product (u | v)B1,2 := (u | v)B2 + (∇u | ∇v)B2 , B1,2(H)
becomes an Hilbert space, (See [10]). In [3], [4], [5], [9], [10], [11], this latter space
was used in the study of the weak almost periodic solutions of various classes of
differential equations.

Similarly to the above notations, giving a subset A of H, B2(A) stands for the
closure of AP0(A) into B2(H), and B1,2(A) denotes the closure of AP1(A) into B1,2(H).

Now, we assume the following assumptions

(2.3) F ∈ APU((H ×H) ×R,R).

(2.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

For all (x1, x2, t) ∈ H ×H ×R and k = 1, 2,

the partial differentials DkF(x1, x2, t) exist

and DkF ∈ APU((H ×H) ×R,L(H,R)).
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(2.5)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
There exists a ∈ (0,+∞) s.t. ∀X,Y ∈ H ×H,∀t ∈ R,

|F(X, t) − F(Y, t)| ≤ a.‖X − Y‖H×H.

(2.6)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
There exists b ∈ (0,+∞) s.t. ∀X,Y ∈ H ×H,∀t ∈ R,

‖DXF(X, t) −DXF(Y, t)‖L(H×H,R) ≤ b.‖X − Y‖H×H,

where DXis the partial differential with respect to X ∈ H ×H.

(2.7) F is bounded on S × S ×R.

(2.8) For all t ∈ R, F(·, ·, t) is concave on S × S.

The above assumptions are fundamental to use the variational formalism on
the functional J.

Now, we state our main result.

Theorem 2.7. Assume that 2.1- 2.8 hold true. Then, the equation 1.1 possesses a weak
almost periodic solution, i.e. there exists u ∈ B1,2(S) satisfying

∇2u(t − r) +D1F(u(t − r), u(t − 2r), t − r) +D2F(u(t), u(t − r), t) = 0

The above equality holds in B2.

3. Proof of the Main result

In this section, we assume that all the assumptions 2.1-2.8 are satisfied. We begin
by establishing the following elementary lemmas which will be used in the proof
of our main result.

Lemma 3.1. The function J : B1,2(H)→ R defined by

J(u) :=Mt

{1
2
‖∇u(t)‖2H − F(u(t), u(t − r), t)

}

is continuously differentiable on B1,2(H) and its differential is given,for all u, h ∈ B1,2(H),
by
DJ(u).h =
Mt

{
〈∇u(t),∇h(t)〉H − [D1F(u(t), u(t − r), t) +D2F(u(t + r), u(t), t+ r)].h(t)

}
.
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Proof. Let us consider the functional J1 : B1,2(H)→ R defined by

J1(u) :=Mt

{1
2
‖∇u(t)‖2H

}
.

Since the derivation operator ∇ : B1,2(H) → B2(H) is linear continuous, it is of
class C1. Besides, the mapping L : B2(H)→ B2(H) × B2(H) defined by L(u) := (u, u)
is also of class C1 as a linear continuous one.

By virtue of the Cauchy-Schwarz-Buniakovski inequality (See [8, page 69]), the
inner product (·|·)B2 : B2(H) × B2(H)→ R defined as (u|v)B2 :=Mt {〈u(t), v(t)〉H} is a
bilinear continuous function and so it is of class C1.

Taking into account the following formula J1 = 1
2 (·|·)B2◦L◦∇, we deduce that J1 is

a continuously differentiable function on B1,2(H) as a composition of C1-mappings.
Furthermore, using the chain rule and the formulas of the differentials of linear
and bilinear mappings, we obtain for all u, h ∈ B1,2(H)

DJ1(u).h =Mt {〈∇u(t),∇h(t)〉H} .
On the other hand, let us define the functional J2 : B1,2(H)→ R by

J2(u) :=Mt {F(u(t), u(t − r), t)} .
Note that the canonical injection in : B1,2(H) → B2(H) defined as in(u) := u is of
class C1 since it is a linear continuous mapping.

As the mean value is invariant under translation transform, the linear mapping
T : B2(H)→ B2(H)×B2(H) ≡ B2(H×H) defined for all t ∈ R by T(u)(t) := (u(t), u(t−r))
is clearly a continuous mapping and consequently of class C1 on B2(H).

Now, let us suppose that the above conditions 2.3,2.4 and 2.6 are fulfilled.
By using [4, Lemma 4.2], these conditions imply that the well-defined Nemytskii
operator NF : B2(H × H) → B1(R), built on the function F, and given for all t ∈ R
by NF(U)(t) := F(U(t), t) is continuously differentiable and we have for each U ∈
B2(H ×H), DNF(U) = NDXF(U).

Since the mean valueM : B1(R)→ R is a linear continuous mapping, it follows
immediately that it is of class C1. Hence, by noticing that J2 =M◦NF ◦ T ◦ in, the
functional J2, being a composition of C1-mappings, is continuously differentiable.
Moreover, thanks to the chain rule formula and the invariance of the mean value
under translation transform, we get, for all u, h ∈ B1,2(H),

DJ2(u).h =Mt{D1F(u(t), u(t − r), t).h(t)+D2F(u(t), u(t− r), t).h(t− r)}
=Mt{[D1F(u(t), u(t − r), t) +D2F(u(t + r), u(t), t+ r)].h(t)}.

Finally, we have proven that our function J := J1 − J2 is of class C1(B1,2(H),R)
and we have DJ(u).h = DJ1(u).h − DJ2(u).h = Mt{〈∇u(t),∇h(t)〉H − [D1F(u(t), u(t −
r), t) +D2F(u(t + r), u(t), t+ r)].h(t)} for all u, h ∈ B1,2(H).
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Lemma 3.2. The following assertions hold.

(1) B1,2(S) is a convex set which is closed into B1,2(H).

(2) J is convex on B1,2(S).

(3) J is weakly lower semi-continuous on B1,2(S).

Proof. (1) This statement has been shown in [11, Lemma 4.1].
(2) We write J := J1 − J2, where the functions J1 and J2 are those introduced in the
previous lemma.

It is obvious that ‖.‖B2 is a convex mapping on B2(H) and that the differential
operator ∇ : B1,2(H) → B2(H) is linear. Then, since J1 =

1
2‖.‖B2 ◦ ∇, it follows

immediately that J1 is a convex functional on B1,2(S).
Let u, v ∈ B1,2(S) and λ ∈ (0, 1). Then there exist two sequences (um)m and

(vm)m in AP1(S) such that lim
m→∞ ‖u − um‖B1,2 = 0 and lim

m→∞ ‖v − vm‖B1,2 = 0, so that, by

using the fact that B1,2 is continuously embedded into B2, we have lim
m→∞ ‖u−um‖B2 =

lim
m→∞ ‖v − vm‖B2 = 0. Therefore, due to the invariance of the mean value under

translation transform, we obtain that lim
m→∞ ‖τru − τrum‖B2 = lim

m→∞ ‖τrv − τrvm‖B2 = 0

where τru := u(· + r) denotes the operator of translation by r.
Since the function F(·, ·, t) is concave on the convex set S × S 2.8, we have for all

t ∈ R

F((1 − λ)um(t) + λvm(t), (1− λ)um(t − r) + λvm(t − r), t)

≥ (1 − λ)F(um(t), um(t − r), t) + λF(vm(t), vm(t − r), t)

or equivalently

(3.1) NF((1 − λ)(um, τrum) + λ(vm, τrvm)) ≥ (1 − λ)NF(um, τrum) + λNF(vm, τrvm)

On the other hand, using [4, Lemma 4.1], one hasNF ∈ C0(B2(H×H),B2(R)). Then,
taking the limit when m→∞ in the inequality 3.1, we get

NF((1 − λ)(u, τru) + λ(v, τrv)) ≥ (1 − λ)NF(u, τru) + λNF(v, τrv).

This implies thatNF ◦ T is concave on B2(S).
By linearity of the mean value, we deduce that the function J2 =M◦NF ◦T ◦ in

is concave on B1,2(S) or, similarly, (−J2) is convex.
As a consequence, observing that J = J1 − J2, we infer that the function J is

convex as the sum of two convex functionals.

(3) Since J is a convex function on B1,2(S), for each α ∈ R, the level set

[J ≤ α] := {u ∈ B1,2(S); J(u) ≤ α}
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is a convex. But, by continuity of J, the set [J ≤ α] is closed for the strong topology.
Then, the fact that the level set [J ≤ α] is convex and closed allows us to deduce by
arbitrariness of α, that [J ≤ α] is weakly closed, and consequently, the function J is
weakly lower semi-continuous.

Lemma 3.3. There exists u ∈ B1,2(S) such that J(u) = inf
{
J(u); u ∈ B1,2(S)

}
.

Proof. Since the function F is bounded on S×S×R 2.7, we set the finite real number
M := sup

{
F(x1, x2, t); (x1, x2, t) ∈ S × S ×R

}
.

Then, we have for all u ∈ AP1(S),

J(u) ≥ Mt

{1
2
‖u′‖2H − F(u(t), u(t− r), t)

}
≥ 1

2
‖u′‖B2 −M ≥ −M > −∞.

Therefore, the function J is bounded on AP1(S). By the continuity of J on B1,2(H)
and the density of AP1(S) in B1,2(S), we deduce that J(u) ≥ −M for all the functions
u ∈ B1,2(S) and inf

{
J(u); u ∈ B1,2(S)

}
= inf

{
J(u); u ∈ AP1(S)

}
.

Now, by definition of the infimum, let us consider (uk)k a minimizing sequence
of J on AP1(S) such that J(uk) ≤ inf

{
J(u); u ∈ B1,2(S)

}
+ 1

k for all k ∈N∗. So, we get

1
2
‖u′k‖2B2 ≤ Mt{F(uk(t), uk(t − r), t)} + inf

{
J(u); u ∈ B1,2(S)

}
+

1
k

≤M + inf
{
J(u); u ∈ B1,2(S)

}
+

1
k

≤M + inf
{
J(u); u ∈ B1,2(S)

}
+ 1

We deduce then that the (u′k) is a bounded sequence in B2(H) and due to the fact
that uk(R) ⊂ S ⊂ B(0, R̃) we have also ‖uk(t)‖H ≤ R̃ for each t ∈ R, and so ‖uk‖B2 ≤ R̃
for all k ∈N. As a consequence, we have shown that the sequence (uk)k is bounded
on B1,2(H).

As the space B1,2(H) is a Hilbert space and consequently a reflexive one, we can
extract a sub-sequence (uk′) of (uk) which converges weakly to u ∈ B1,2(H) and by
convexity and closedness of B1,2(S), we have necessarily u ∈ B1,2(S).

Finally, since the function J is weakly lower semi-continuous, we deduce that
(uk′) is a minimizing sequence and consequently that

J(u) = inf
{
J(u); u ∈ B1,2(S)

}
.

Lemma 3.4. The following statement holds true.

inf
{
J(u); u ∈ AP1(S)

}
= inf

{
J(u); u ∈ AP1(B(0,R))

}
.
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Proof. • As AP1(S) ⊂ B1,2(S) ⊂ B1,2(B(0, R̃)), we have certainly that

inf
{
J(u); u ∈ AP1(S)

}
≥ inf

{
J(u); u ∈ B1,2(B(0, R̃))

}
.

But, inf
{
J(u); u ∈ B1,2(B(0, R̃))

}
= inf

{
J(u); u ∈ AP1(B(0, R̃))

}
. So we get

inf
{
J(u); u ∈ AP1(S)

}
≥ inf

{
J(u); u ∈ AP1(B(0, R̃))

}
.

• Let us, now, prove that inf
{
J(u); u ∈ AP1(S)

}
≤ inf

{
J(u); u ∈ AP1(B(0, R̃))

}
.

Consider u ∈ AP1(B(0, R̃)) and define the projection operator on the convex
closed set S, P : H → S. We set, then, the function defined for all real t by
v(t) := P(u(t)). As known, the projection operator is 1-Lipschitzean function [2,
page 16] and consequently continuous. This implies that v ∈ AP0(S), [12, Lemma
3.2]. Besides, the function u′ ∈ AP0(H) since u ∈ AP1(H). Then, u′ is a bounded
function on R. As a consequence, the function u is a Lipschitzean one on R. We
deduce then that the function v is Lipschitizean on R as it is a composition of
Lipschitzean mappings. Therefore, the function v is locally absolutely continuous
on R which infers that v is Lebesgue-almost everywhere differentiable on R, [7]
(Corollaire A.2 page 145).

Let t ∈ R be a point where v is differentiable and consider δ ∈ R \ {0}. One has
then

‖1
δ

(v(t + δ) − v(t))‖H = ‖1δ (P(u(t+ δ)) − P(u(t)))‖H

=
1
|δ| ‖P(u(t + δ)) − P(u(t))‖H

≤ 1
|δ| ‖u(t + δ) − u(t)‖H.

Taking the limit when δ tends to 0, we obtain

(3.2) ‖v′(t)‖H ≤ ‖u′(t)‖H a.e. t ∈ R
Now, we consider the functions of Bochner-Féjer defined as

Km(t) :=
∑m
ξ=−m(1− |ξ|m )e−iξt andϕm(t) :=

∏m
j=1 K(m!)2 (

β jt
m ) for all m ∈N∗ and for all t ∈ R,

where (β j) j is aZ-basis of the set of the Fourier-Bohr exponents of v. According to
[13, pages 86-88] and [15, page 115], we have that Km(t) ≥ 0,M{Km} = 1, ϕm ≥ 0
andM{ϕm} = 1, for all m ∈N∗ and t ∈ R.
Let us set for all m ∈N∗ and all t ∈ R,

σm(t) :=Ms{ϕm(s).v(s + t)}.
Using [15, page 116], and changingR by H if necessary, we obtain that σm ∈ AP1(H)
and

lim
m→∞ ‖σm − v‖B2 = 0.
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0 By continuity of the functional J2 on B2(H), we have lim
m→∞ J2(σm) = J2(v).

Thanks to the condition 2.2, we have F(v(t), v(t − r), t) ≥ F(u(t), u(t − r), t), for all
t ∈ R. Then, J2(v) ≥ J2(u) and consequently, by definition of the limit,

(3.3) ∀ε > 0,∃mε ∈N∗,∀m ≥ mε, J2(σm) ≥ J2(u) − ε.
On the other hand, using the theorem of Mazur [19, page 88], [1, Corollaire 5.62 page
194], we can write that co(v(R)) = ∩(p,α)∈Π[p ≥ α] where Π := {(p, α) ∈ L(H,R) ×R :
∀y ∈ v(R), 〈p, y〉H ≥ α} and [p ≥ α] := p−1([α,∞)). But since ϕm ≥ 0, we get for all
t ∈ R and all (p, α) ∈ Π,

〈p, σm(t)〉H =Ms{〈p, ϕm(s).v(s + t)〉H}
=Ms{ϕm(s)〈p, v(s + t)〉H}

≥ Ms{ϕm(s).α} =Ms{ϕm(s)}.α = α.
This shows that σm(t) ∈ co(v(R)) ⊂ S and thus, σm ∈ AP1(S) for all m ∈N∗
Using [11, Lemma 4.3 iii.], we have for all m ∈N∗ and all t ∈ R,

‖σ′m(t)‖H = ‖Ms{ϕm(s)v′(t + s)}‖H
≤ Ms{ϕm(s)‖v′(t + s)‖H}

=Ms{(ϕm(s))1/2(ϕm(s))1/2‖v′(t + s)‖H}.
And according to the Cauchy-Schwarz-Buniakovski equality and 3.2, we de-

duce that

‖σ′m(t)‖H ≤
(
Ms{ϕm(s)}

)1/2(Ms{ϕm(s)‖v′(t + s)‖2H}
)1/2

≤Ms{ϕm(s)‖u′(t + s)‖2H}1/2.
Then,

Mt{‖σ′m(t)‖2H} ≤ Mt{Ms{ϕm(s)‖u′(t + s)‖2H}}.
By using [11, Lemma 4.3 i.], we obtain that

Mt{Ms{ϕm(s)‖u′(t + s)‖2H}} =M{ϕm}.M‖u′‖2}.
Therefore, we get for each m ∈N∗,
(3.4) Mt‖σ′m(t)‖2H} ≤ M{‖u′‖2}.

Let us fix arbitrarily ε > 0 and consider mε ∈N∗ defined as (3.3).
Using (3.2) and (3.4) we can write

J(σm) =
1
2
M{‖σ′m‖2} − J2(σm) ≤ 1

2
M{‖u′‖2} − J2(u) + ε = J(u) + ε.
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This last inequality implies that inf
{
J(u); u ∈ AP1(S)

}
≤ J(u) + ε. By passing to the

limit when ε → 0, we obtain inf
{
J(u); u ∈ AP1(S)

}
≤ J(u). Hence, we have shown

that inf
{
J(u); AP1(S)

}
≤ inf

{
J(u); u ∈ AP1(B(0, R̃))

}
which completes the proof of

the statement.

Lemma 3.5. The following assertion holds true.

inf
{
J(u); u ∈ B1,2(S)

}
= inf

{
J(u); u ∈ B1,2(B(0, R̃)

}
.

Proof. From the fact that AP(S) ⊂ B1,2(S), it follows immediately that

(3.5) inf
{
J(u); u ∈ B1,2(S)

}
≤ inf

{
J(u); u ∈ B1,2(S)

}

Let u ∈ B1,2(S). Then, we can find a sequence (um)m ∈ (AP1(S))N such that
lim

m→∞ ‖u − um‖B1,2 = 0. But since J ∈ C0(B1,2(H),R), we have inf
{
J(u); u ∈ AP1(S)

}
≤

lim
m→∞ J(um) = J(u). Hence,

(3.6) inf
{
J(u); u ∈ AP1(S)

}
≤ inf

{
J(u); u ∈ B1,2(S)

}
.

Taking into account the two inequalities 3.5 and 3.6, we get
inf
{
J(u); u ∈ AP1(S)

}
= inf

{
J(u); u ∈ B1,2(S)

}
.

We reason similarly to obtain that inf
{
J(u); u ∈ AP1(B(0, R̃))

}
= inf

{
J(u); u ∈

B1,2(B(0, R̃))
}
.

Finally, thanks to Lemma 3.4, we deduce the desired result.

Now, we shall prove the main result stated in the Theorem 2.7.

By virtue of Lemma 3.3, there exists u ∈ B1,2(S) which satisfies that

J(u) = inf
{
J(u); u ∈ B1,2(S)

}
.

Let (um)m be a sequence in AP1(S) such that lim
m→∞ ‖um − u‖B1,2 = 0.

Consider an element h ∈ AP1(H) with h � 0 and define the scalar
λ as λ := R̃−R

‖h‖∞ ∈ (0,∞). For each m ∈N and each t ∈ R, we have for any θ ∈ (−λ, λ),

‖um(t) + θh(t)‖H ≤ ‖um(t)‖H + |θ|.‖h(t)‖H ≤ R + (R̃ − R) = R̃.

Then, it follows that um + θ.h ∈ AP1(B(0, R̃)). But taking into account that the
sequence (um+θ.h)m converges in B2 to u+θ.h, we obtain that u+θ.h ∈ B1,2(B(0, R̃))
for all θ ∈ (−λ, λ).
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Lemma 3.3 and Lemma 3.5 imply that

J(u) ≤ J(u + θ.h),

for all θ ∈ (−λ, λ).

On the other hand, J is of class C1, by virtue of Lemma 3.1. Therefore, the
mapping θ �→ J(u + θh) is differentiable. We infer that
DJ(u).h = d

dθ |θ=0
J(u + θ.h) = 0, or equivalently DJ(u).h = 0, for all h ∈ AP1(H).

The linearity of DJ(u) and its continuity gives, by density of AP1(H) into B1,2(H),
that DJ(u).h = 0 holds true for each function h ∈ B1,2(H).

Besides, using the Lemma 3.1, we have that

DJ(u).h =Mt{〈∇u(t),∇h(t)〉H−[
D1F(u(t), u(t − r), t) +D2F(u(t + r), u(t), t + r)

]
.h(t)}

= 0.

Thanks to [10, proposition 10], we deduce that the function u belongs to B2,2(H)
and that ∇2u(t − r) + D1F(u(t), u(t − r), t) + D2F(u(t − r), u(t − 2r), t − r) = 0. Our
principal result has, finally, been proved.
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