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BERNSTEIN DURRMEYER OPERATORS BASED ON TWO PARAMETERS

Vijay Gupta and Ali Aral

Abstract. In the present paper, we study the applications of the extension of quantum
calculus based on two parameters. We define beta function and establish an identity
with gamma function, for two parameters (p,q), i e. the post-quantum calculus. We
also propose the (p, g)-Durrmeyer operators, estimate moments and establish some direct
results. Depending on the selection of p and g, the rate of convergence of the our
new operators can provide better approximation than those of the Bernstein-Durrmeyer
operators and its g-analogue. In the end, we provide some graphs using the software
Mathematica.

Keywords: Bernstein Durrmeyer operator, quantum calculus, approximation theory,
Bernstein operator.

1. Introduction

In the last eighteen years the applications of quantum calculus (g-calculus) in
the field of approximation theory has been an active area of research. Several new
operators have been generalized to their g variants and their approximation be-
havior have been discussed. We mention here the recent books [1] and [6] on this
topic. Further generalization of g calculus is the post quantum calculus, denoted
by (p, q)-calculus. Some papers have appeared recently in this area related to ap-
proximation theory. This area is in the developing stage. For (p, g)-calculus, we
mention here some basic definitions and theorems, some of them may be found in
the recent papers [7], [10], [8], [11] etc.

The (p, g)-number is defined as

Obviously, it can be seen that [n],, = p*! [n],/, - It is obvious from the definition,
that g-integers and (p, g)-integers are different, that is we cannot obtain (p, ) integers
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just by replacing g by g/p in the definition of g-integers. But if we put p = 1
in definition of (p, q) integers then g-integers becomes a particular case of (p,q)
integers. Thus we can say that (p, g)-integers can be taken as a generalization of
g-integers. The (p, g)-factorial is defined by

n

Wh#=[lwhwn2L [0],,! = 1.

k=1
The (p, q)-binomial coefficient is given by

nl, !
[”] = []# 0<k<n.
klpg [n— k]p,q! [k]p,q!

Definition 1.1. The (p, g)-power basis is defined below
(xea)y, = (x-a)px—qa)p’x—qa)--- " 'x—q""a).
Definition 1.2. The (p, g)-derivative of the function f is defined as
S (px) = £ (4%)
p-ax

and D,,f (0) = f (0), provided that f is differentiable at 0. It is obvious that
Dpgx" = [n],, x""!. Note also that for p = 1, the (p, g)-derivative reduces to the
g—derivative given by

Dyqf (x) = x#0

f )= f(gqx)
1-px '

Definition 1.3. The (p, g)-derivative fulfils the following product rules

D, f (x) = x#0

Dyg(f(x)g(x)) = f(px)Dyqg(x) + g(qx)Dp,qf (x)
Dyg(f(x)g9(x)) = g(px)Dpqf (x) + f(qx)Dp49(x).
The following assertion is valid:
Dy,(xea),, = [nl,,(pxea) ' n=1
Dyaex),, = —[nl,,@eq),,n=1,

and Dy 4(x ©a)p, = 0.

Definition 1.4. Let f be an arbitrary function and a be a real number. The (p, g)-
integral of f(x) on [0,4] is defined as

A4
ff(x)dp,qX=(q—P)aZ k+1f( o
0 =0 1 q

) o e
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and

>1

@ . (qd N\ .. Ip
f:f(x)dp,qx:(p_q)aziﬁf(;wa) if ‘E

k=0
Theorem 1.1. (Fundamental theorem of (p,q)-calculus) If F(x) is an antiderivative of
f(x) and F(x) is continuous at x = 0, we have

b
f £ @) dyx = Eb) — F@),
where 0 <a < b < oo.

Proposition 1.1. The formula of (p, q)-integration by part is given by

b b
(1.1) f F@x)Dp,qg(x)dpqx = f(b)g(b) — f(a)g(a) — f 9(qx)Dyq f (X)édp,gx.

Definition 1.5. ([9]) Let 1 is a nonnegative integer, we define the (p,)-Gamma
function as

(reqg),
T, (n+1)= % =[n,,, 0<q<p.

In the present paper, we define (p,q)-Beta function and establish a relation
between (p, g)-Beta and (p, g)-Gamma functions. As the (p, g)-Beta function is gen-
eralization of Beta function of first kind, we propose the (p, 7)-Bernstein-Durrmeyer
operators. Using some identities of (p, q)-calculus, we estimate moments and es-
tablish some direct results for (p, g)-Bernstein-Durrmeyer operators.

2. (p,q)-Beta Function

In this section, we propose the (p,q) Beta function and then find a relation
between (p, g)-Beta and (p, )-Gamma functions.

Let m,n € N, we define (p, q)-Beta function of first kind as

1
@) By, (m,m) = f ()" (9 pg) dp
0

In [9], the author has given the relation between (p, g)-Beta and (p, 9)-Gamma
functions, without mentioning the integral representation of the (p, q)-Beta func-
tions. For the above form of (p, 4)-Beta function, we have the following relation,
which is not commutative.
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Theorem 2.1. The (p, q)-Gammaand (p, q)-Beta functions fulfill the following fundamen-
tal relation L, (T, (1)

_ pin@mn-2)+n-21/2-p4 ) 2 pa (1)
(2.2) By, (m,n)=p T, (m+n)

where m,n € IN.

Proof. For any m,n € N since

By,q (m,n) f (px)"™" ! (S) P‘ix)n o dpqX,

using (1.1) for f (x) = x" ! and g (x) = _be p] o with the equality

Dyq(popx)' = =[nl,,p(popgx)™

we have
B _ [m - ]Pq m—2 d
1ZZ (m/ 1’1) - pm 1 [7’1] y (Px) (p S/ PqX)p q P/ qx
[m —1],, 15
2.3 = — m—-—1,n+1
(2.3) [l By ( ).

Also we can write for positive integer n
! 1
Byg(mn+1) = fo (p)"" (p© pax), , dpgx

1

fo ()" (pepgn),, (" - pq"x) dyex

1
P [ o p
0

1
-q" fo (px)" (p © pgx)yy, " dpgx

= p"Byy(m,n)—q"By,(m+1,n).

Using (2.3), we have
By (m,n+1)=p"B,,(m,n)— [ ]pq By, (m,n+1),
p "[n,
which implies that
wem_ P 0"

Byy(m,n+1)=p ——Bpq(m,n).

pn+m —_ q



Bernstein Durrmeyer Operators Based on Two Parameters

Further, by definition of (p, q) integration

m—1

1
By, (m,1) = f (px)m_1 dygx = [P_
0

Mg

We immediately have

n-1 _ n-1
n+m—1 P q

Brag (m,m) = i g Bpa (1 = 1)
n—1 n—1 n—2 n—2

_ P 2 P 1
- p”"’m n+m—-1 _ qn+m—1 p”+m n+m-2 _ gn+m-2 BW (m’ n- 2)

p q p q
— tm=1 pfl—l — qn_l n+m—2 pn—Z - qn—Z L
=P pn+m—1 _ qn+m—1p pn+m—2 — qn+m—2

m+1 P—q Bp,q (m, 1)

o p pm+1 — qm+1

_ e P 0T PR
=p pn+m—1 _ qn+m_1 P Pn+m_2 — qn+m—2
m+1 P—q Pm_l

pm+1 — qm+1 [m]p,q
pn=DsmseDe-snen-1) (p © ) !

= m ,n ( - )r
p (" eq),, P

...p

ie.,
n—1
. oa),,

(2.4) By g (m,n) = p* ———=r
. (" eqm),,

-9,

wheres = [n2m+n—-2)+n—2]/2.
Following [9], we have (a © b)g;;’" =(aeb)y,ap" o bq" ). thus (2.4) leads to

. (peq),,
reqm),,
o)) v p-g"p-g
=P n-1"° m-1" m=1, n (p - q)
-9 -9 @peq,, P eq),,

n=1 -1 Mm+n—
S(peq)m (p@q);fq p—q9" ! T m) Ty (n)

n-1" m—1" m+n— p
p-0)"" @-0"" @eq,"" ~ Tpaln+n)

Bp,q (m,n)

r-9

This completes the proof of the theorem. [
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3. (p,q) Bernstein-Durrmeyer-Operators and Moments

The (p, q)-analogue of Bernstein operators for x € [0,1]and 0 < g < p < 1 can be

defined as
n n—k
p k],
Bupq (fix) = Z bZCZ(lrx)f(_ _pq]/

k=0 [y

where

n D —n(1— _
B0 =[] prene i 6
pA

Although the different forms of the (p, g)-Bernstein polynomials have been consid-
ered in [7] and [8], but due to technical problems, the forms considered in these
two papers do not preserve even the constant functions.

Remark 3.1. The link between g-binomial coefficient and (p, g)-binomial coefficients can be
described as:

[n] _ [”]q/p!
k gy (Klgp![n = Klgyp!
[nlgpln = Ugpp -+ - [2]gpp-1
[kl gl = Wgpp - -+ [20gsp- D[ = Klgppln — k= gz -~ [2] - 1)
pk(kfl)/zp(nfk)(nfkfl)/z[n]p/q[n —1lpq - [2]pg1
pn(nil)/z([k]p,q[k - 1];2,17 e [zlp,q-l)([n - k]p,q[n - k - 1]p,q e [Z]p,q-l)
_ pk(k—l)/z—n(n—l)/2p(n—k)(n—k—1)/2 [n]p,q' _ pk(k_n) [H] .
[klpq'ln = K4 klpg

Also, we have (p, q)-power basis as

(x — a)(px — qa)(p*x — *a) -+~ (p"'x — ¢"'a)

2 n—1
ol o)

(xoe a);’,q

n(n-1)/2 o\
P (x a)q/p'

Using the above identities and using the moments of g-Bernstein polynomial, it can easily
be verified by simple computation that
plx(1 - x)

Bupg(L,x) =1, Bypy(t;x) =%, Bpy (tz;x) =+ 0]
by

The g-Durrmeyer operators were proposed in [5] and also studied in [4]. We
introduce below the (p, q) variant of the well known Durrmeyer operators.
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Definition 3.1. The (p, g9)-analogue of Bernstein-Durrmeyer operator for x € [0, 1]
and 0 < g < p < 1is defined as

n 1
DZ’q(f} x)=[n+ 1]p,q Z p—[n2+3n—k2 /ZbP q(l x) f bZZZ(p, pqt)f ) dp,qt
k=0 0

where b7 b, pat) = [k L . CARCE Pqt);’—qk

It may be remarked here that for p = 1 these operators will not reduce to the
g-Durrmeyer operators, but for p = q = 1 these will reduce to the Durrmeyer
operators.

Lemma3.1. Forx€[0,1],0<qg<p <1, we have
1° D1 x) =1,

2° DV(t; x) = Lt

[n+2],,
o Y2,y — P2y CP+app" [nlpgx | Plnlpg[¥ [0l +p" ' 2(1-2)]
3° Dy (5 x) = [n+2],,4[n+3],4 [n+2],,4[n+3],,4 + [n+2]p,4[1+3],4

Proof. Using (2.2) and (2.1) and Remark 3.1, we have

D) = [+ 1], )yt f @G Opaty e
k=0

|

= [n+1] p—ln2+3n—k2_k]/2b}:"1(1, X) [Z] Bygk+1,n—-k+1)

pAq

I
(=]

[n+1]

klpq!ln — k]!
[ +3n-k2=k1/2p,P (1 [”] [n2+3n—k2—k]/2[M—W
P L) kl,, P [n+1],,!

=

rAq

o

k
= B, (1;0) = 1.

Next using the identity [k + 1],,, = p* + g[k],,, and applying Remark 3.1, we have
n 1
D}:,'q(f; x) — [Tl + 1]p,q Z p*[n2+3n—k2,k]/2b}:’rZ(1, x)p—l f [Tl] (pt)k+1 (p o pqt);;kdp,qt
k=0 ' o Lklpg ’

: 12 +3n—k2 -, y n _
:[n+1]MZpI 3k k]/zbf,;(l,x)[k]p,qp 1B, (k+2,1—k+1)

[k +1]p4!n — k], 4!

_ +1 —[n2+3n—k% - “kI/2pP4 (1 [ ] (n2+5n-k2=3k)/2
[n+1] q;p 101, %) TESI

[k +1],,
_an kpr(l ) pA

[n+2],,

Z P, 0 + qlkl,)

quo
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p” - P.q Q[n]p,q - D,q n—k [k]p,q
= brl,x)+ ——— ) b(1,x
[n+2],, ;‘ n'k( ) [n+2],,4 ;}‘ n’k( » [n],

qlnlp, .
(2], By (£x)

1 1
= m;’) Bn'p/q (1, x) +

_ p" +qlnlpqx
n+2],,

Further, using the identity [k +2],, = p**! + gp* + 4°[k],, and by Remark 3.1, we
get

DY) = [+ 1, ) pr 0 B2, 2 f (] w072 e panystat
k=0 0

n
= [n+1],, Z pl K2 [”] p 2B (k+3,n—k+1)
= ’ k Jpq

_ - 2 43n—K2—k]/21,p4 n
= [n+1],, ;p b1, x) [ k]w

[k +2],4![n = k!
[n+3],,!

_y PO, )[ Upalk +2pq
=0 [+ 2], 4ln + 3]

[n2+7n—k2-5k]/2

xp

1
= m Z 21— Zkb}"](l x)(p +q[ ]p,q)-(phl +qpk +qz[k]p,q)

k=0

2n-2k1.pA
p v(1,x)
[n+2], n+3pq;; k

[ Zk(P +q) + Pkl a7 + gp) + 1K,

- [n+2pqn+3 Zb (L,x)

PA k=0

+(2€/ +ap)p"nlp, ZbZZ(l x)( k]pq)

[n+2,,,,n+3,,,,k0 [n],,
[

q

7l o

T+ 2yl + 3, >0, x)[ e,
]

k=0
P24 29* +qp)p"[nlyq

- P g (La+
[+ 2]p40n + 3, "7 (1;%) [+ 2],4[n + 3],
7lnl,
— ™ B, 2; ,
2l 3, (%)

By (t:x)

ie.,

zn[zlp q Q4 + qap)p"[nlpex
[n+ Z]M[n + 3],,,7 [n+ Z]M[n + 3];7,'1

DP q(tz )
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qa[n]p,q[xz[n]p,q + Pn_lx(l - x)]
[n+2]p40n+ 3],

Lemma 3.2. Let n > 3 be a given natural number and let 0 < g <p <1, g0 = qo(n) €
(0, p) be the least number such that

2n+1 n+1 n+1 2n-1.3 _ n-1_n+3 2n .2 _ n n+2 2n+3

g —p" g e = N 4 P = p g = 2p7 T 4 2p"g " >0

for every q € (qo,1). Then

2

o 2 (1
Dy ((F= %)% x) < [+ 2], ((P )+ [”+3]M)/

where p?(x) = x(1 — x), x € [0,1].
Proof. In view of Lemma 3.1, we obtain

q3[n]p,q([n]p,q - P"il) = 2q[n]yqln + 314 + [n+ 2] 4[n + 31,4
[n+2],4[n+ 3],
X P ap + Q)z[n]p,q =2p"[n + 3], + p>(p +q)
[n+2],4[n+ 3],y [n+2],4[n + 3],

Dy ((t= %)%, %) = &

By direct computations, using the definition of the (p, 7)-numbers, we get

no__ n n+3 _ 4n+3
P ol 21
pP—q P—q

1 2n+1 , _ o+l n+l 2n-1_3 _ n-1_n+3

p—qp a-r 49 pra-p g
n _n+2

+p' g = pgt = 2p

P + )*[nlyq = 20" [n + 31y, = P 'q(p +9)

2n+3

+ anqn+3] > 0’

for every g € (qo, 1). Furthermore, p"~'q(p + q)*[nly,q — 2p"[n + 31p,q < 2[n + 3], and
following [5], we have

pn_1Q(p + Q)Z[n]p,q - 2Pn[n + 3]p,q + 43[77];1,:7([”];1,:1 - Pn_l)
=2q[n]pqln + 3l + [n+ 2]y 401 + 34

n+2 n+1

=" qp + 9’ [nlpq = 20" (" + gp™ + P + P[0, )
+q3[n]§’q _ q3pn_l[n]p,q _ 2q[n]p,q(pn+2 + qpn+1 + qun + q3[n]p,q)
+(p" + qp" + Pl )P+ gp™ T+ Pt + 4[] <O

n+1 n+2

In conclusion, for x € [0, 1], we have
P (p +9) P + ) [nlyg — 29" + 3l
[n+2],4[n+ 3], [n+2],4[n+ 3],

+(pn1"7(p + "7)2[7’1];7,:7 =2p"[n+ 3]y,
[n+2],4[n+ 3],

D ((t =%, x) =

x(1—x)




88 Vijay Gupta and Ali Aral

+

7l g(nlpg = p"") = 2qlnlyqln + 31,4 + [n + 2], 401 + 3,4 )xz
[+ 2]p4[n + 3],

2

[+ 2],4[n+ 3],

2[n +3]p4
T [n+2]40n + 3y,

P*(x) +

<

oo
T [n+2],

which was to be proved. 0O

, 1
@)+ [n+3],,,q)’

4. Direct Estimates

We denote W? = {g e C[0,1] : g”, 9" € C[O, 1]} for 0 > 0, K—functional is defined
as

Ka(f,6) = inf{llf ~ gll + nllg”ll - g € W},

where norm-||.|| denotes the uniform norm on C[0, 1]. Following the well-known
inequality due to DeVore and Lorentz [2], there exists an absolute constant C > 0
such that

4.1) Ka(f, ) < Can(f, V),

where the second order modulus of smoothness for f € C[0, 1] is defined as

wa(f, Vo) = sup  sup |f(x+h) - f(x).

0<h< V5 xx+he[0,1]

The usual modulus of continuity for f € C[0, 1] is defined as

w(f,0)=sup sup |f(x+h)— f(x)

0<h<6 x,x+hel0,1]

Our first main result is the following local theorem:

Theorem 4.1. Let n > 3 be a natural number and let 0 < g <p <1, q0 = qo(n) € (0,p)
be defined as in Lemma 3.2. Then there exists an absolute constant C > 0 such that

ID(f, x) = f(x)| < Can (f, [n+ 2];,;/25,1(95)) +w (f, 1;") )

[n+2],,

where f € C[0,1], 63(x) = ¢*(x) + x €[0,1] and g € (9o, 1).

[n+3l,,
Proof. For f € C[0, 1] we define

5Z’q(f/ x) = Dz’q(f/ x) + f(.X') - f (pn ’ q[n]p_,qx) .

[n+2],,
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Then, by Lemma 3.1, we immediately get

(4.2) D)(1,x) = D)(1,x) = 1
and ]
=~ p" + qlnlpex
.4 _ A _r e
(4.3) D, (t,x) = D, (t, x) + x [+ 2,
By Taylor’s formula

t
g(0) = 9 + (£ - )9/ (x) + f (- u)g” () du,

we get
_ _ t
DYg,x) = g(x)+ D)1 (f (t—u) g (u) du, x)
t
= g +Dl ( [ raa, x)
P qlnlpgx
T (P +qln]pex .
- W —ul|g”(u)du.
Thus
_ t
|D’,’,’q(g,x)—g(x)| < DZ’q( f [t —ullg” (u)| du ,x]
Pl qlnlp.gx
[n+2lpq " [ ] "
Pt qinlpgex "
+‘ f [+ 2]y, u ‘ lg” (u)| du
n 2
P4 )2 7" p + q[n]pqu _ ’”
(4.4) < D/ ((t—x)7, x)llg ||+(—[n+2]m x| llg”ll
Also, we have
P+ Q[n]p,qx 2
45 DYt = x)?, x +(7—
(45) =0+ (g
<2 ((Pz(x) L1 )+ (p" — ([ + 2}y, - q[nlp,px){
T [n+2], [ +3],4 [n+2],,

Obviously
(4.6) 1<[n+2],,—qlnl, <2

89
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Then, using (4.6), we get

p'=(n+2l, - q[”lrw)x)Z 2
[n+2],, 0,"(x)

_ P =29+ 2Dy — qlnlpg)x + (1 + 2y — gl )%
= [n+2],

[n]p,q
[n]pgx(1—x)+1

P = 2p"x + 4x? . [1]pq . 1
[n+2]p4 [n+2],, [nlpex(1-x)+1
ie.,
p'—(n+ 2]p,q - Q[n]p,q)x g -
“7) ( [n+2]p, ) o= [n+2]p,

forn € Nand 0 < g < p < 1. In conclusion, by (4.5) and (4.7), for x € [0,1], we
obtain

< Léﬁ(x).

p" +qlnlpqx )2
_ —x
[n+2],,

PAl(is a2
(4.8) D' ((t = x), x) +( [+ 2,

Hence, by (4.4) and with the conditions n > 3 and x € [0, 1], we have

4.9) DY (g, %) — g(x)] < 52(x) g1l

[n+2],,

Furthermore, for f € C[0, 1] we have |[D}(f, x)I| < |Ifl|, thus

p" +qlnlpqx
f([ni) ‘S 3IIfIL-

(4.10) IDY(f, x)| < IDYACF, 0l + | f (o)l+
+ Z]M

forall f € C[0,1].
Now, for f € C[0,1] and g € W?, we obtain

DL (f,x) = f(0)

p" +glnlpqx
[n+ 2]m

- 5Z’q(f,x)—f(x)+f( )‘f(")‘
<IDY(f - 9,01 + ID}y"(g,%) = (o)l + g(x) - £(2)|

p" +qlnlyqx
f ( [n+2],,

-1
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) . p" - ([n+ 2]p,q - Q[n]p,q)x
<4 ||f -gll+ 4[;1 n 2]p,q < 0,(x) - llg”" 1l + w(f' [n+ 2]p,q
1 . 1—x
<5(lIf —gll + m - 53(x) - llg ||) + w(f, TE Z]M)/

where we have used (4.9) and (4.10). Taking the infimum on the right hand side
over all g € W?, we obtain at once

| 1 1-x
ID(f, %) = F(0)l <5 Ky (ff méﬁ("’) T (f ’ W)

Finally, in view of (4.1), we find

IDLA(f,2) = f) < Can(f, [n+2];5700(0)) + @ ( f, i)

[n+2],,
This completes the proof of the theorem. [

The weighted modulus of continuity of second order for f € C[0,1] and ¢(x) =

Vx(1 — x) is defined as:

wl(f, V8) = sup  sup |f(x+ho(x) = 2f(x) + f(x — hp(x))|

0<h< Vo xx+heel0,1]

the corresponding K functional is defined by

Kaop(f,0) = inflllf = gll + Sllg?g”ll + &llg”ll - g € W (@)},

where
W) = {7 € C0,1]: g’ € ACL[0,1], *¢" € C[0,1]}
and g’ € ACjo[0, 1] means that g is differentiable and g’ is absolutely continuous on

every closed interval [a, b] C [0, 1]. By the property due to Ditzian-Totik (see [3, p.
24, Theorem 1.3.1]), we have

4.11) Kop(f,0) < Caw¥(f, Vo)

for some absolute constant C > 0. Moreover, with ¢ the admissible step-weight
function on [0, 1], the Ditzian-Totik moduli of first order is given by

@y(f,0) = sup  sup  |f(x+hy(x)) - f(x).

0<h<d x,x+hy(x)€[0,1]

Now we state and prove the following global direct result:
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Theorem 4.2. Let n > 3 be a natural number and let 0 < q <p < 1,40 = qo(n) € (0, p be
defined as in Lemma 3.2. Then there exists an absolute constant C > 0 such that0 < g <

p<1,40=q0(n) €(0,p)
IDYF = fll < Cal(f,In+2];""%) + @y(f, [n+217Y),
where f € C[0,1], g € (g0, 1) and P(x) =1 —x, x € [0, 1].

Proof. Let us consider

BU(f, ) = DU(f, ) + f) - f (m)

[n+2],,

where f € C[0, 1]. By Taylor’s formula with g € W?(¢p), we have

f
90 = g0+ (t-2) () + f (£ u) " (),

with the applications of (4.2) and (4.3), we obtain

t
Dy(g,») = y(x)+Df{q( f t —M)!J"(u)du,x)

P +qlnlp.gx

T 2lpg Pn + q[n]}?ﬂx ) ’”
_ ———— —u|g’(u) du.
fx ( [n+2],,

t
f It —ul - 19" (u)| du ,x]

P +qlnlp,gx
P+ qlnlpqx

f [n+2lpq
X [n+2],,

Also, the function &2 is concave on [0, 1], we have for u = t + 7(x — t), T € [0, 1], the
following estimate

Thus we can write

IDY(g,x) - g(¥)| < D’Z”’[

(4.12) +

u | g (u)| du

[t —ul Tlx — | T|x — | < |t — x|
2(u)  SR(t+T(x—1) T 82 + T(O3(x) = B3(t)) T (x)

Hence, by (4.12), we obtain

ID}(g, %) - ()|

P +qlnlpgx p"+q[n]p,qx —u
. t |t — ul o [1+2lpq [n+2]p,q .
<Dl Bt g | x| 2 g1+ [ L
x bﬁ(u) x bﬁ(u)
1 P+ q[n]p,qx 8
< DAt = %)%, %)10% 9" || + —x| 1629”]I.
2 Mg s\ s, o971



Bernstein Durrmeyer Operators Based on Two Parameters 93

For x € [0, 1], in view of (4.8) and

2 1A — 2 ’” 1 2 1 ’”
0;,(x) - lg” ()| = lp~(x)g" (x)] + v 2, lg” (ol < llp~g”|l + [n+2]m||g Il
we get
= 5 1
4.13 D(g,x) — g(x)| < ( 29| + . ")
@13 DY) = g < e W+

Obviously using [n], 4 < [1n + 2], (4.10) and (4.13), we find for f € C[0, 1], that

IDY(f, ) = f()l < IDY(f - g, %)l

HD(g,2) — g1+ lg) - o+ | f(%) - f) |
5 2 1 17 Pn + Q[n]p,qx
<AIf g1+ g 9% 1+ gl ‘ Hprran) -0 | .

Finally, taking the infimum on the right hand side over all g € W?(¢p), we obtain
— 1
P _
(4.14) D' (f,x) = f(x)] < 5Kay (f, [T 2]}7#)

p" +qlnlyqx
" ' f( [+ 2],

)-so]

Also, we have

p" +qlnlpqx _ p' = ([n+2]p5 —qlnlpq)x
| (e fe —| e TR R |
p" = ([n+ 2,5 — qlnlyg)x
< t t — f(t
t’H_lp(t)ﬂn—([rz?[g;;zj[u]p,q)xE[O,H f( * 1’[}( ) [1’1 + 2];7,,71)0(9() ) f( )
a (f lp" — ([n+ 2]p,q - Q[n]p,q)x|)
- [+ 2]y 49(x)

IA

5 1-—x o 1
1 )~ )
Hence, by (4.14) and (4.11), we get

IDYf = fll < Caf(f,In+2],1) + wy(f,[n+2]1).

This completes the proof of the theorem. [
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Remark 4.1. For g € (0,1) and p € (q,1] it is obvious that lim,« [1],, = 1/(p —g). Thus
above theorems do not give a approximation result. If we choose g, = ¢”/" and p,, = ¢™1/("*D
such that0 < g, <p, <1, limp, = lim g, = 1 and lim p}, = lim q}; = 1/e. Also we have

lim [n],,, = co.

n—oo P

Since [1 + 2], = [2],,p" + ¢* [1],, we can write

. . 1 . 11,4
lim =lim—————=0 and lim ———— =1.
e [n]p”’q” e [l’l + Z]V"rqn e [7’1 + 2],17»17’7»1
For n=5 For n=5
______ For g=.8, p=9 / For q=.8, p=9
For ¢=.9, p=98 For 0z, 1o 08
For =9, p=1 / or g=.9, p=.!
fi0)=05¢e g == For =9, p=1

—  — H(0=In(l+x)

FiG. 4.1: Functions fi(x) = 0.5¢* and f>(x) = In(1 + x)

Example 4.1. With the help of MaTnEmATICA, We show comparisons and some illustrative
graphics for the convergence of (p, g)-Bernstein-Durrmeyer operators D}(f; x) for different
values of the parameters p and q. We have considered different functions as shown in Figures
4.1.
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