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FIXED POINTS OF ALMOST CONTRACTIVE TYPE MAPPINGS

IN PARTIALLY ORDERED B-METRIC SPACES AND

APPLICATIONS TO QUADRATIC INTEGRAL EQUATIONS

Mina Dinarvand

Abstract. The purpose of this paper is to present a new class of almost contractive
mappings called almost generalized (ψ,ϕ, θ)s-contractive mappings and to establish
some fixed point and common fixed point results for this class of mappings in partially
ordered b-metric spaces. Our main results of the paper significantly generalize and
improve many well known comparable results in the recent literature. Moreover, some
examples and an application to the existence of a solution for a class of nonlinear
quadratic integral equations is given here to illustrate the usability of the obtained
results.

Keywords: common fixed point; fixed point; almost contractive mapping; partially
ordered b-metric space

1. Introduction

Fixed point theory is one of the most powerful and productive tools from the
nonlinear analysis and it can be considered the kernel of the nonlinear analysis.
Not only is it used on a daily basis in pure and applied mathematics, but it also
serves as a bridge between analysis and topology, and provides a very fruitful area
of interaction between the two. Although the concept of a fixed point theorem
may appear as an abstract notion in metric spaces, it has remarkable influence
on applications such as the theory of differential and integral equations [38], the
game theory relevant to the military, sports and medicine as well as economics [9].
Besides, it has applications in physics, engineering, boundary value problems and
variational inequalities (see, e.g., [8, 16]).

The Banach contraction principle [7], which shows that every contractive map-
ping defined on a complete metric space has a unique fixed point, is one of the
famous theorems in classical functional analysis. This theorem supplies a method
for solving a variety of applied problems in mathematical sciences and engineering.
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A huge literature on this subject exist and this is a very active area of research at
present.

The concept of a weakly contractive mapping was introduced by Alber and
Guerre-Delabriere [2] in the setup of Hilbert spaces. Rhoades [33] generalized the
Banach contraction principle by considering this class of mappings in the setup
of metric spaces and proved that every weakly contractive mapping defined on a
complete metric space has a unique fixed point.

Ran and Reurings initiated the studying of fixed point results on partially or-
dered sets in [32], where they gave many useful results on matrix equations. Re-
cently, many researchers have focused on different contractive conditions in complete
metric spaces endowed with a partial order and obtained many fixed point results in
such spaces. For more details on fixed point results, their applications, comparison
of different contractive conditions and related results in ordered metric spaces we
refer the reader to [13, 17, 18, 27, 28, 29, 31] and the references mentioned therein.

The concept of metric spaces has been generalized in many directions. The
notion of a b-metric space was introduced by Bakhtin in [6], and later extensively
used by Czerwik in [14, 15]. Since then, several papers have been published on the
fixed point theory of various classes of single-valued and multi-valued operators in
(ordered) b-metric spaces. For further works in this direction, we refer to [1, 5, 10,
11, 12, 19, 20, 23, 24, 30, 34, 36]. Recently, Hussain and Shah [21] obtained some
results on KKM mappings in cone b-metric spaces.

In the present paper, we introduce the notion of an almost generalized (ψ, ϕ, θ)s-
contractive mapping and then derive fixed point and common fixed point theorems
for this class of mappings in the setup of partially ordered b-complete b-metric
spaces. Our main results generalize and improve many recent fixed point theorems
in the literature. We show by examples that the obtained extensions are proper.
Moreover, we apply our results to study the existence of a solution to a large class
of nonlinear quadratic integral equations.

2. Preliminaries

Khan et al. [25] introduced the concept of an altering distance function as
follows.

Definition 2.1. ([25]) A function ψ : [0,+∞) → [0,+∞) is called an altering
distance function if the following properties are satisfied:

(1) ψ is continuous and nondecreasing;

(2) ψ(t) = 0 if and only if t = 0.

So far, many authors have studied fixed point theorems, which are based on
altering distance functions. Recently, Harjani and Sadarangani proved some fixed
point theorems for weak contraction and generalized contractions in partially or-
dered metric spaces by using the altering distance function in [17, 18] respectively.
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Theorem 2.1. ([17]) Let (X,�) be a partially ordered set and suppose that there

exists a metric d in X such that (X, d) is a complete metric space. Let f : X → X

be a nondecreasing mapping such that

d(fx, fy) ≤ d(x, y)− ψ
(

d(x, y)
)

for all comparable x, y ∈ X, where ψ : [0,+∞) → [0,+∞) is continuous and nonde-

creasing function such that ψ is positive in (0,+∞), ψ(0) = 0 and limt→+∞ ψ(t) =
+∞. Assume that either f is continuous or the space (X,�, d) is regular. If there

exists x0 ∈ X such that x0 � fx0, then f has a fixed point.

Here, the ordered metric space (X,�, d) is called regular if for any nondecreasing
sequence {xn} in X such that xn → x ∈ X , as n → +∞, one has xn � x for all
n ∈ N.

Theorem 2.2. ([18]) Let (X,�) be a partially ordered set and suppose that there

exists a metric d in X such that (X, d) is a complete metric space. Let f : X → X

be a nondecreasing mapping such that

ψ
(

d(fx, fy)
)

≤ ψ
(

d(x, y)
)

− φ
(

d(x, y)
)

for all comparable x, y ∈ X, where ψ and φ are altering distance functions. Assume

that either f is continuous or the space (X,�, d) is regular. If there exists x0 ∈ X

such that x0 � fx0, then f has a fixed point.

In 1973, Geraghty [22] proved a fixed point result, generalizing Banach con-
traction principle. Several authors proved later various results using Geraghty-type
conditions. Recently, Amini-Harandi and Emami [4] generalized the result of Ger-
aghty to the framework of partially ordered metric spaces. Before, we introduce the
set F of all functions β : [0,+∞) → [0, 1) satisfying the following condition:

β(tn) → 1 as n→ +∞ implies tn → 0 as n→ +∞.

Theorem 2.3. ([4]) Let (X,�) be a partially ordered set and suppose that there

exists a metric d in X such that (X, d) is a complete metric space. Let f : X → X

be an increasing mapping such that there exists x0 ∈ X with x0 � fx0. Suppose

that there exists β ∈ F such that

d(Tx, T y) ≤ β
(

d(x, y)
)

d(x, y)

for all comparable x, y ∈ X. Assume that either f is continuous or the space

(X,�, d) is regular. Then f has a fixed point in X. Besides, if for each x, y ∈ X

there exists z ∈ X which is comparable to x and y, then the fixed point of f is

unique.

Before stating and proving our results, we recall some notations, definitions, and
examples required in b-metric spaces.

Consistent with [15, 26] and [36], the following definitions and results will be
needed in the sequel.
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Definition 2.2. ([15]) Let X be a (nonempty) set and s ≥ 1 be a given real
number. A function d : X × X → [0,+∞) is a b-metric if, for all x, y, z ∈ X , the
following conditions hold:

(b1) d(x, y) = 0 if and only if x = y;

(b2) d(x, y) = d(y, x);

(b3) d(x, z) ≤ s
[

d(x, y) + d(y, z)
]

.

In this case, the pair (X, d) is called a b-metric space.

It should be noted that, the class of b-metric spaces is effectively larger than the
class of metric spaces, since every metric is a b-metric with s = 1.

The following example shows that in general a b-metric space does not necessarily
need to be a metric space. (see also [36, p. 264]).

Example 2.1. Let (X, ρ) be a metric space and d(x, y) = (ρ(x, y))p, where p > 1 is a
real number. We show that d is a b-metric with s = 2p−1.

Obviously, conditions (b1) and (b2) of Definition 2.2 are satisfied. If 1 < p < +∞,
then the convexity of the function f(x) = xp (x > 0) implies

(

a+ b

2

)p

≤ 1

2
(ap + b

p),

and hence, (a+ b)p ≤ 2p−1(ap + bp) holds.

Thus, for each x, y, z ∈ X, we obtain

d(x, y) =
(

ρ(x, y)
)p

≤
(

ρ(x, z) + ρ(z, y)
)p

≤ 2p−1
((

ρ(x, z)
)p

+
(

ρ(z, y)
)p)

= 2p−1
(

d(x, z) + d(z, y)
)

.

So, condition (b3) of Definition 2.2 is also satisfied and d is a b-metric.

However, if (X, ρ) is a metric space, then (X, d) is not necessarily a metric space.

For example, if X = R is the set of real numbers and ρ(x, y) = |x − y| is the usual
Euclidean metric, then d(x, y) = (x − y)2 is a b-metric on R with s = 2. But is not a
metric on R.

Also, the following example of a b-metric space is given in [24].

Example 2.2. ([24]) Let X be the set of Lebesgue measurable functions on [0, 1] such
that

∫ 1

0

|f(x)|2dx < +∞.
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Define D : X ×X → [0,+∞) by

D(f, g) =

∫ 1

0

|f(x)− g(x)|2dx.

Since
(∫ 1

0

|f(x)− g(x)|2dx
) 1

2

is a metric on X, it follows from the previous example that D is a b-metric on X with
s = 2.

Definition 2.3. Let X be a nonempty set. Then (X,�, d) is called a partially
ordered b-metric space if and only if d is a b-metric on a partially ordered set
(X,�).

Definition 2.4. ([10]) Let (X, d) be a b-metric space, and let {xn} be a sequence
in X . Then one has the following:

(1) The sequence {xn} in X is called b-convergent if and only if there exists x ∈ X

such that d(xn, x) → 0 as n→ +∞. In this case, we write limn→+∞ xn = x.

(2) The sequence {xn} is said to be b-Cauchy sequence if and only if d(xn, xm) → 0
as n,m→ +∞.

(3) The b-metric space (X, d) is called b-complete if every b-Cauchy sequence {xn}
in X be b-converges.

Proposition 2.1. ([10, Remark 2.1]) In a b-metric space (X, d) the following as-

sertions hold:

(1) A b-convergent sequence has a unique limit.

(2) Each b-convergent sequence is b-Cauchy.

(3) In general, a b-metric is not continuous.

Note that a b-metric is not always a continuous function of its variables (see,
e.g., [20, Example 2]), whereas an ordinary metric is.

Since in general a b-metric is not continuous, we need the following simple lemma
about the b-convergent sequences in the proof of our main result.

Lemma 2.1. ([1]) Let (X, d) be a b-metric space with the coefficient s ≥ 1, and
suppose that the sequences {xn} and {yn} are b-convergent to x, y, respectively.

Then, we have

1

s2
d(x, y) ≤ lim inf

n→+∞

d(xn, yn) ≤ lim sup
n→+∞

d(xn, yn) ≤ s2d(x, y).

In particular, if x = y, then limn→+∞ d(xn, yn) = 0. Moreover, for each z ∈ X, we

have
1

s
d(x, z) ≤ lim inf

n→+∞

d(xn, z) ≤ lim sup
n→+∞

d(xn, z) ≤ sd(x, z).
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3. Main Results

Use of auxiliary functions to generalize the contractive conditions on maps have
been a subject of interest in fixed point theory. We start to this section by defining
some sets of auxiliary functions which will be used densely in the sequel.

Ψ =
{

ψ : [0,+∞) → [0,+∞)
∣

∣ ψ is an altering distance function
}

,

Φ =
{

ϕ : [0,+∞) → [0,+∞)
∣

∣ ϕ is continuous with the condition

ϕ(t) < ψ(t) for all t > 0, where ψ ∈ Ψ
}

and

Θ =
{

θ : [0,+∞) → [0,+∞)
∣

∣ θ is continuous and θ(t) = 0 if and only if t = 0
}

.

Remark 3.1. It is worth mentioning that if ϕ ∈ Φ, then

0 ≤ ϕ(0) = lim
t→0

ϕ(t) ≤ lim
t→0

ψ(t) = ψ(0) = 0,

that is, ϕ(0) = 0.

Definition 3.1. Let (X,�, d) be a partially ordered b-metric space with the co-
efficient s ≥ 1. We say that a mapping f : X → X is an almost generalized
(ψ, ϕ, θ)s-contractive mapping with respect to a mapping g : X → X if there exist
the functions ψ ∈ Ψ, ϕ ∈ Φ, θ ∈ Θ and a constant L ≥ 0 such that

ψ
(

s2d(fx, gy)
)

≤ ϕ
(

Ms(x, y)
)

+ Lθ
(

N(x, y)
)

(3.1)

for all comparable elements x, y ∈ X , where

Ms(x, y) = max

{

d(x, y), d(x, fx), d(y, gy),
d(x, gy) + d(y, fx)

2s

}

and

N(x, y) = min
{

d(x, fx), d(y, fx), d(x, gy)
}

.

Definition 3.2. ([3]) Let (X,�) be a partially ordered set. Then two mappings
f, g : X → X are said to be weakly increasing if fx � gfx and gx � fgx for all
x ∈ X .

Now, we are ready to state and prove our main results.

Theorem 3.1. Let (X,�, d) be a partially ordered b-complete b-metric space with

the coefficient s ≥ 1, and let f, g : X → X be two weakly increasing mappings with

respect to �. Suppose that
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(a) f is an almost generalized (ψ, ϕ, θ)s-contractive mapping with respect to g;

(b) f or g is continuous.

Then f and g have a common fixed point.

Proof. We prove that u is a fixed point of f if and only if u is a fixed point of g.
Suppose that u is a fixed point of f , that is, fu = u. As u � u, by applying 3.1, we
have

ψ
(

d(u, gu)
)

≤ ψ
(

s2d(u, gu)
)

= ψ
(

s2d(fu, gu)
)

≤ ϕ

(

max

{

d(u, u), d(u, fu), d(u, gu),
1

2s

(

d(u, gu) + d(u, fu)
)

})

+Lθ
(

min
{

d(u, fu), d(u, gu)
})

= ϕ
(

d(u, gu)
)

,

since ψ is nondecreasing. By using the condition ψ(t) > ϕ(t) for t > 0, we obtain
d(u, gu) = 0. Therefore, gu = u. Similarly, we can show that if u is a fixed point of
g, then u is a fixed point of f .

Let x0 ∈ X . We construct a sequence {xn} in X such that x2n+1 = fx2n and
x2n+2 = gx2n+1 for all nonnegative integers. As f and g are weakly increasing with
respect to �, we have

x1 = fx0 � gfx0 = x2 = gx1 � fgx1 = x3 � · · ·

� x2n+1 = fx2n � gfx2n = x2n+2 � · · · .

If x2n = x2n+1 for some n ∈ N, then x2n = fx2n. Thus, x2n is a fixed point of f .
By the first part, we conclude that x2n is also a fixed point of g.

If x2n+1 = x2n+2 for some n ∈ N, then x2n+1 = gx2n+1. Thus, x2n+1 is a fixed
point of g. By the first part, we conclude that x2n+1 is also a fixed point of f .
Therefore, we assume that xn 6= xn+1 for all n ∈ N.

Now, we complete the proof in the following steps.

Step 1. We will show that

lim
n→+∞

d(xn, xn+1) = 0.(3.2)

Since x2n and x2n+1 are comparable, by applying the inequality 3.1, we have

ψ
(

d(x2n+1, x2n+2)
)

≤ ψ
(

s2d(x2n+1, x2n+2)
)

= ψ
(

s2d(fx2n, gx2n+1)
)

≤ ϕ
(

Ms(x2n, x2n+1)
)

+ Lθ
(

N(x2n, x2n+1)
)

,(3.3)
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for all n ∈ N, where

Ms(x2n, x2n+1) = max

{

d(x2n, x2n+1), d(x2n, fx2n), d(x2n+1, gx2n+1),

d(x2n, gx2n+1) + d(x2n+1, fx2n)

2s

}

= max

{

d(x2n, x2n+1), d(x2n+1, x2n+2),
d(x2n, x2n+2)

2s

}

≤ max

{

d(x2n, x2n+1), d(x2n+1, x2n+2),

s
[

d(x2n, x2n+1) + d(x2n+1, x2n+2)
]

2s

}

= max
{

d(x2n, x2n+1), d(x2n+1,2n+2 )
}

(3.4)

and

N(x2n, x2n+1) = min
{

d(x2n, fx2n), d(x2n+1, fx2n), d(x2n, gx2n+1)
}

= min
{

d(x2n, x2n+1), d(x2n+1, x2n+1), d(x2n, x2n+2)
}

= 0.(3.5)

By applying the inequality 3.3 and using 3.4 and 3.5, we have

ψ
(

d(x2n+1, x2n+2)
)

≤ ϕ
(

max
{

d(x2n, x2n+1), d(x2n+1, x2n+2)
})

.(3.6)

Now, if for some n ∈ N,

max
{

d(x2n, x2n+1), d(x2n+1, x2n+2)
}

= d(x2n+1, x2n+2),

then by using 3.6 and the properties of the function ϕ, we get

ψ
(

d(x2n+1, x2n+2)
)

≤ ϕ
(

d(x2n+1, x2n+2)
)

< ψ
(

d(x2n+1, x2n+2)
)

,

which gives a contradiction. Thus,

max
{

d(x2n, x2n+1), d(x2n+1, x2n+2)
}

= d(x2n, x2n+1).

Hence, the inequality 3.6 yields that

ψ
(

d(x2n+1, x2n+2)
)

≤ ϕ
(

d(x2n, x2n+1)
)

< ψ
(

d(x2n, x2n+1)
)

.(3.7)

Similarly, we can show that

ψ
(

d(x2n+1, x2n)
)

≤ ϕ
(

d(x2n, x2n−1)
)

< ψ
(

d(x2n, x2n−1)
)

.(3.8)

for all n ∈ N. Since ψ is nondecreasing, it follows by 3.7 and 3.8 that {d(xn, xn+1) :
n ∈ N ∪ {0}} is a nonincreasing sequence of nonnegative real numbers which is
bounded from below. Then there exists r ≥ 0 such that

lim
n→+∞

d(xn, xn+1) = r.
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Now, we claim that r = 0. On the contrary, assume that r > 0. Since ψ and ϕ are
continuous, it follows by taking limit as n→ +∞ in 3.7 that

ψ(r) ≤ ϕ(r).

Now, by using the condition ψ(t) > ϕ(t) for t > 0, we have r = 0, which is a
contradiction. Hence, we conclude that r = 0.

Step 2. We will prove that {xn} is a b-Cauchy sequence in X . Because of 3.2,
it is sufficient to show that the subsequence {x2n} is a b-Cauchy sequence. Assume
on the contrary that {x2n} is not a b-Cauchy sequence. Then there exists ε > 0 for
which we can find two subsequences {x2mk

} and {x2nk
} of {xn} such that nk is the

smallest index for which

nk > mk > k, d(x2mk
, x2nk

) ≥ ε.(3.9)

This means that

d(x2mk
, x2nk−2) < ε.(3.10)

From 3.9 and 3.10 and by using the triangular inequality, we have

ε ≤ d(x2mk
, x2nk

) ≤ sd(x2mk
, x2nk−2) + sd(x2nk−2, x2nk

)

≤ sd(x2mk
, x2nk−2) + s2d(x2nk−2, x2nk−1) + s2d(x2nk−1, x2nk

)

< sε+ s2d(x2nk−2, x2nk−1) + s2d(x2nk−1, x2nk
).

By taking the upper limit as k → +∞ and thanks to 3.2, we get

ε ≤ lim sup
k→+∞

d(x2mk
, x2nk

) ≤ sε.(3.11)

Further, from

d(x2mk
, x2nk−1) ≤ sd(x2mk

, x2nk−2) + sd(x2nk−2, x2nk−1)

and by using 3.2 and 3.10, we get

lim sup
k→+∞

d(x2mk
, x2nk−1) ≤ sε.

Again, by using the triangular inequality, we have

d(x2mk
, x2nk

) ≤ sd(x2mk
, x2nk−1) + sd(x2nk−1, x2nk

).

By taking the upper limit as k → +∞ in the above inequality and using 3.2 and
3.11, we get

ε

s
≤ lim sup

k→+∞

d(x2mk
, x2nk−1).



784 M. Dinarvand

Thus, we have

ε

s
≤ lim sup

k→+∞

d(x2mk
, x2nk−1) ≤ sε.(3.12)

From 3.10 and by using the triangular inequality again, we have

d(x2mk+1, x2nk−1) ≤ sd(x2mk+1, x2mk
) + sd(x2mk

, x2nk−1)

≤ sd(x2mk+1, x2mk
) + s2d(x2mk

, x2nk−2) + s2d(x2nk−2, x2nk−1)

< sd(x2mk+1, x2mk
) + s2ε+ s2d(x2nk−2, x2nk−1).

By taking the upper limit as k → +∞ in the above inequality and using 3.2, we get

lim sup
k→+∞

d(x2mk+1, x2nk−1) ≤ s2ε.

Again, by using the triangular inequality, we have

d(x2mk
, x2nk

) ≤ sd(x2mk
, x2mk+1) + sd(x2mk+1, x2nk

)

≤ sd(x2mk
, x2mk+1) + s2d(x2mk+1, x2nk−1) + s2d(x2nk−1, x2nk

).

By taking the upper limit as k → +∞ in the above inequality and using 3.2 and
3.11, we get

ε

s2
≤ lim sup

k→+∞

d(x2mk+1, x2nk−1).

Hence, we have

ε

s2
≤ lim sup

k→+∞

d(x2mk+1, x2nk−1) ≤ s2ε.(3.13)

Moreover, from

d(x2mk
, x2nk

) ≤ sd(x2mk
, x2mk+1) + sd(x2mk+1, x2nk

)

and thanks to 3.2 and 3.11, we get

ε

s
≤ lim sup

k→+∞

d(x2mk+1, x2nk
).

On the other hand, from

d(x2mk+1, x2nk
) ≤ sd(x2mk+1, x2mk

) + sd(x2mk
, x2nk

)

and by using 3.2 and 3.11, we obtain

lim sup
k→+∞

d(x2mk+1, x2nk
) ≤ s2ε.
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Therefore, we have

ε

s
≤ lim sup

k→+∞

d(x2mk+1, x2nk
) ≤ s2ε.(3.14)

Since x2mk
and x2nk−1 are comparable, by applying the inequality 3.1, we have

ψ
(

s2d(x2mk+1, x2nk
)
)

= ψ
(

s2d(fx2mk
, gx2nk−1)

)

≤ ϕ
(

Ms(x2mk
, x2nk−1)

)

+Lθ
(

N(x2mk
, x2nk−1)

)

,(3.15)

where

Ms(x2mk
, x2nk−1) = max

{

d(x2mk
, x2nk−1), d(x2mk

, fx2mk
), d(x2nk−1, gx2nk−1),

d(x2mk
, g2nk−1) + d(fx2mk

, x2nk−1)

2s

}

= max

{

d(x2mk
, x2nk−1), d(x2mk

, x2mk+1), d(x2nk−1, x2nk
),

d(x2mk
, x2nk

) + d(x2mk+1, x2nk−1)

2s

}

(3.16)

and

N(x2mk
, x2nk−1) = min

{

d(x2mk
, fx2mk

), d(x2nk−1, fx2nk−1), d(x2mk
, gx2nk−1)

}

= min
{

d(x2mk
, x2mk+1), d(x2nk−1, x2nk

), d(x2mk
, x2nk

)
}

.(3.17)

By taking the upper limit as k → +∞ in 3.16 and using 3.2, 3.11, 3.12 and 3.13,
we get

ε

2s
+

ε

2s3
= min

{

ε

s
,
ε+ ε

s2

2s

}

≤ lim sup
k→+∞

Ms(x2mk
, x2nk−1)

= max

{

lim sup
k→+∞

d(x2mk
, x2nk−1), 0, 0,

lim supk→+∞
d(x2mk

, x2nk
) + lim supk→+∞

d(x2mk+1, x2nk−1)

2s

}

≤ max

{

sε,
sε+ s2ε

2s

}

= sε.

So, we have

ε

2s
+

ε

2s3
≤ lim sup

k→+∞

Ms(x2mk
, x2nk−1) ≤ sε,(3.18)
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and from 3.17,

lim sup
k→+∞

N(x2mk
, x2nk−1) = 0.(3.19)

Now, taking the upper limit as k → +∞ in 3.15 and using 3.14, 3.18 and 3.19, we
obtain

ψ(sε) = ψ

(

s2
ε

s

)

≤ ψ
(

s2 lim sup
k→+∞

d(x2mk+1, x2nk
)
)

≤ ϕ
(

lim sup
k→+∞

Ms(x2mk
, x2nk−1)

)

≤ ϕ(sε)

< ψ(sε),

which is a contradiction. So, we deduce that {xn} is a b-Cauchy sequence.

Step 3. Existence of a common fixed point for f and g.

As {xn} is a b-Cauchy sequence in X which is a b-complete b-metric space, there
exists u ∈ X such that limn→+∞ xn = u and

lim
n→+∞

x2n+1 = lim
n→+∞

fx2n = u.

Now, without any loss of generality, we may assume that f is continuous. By using
the triangular inequality, we have

d(u, fu) ≤ sd(u, fx2n) + sd(fx2n, fu).

Now, by taking the upper limit as n → +∞ in the above inequality and using the
continuity of f , we get

d(u, fu) ≤ s lim sup
n→+∞

d(u, fx2n) + s lim sup
n→+∞

d(fx2n, fu) = 0.

Thus, we have fu = u. Hence, u is a fixed point of f . By the first part of proof, we
conclude that u is also a fixed point of g.

The assumption of continuity of one of the mappings f or g in Theorem 3.1 can be
replaced by another condition, which is often used in similar situations. Namely, we
shall use the notion of a regular ordered b-metric space, which is defined analogously
to the case of the standard metric (see the paragraph following Theorem 2.1).

Theorem 3.2. Let (X,�, d) be a partially ordered b-complete b-metric space with

the coefficient s ≥ 1, and let f, g : X → X be two weakly increasing mappings with

respect to �. Suppose that

(a) f is an almost generalized (ψ, ϕ, θ)s-contractive mapping with respect to g;

(b) the space (X,�, d) is regular.
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Then f and g have a common fixed point in X.

Proof. Repeating the proof of Theorem 3.1, we construct an increasing sequence
{xn} in X such that limn→+∞ xn = u for some u ∈ X . By using the given assump-
tion on X , we have xn � u for all n ∈ N. Now, we show that fu = gu = u. Putting
x = x2n and y = u in 3.1, we obtain

ψ
(

s2d(x2n+1, gu)
)

= ψ
(

s2d(fx2n, gu)
)

≤ ϕ
(

Ms(x2n, u)
)

+ Lθ
(

N(x2n, u)
)

,(3.20)

where

Ms(x2n, u)
)

= max

{

d(x2n, u), d(x2n, fx2n), d(u, gu),

d(x2n, gu) + d(fx2n, u)

2s

}

= max

{

d(x2n, u), d(x2n, x2n+1), d(u, gu),

d(x2n, gu) + d(x2n+1, u)

2s

}

(3.21)

and

N(x2n, u)
)

= min
{

d(x2n, fx2n), d(u, fx2n), d(x2n, gu)
}

= min
{

d(x2n, x2n+1), d(u, x2n+1), d(x2n, gu)
}

.(3.22)

Letting n→ +∞ in 3.21 and 3.22 and by using Lemma 2.1, we get

d(u, gu)

2s2
= min

{

d(u, gu),
d(u,gu)

s

2s

}

≤ lim sup
n→+∞

Ms(x2n, u)

≤ max

{

d(u, gu),
sd(u, gu)

2s

}

= d(u, gu)(3.23)

and

N(x2n, u) → 0.(3.24)

Now, taking the upper limit as n→ +∞ in 3.20 and by using Lemma 2.1, 3.23 and
3.24, we obtain

ψ
(

d(u, gu)
)

≤ ψ
(

sd(u, gu)
)

= ψ

(

s2
1

s
d(u, gu)

)

≤ ψ
(

s2 lim sup
n→+∞

d(x2n+1, gu)
)

≤ ϕ
(

lim sup
n→+∞

Ms(x2n, u)
)

≤ ϕ
(

d(u, gu)
)

,
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since ψ is nondecreasing. By using the condition ψ(t) > ϕ(t) for t > 0, we have
d(u, gu) = 0, that is, u = gu. Thus, u is a fixed point of g. On the other hand,
similar to the first part of the proof of Theorem 3.1, we can show that fu = u.
Hence, u is a common fixed point of f and g.

By putting f = g in Theorems 3.1 and 3.2, we obtain the following result.

Corollary 3.1. Let (X,�, d) be a partially ordered b-complete b-metric space with

the coefficient s ≥ 1, and let f : X → X be a nondecreasing mapping with respect

to �. Suppose that

(a) there exist the functions ψ ∈ Ψ, ϕ ∈ Φ, θ ∈ Θ and a constant L ≥ 0 such that

ψ
(

s2d(fx, fy)
)

≤ ϕ
(

Ms(x, y)
)

+ Lθ
(

N(x, y)
)

(3.25)

for all comparable elements x, y ∈ X, where

Ms(x, y) = max

{

d(x, y), d(x, fx), d(y, fy),
d(x, fy) + d(y, fx)

2s

}

and

N(x, y) = min
{

d(x, fx), d(y, fx), d(x, fy)
}

;

(b) f is continuous, or

(b′) the space (X,�, d) is regular.

If there exists x0 ∈ X such that x0 � fx0, then f has a fixed point.

By taking ϕ(t) = ψ(t)− φ(t), where φ ∈ Ψ in Theorems 3.1 and 3.2, we obtain
the following result.

Corollary 3.2. Let (X,�, d) be a partially ordered b-complete b-metric space with

the coefficient s ≥ 1, and let f, g : X → X be two weakly increasing mappings with

respect to �. Suppose that

(a) there exist the functions ψ, φ ∈ Ψ and a constant L ≥ 0 such that

ψ
(

s2d(fx, gy)
)

≤ ψ
(

Ms(x, y)
)

− φ
(

Ms(x, y)
)

+ Lθ
(

N(x, y)
)

(3.26)

for all comparable elements x, y ∈ X, where

Ms(x, y) = max

{

d(x, y), d(x, fx), d(y, gy),
d(x, gy) + d(y, fx)

2s

}

and

N(x, y) = min
{

d(x, fx), d(y, fx), d(x, gy)
}

;
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(b) f or g is continuous, or

(b′) the space (X,�, d) is regular.

Then f and g have a common fixed point in X.

By putting ψ(t) = t and ϕ(t) = β(t)t, where β ∈ F , we get the following result.

Corollary 3.3. Let (X,�, d) be a partially ordered b-complete b-metric space with

the coefficient s ≥ 1, and let f, g : X → X be two weakly increasing mappings with

respect to �. Suppose that

(a) there exist the function β ∈ F and a constant L ≥ 0 such that

s2d(fx, gy) ≤ β
(

Ms(x, y)
)

Ms(x, y) + Lθ
(

N(x, y)
)

(3.27)

for all comparable elements x, y ∈ X, where

Ms(x, y) = max

{

d(x, y), d(x, fx), d(y, gy),
d(x, gy) + d(y, fx)

2s

}

and

N(x, y) = min
{

d(x, fx), d(y, fx), d(x, gy)
}

;

(b) f or g is continuous, or

(b′) the space (X,�, d) is regular.

Then f and g have a common fixed point in X.

By taking f = g and L = 0 in Corollaries 3.2 and 3.3, we get immediately the
following results.

Corollary 3.4. Let (X,�, d) be a partially ordered b-complete b-metric space with

the coefficient s ≥ 1, and let f : X → X be a nondecreasing mapping with respect

to �. Suppose that

(a) there exist the functions ψ, φ ∈ Ψ such that

ψ
(

s2d(fx, fy)
)

≤ ψ
(

Ms(x, y)
)

− φ
(

Ms(x, y)
)

(3.28)

for all comparable elements x, y ∈ X, where

Ms(x, y) = max

{

d(x, y), d(x, fx), d(y, fy),
d(x, fy) + d(y, fx)

2s

}

;

(b) f is continuous, or
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(b′) the space (X,�, d) is regular.

If there exists x0 ∈ X such that x0 � fx0, then f has a fixed point.

Corollary 3.5. Let (X,�, d) be a partially ordered b-complete b-metric space with

the coefficient s ≥ 1, and let f : X → X be a nondecreasing mapping with respect

to �. Suppose that

(a) there exists the function β ∈ F such that

s2d(fx, fy) ≤ β
(

Ms(x, y)
)

Ms(x, y)(3.29)

for all comparable elements x, y ∈ X, where

Ms(x, y) = max

{

d(x, y), d(x, fx), d(y, fy),
d(x, fy) + d(y, fx)

2s

}

;

(b) f is continuous, or

(b′) the space (X,�, d) is regular.

If there exists x0 ∈ X such that x0 � fx0, then f has a fixed point.

If we take ψ(t) = t in Corollary 3.4, then we get the following result.

Corollary 3.6. Let (X,�, d) be a partially ordered b-complete b-metric space with

the coefficient s ≥ 1, and let f : X → X be a nondecreasing mapping with respect

to �. Suppose that

(a) there exists the function φ ∈ Ψ such that

s2d(fx, fy) ≤Ms(x, y)− φ
(

Ms(x, y)
)

(3.30)

for all comparable elements x, y ∈ X, where

Ms(x, y) = max

{

d(x, y), d(x, fx), d(y, fy),
d(x, fy) + d(y, fx)

2s

}

.

(b) f is continuous, or

(b′) the space (X,�, d) is regular.

If there exists x0 ∈ X such that x0 � fx0, then f has a fixed point.

Remark 3.2. Recall that a subset W of a partially ordered set X is said to be well
ordered if every two elements of W are comparable. Note that (common) fixed points of
the given mappings in Theorems 3.1 and 3.2 and Corollary 3.1 need not be unique (see
further Example 4.3). However, it is easy to show that they must be unique in the case
that the respective sets of (common) fixed points are well ordered.



Fixed Points of Almost Contractive Mappings in Ordered b-Metric Spaces 791

Remark 3.3. Corollary 3.2 improves the main results (Theorems 5 and 6) of Roshan et
al. [34] (note that we have s2 instead of s4 in the contractive condition). Also, Corollary
3.4 (with L = 0 and s2 instead of s) corresponds to Theorems 3 and 4 of Roshan et al.
[34].

Remark 3.4. Since a b-metric is a metric when s = 1, so our results can be viewed as the
generalization and extension of corresponding results in [4, 13, 17, 18, 35, 37] and several
other comparable results.

4. Some Examples

In this section, we present some examples which illustrate our obtained results.

Example 4.1. Let X = [0,+∞) be equipped with the b-metric defined by

d(x, y) =

{

[max{x, y}]2, x 6= y,

0, x = y,

for all x, y ∈ X. Obviously, (X, d) is a b-complete b-metric space with s = 22−1 = 2.
Define the partial order “ � ” by

x � y ⇐⇒ x = y ∨
(

x, y ∈ [0, 1] ∧ x ≤ y
)

.

Consider the mapping f : X → X given by

fx =

{

x

2
√

1+x
, x ∈ [0, 1],

x

2
√

2
, x > 1.

It is easy to see that f is continuous and increasing, and 0 � f0. Take altering distance
functions

ψ(t) = t, φ(t) =

{

t
√

t

1+
√

t
, t ∈ [0, 1],

t

2
, t > 1.

In order to check the contractive condition 3.28, without loss of generality, we may take
x, y ∈ X such that y � x. Thus, we have the following cases.

Case 1: If x ∈ [0, 1] (and hence also y ∈ [0, 1] and y ≤ x), then

d(fx, fy) =

[

max

{

x

2
√
1 + x

,
y

2
√
1 + y

}]2

=
x2

4(1 + x)

and

Ms(x, y) = max

{

x
2
, x

2
, y

2
,
x2 +max2{y, x

2
√

1+x
}

2s

}

= x
2
.

Hence, 3.28 reduces to

ψ
(

s
2
d(fx, fy)

)

= ψ

(

4 · x2

4(1 + x)

)

=
x2

1 + x
≤ x

2 − x3

1 + x

= ψ(x2)− φ(x2) = ψ
(

Ms(x, y)
)

− φ
(

Ms(x, y)
)

.
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Case 2: If x > 1 (and hence y = x), then d(fx, fy) = 0 and Ms(x, y) = x2. Hence,
3.28 reduces to

ψ
(

s
2
d(fx, fy)

)

= ψ(4 · 0) = 0 ≤ x
2 − x2

2

= ψ(x2)− φ(x2) = ψ
(

Ms(x, y)
)

− φ
(

Ms(x, y)
)

.

Thus, all the hypotheses of Corollary 3.4 are satisfied and hence f has a unique fixed point.
In fact, 0 is the unique fixed point of f .

Example 4.2. Let X = [0,+∞) be endowed with the b-metric defined by

d(x, y) =

{

(x+ y)2, x 6= y,

0, x = y,

for all x, y ∈ X and the standard order. Clearly, (X, d) is a b-complete b-metric space with
s = 22−1 = 2. Define the mapping f : X → X by

fx =







1
8
x2, x ∈ [0, 1),

1
8
x, x ∈ [1, 2),

1
4
, x ∈ [2,+∞).

It is easy to see that f is continuous and increasing, and 0 � f0. Take the function
β : [0,+∞) → [0, 1

2
) given by β(t) = 1

4
. In order to check the contractive condition 3.29,

without loss of generality, let x, y ∈ X and, for example, x ≤ y. Thus, the following cases
are possible.

Case 1: If x, y ∈ [0, 1), then

4d(fx, fy) = 4

(

1

8
x
2 +

1

8
y
2

)2

=
1

16

(

x
2 + y

2
)2

≤ 1

4
(x+ y)2 =

1

4
d(x, y)

≤ 1

4
Ms(x, y) = β

(

Ms(x, y)
)

Ms(x, y).

Case 2: If x, y ∈ [1, 2), then

4d(fx, fy) = 4

(

1

8
x+

1

8
y

)2

=
1

16
(x+ y)2

≤ 1

4
(x+ y)2 =

1

4
d(x, y)

≤ 1

4
Ms(x, y) = β

(

Ms(x, y)
)

Ms(x, y).

Case 3: If x, y ∈ [2,+∞), then

4d(fx, fy) = 4

(

1

4
+

1

4

)2

= 1 =
1

4
(1 + 1)2

≤ 1

4
(x+ y)2 =

1

4
d(x, y)

≤ 1

4
Ms(x, y) = β

(

Ms(x, y)
)

Ms(x, y).
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Case 4: If x ∈ [0, 1) and y ∈ [1, 2), then

4d(fx, fy) = 4

(

1

8
x
2 +

1

8
y

)2

≤ 4

(

1

8
x+

1

8
y

)2

=
1

16

(

x
2 + y

2
)2

≤ 1

4
(x+ y)2 =

1

4
d(x, y)

≤ 1

4
Ms(x, y) = β

(

Ms(x, y)
)

Ms(x, y).

Case 5: If x ∈ [0, 1) and y ∈ [2,+∞), then

4d(fx, fy) = 4

(

1

8
x
2 +

1

4

)2

≤ 4

(

1

8
x+

1

8
y

)2

=
1

16

(

x+ y
)2

≤ 1

4
(x+ y)2 =

1

4
d(x, y)

≤ 1

4
Ms(x, y) = β

(

Ms(x, y)
)

Ms(x, y).

Case 6: If x ∈ [1, 2) and y ∈ [2,+∞), then

4d(fx, fy) = 4

(

1

8
x+

1

4

)2

≤ 4

(

1

8
x+

1

8
y

)2

=
1

16
(x+ y)2

≤ 1

4
(x+ y)2 =

1

4
d(x, y)

≤ 1

4
Ms(x, y) = β

(

Ms(x, y)
)

Ms(x, y).

Therefore, all the hypotheses Corollary 3.5 are satisfied and hence f has a unique fixed
point. Indeed, 0 is the unique fixed point of f .

We now present an example showing that there are situations where our results
can be used to conclude about the existence of (common) fixed points, while some
other known results cannot be applied.

Example 4.3. Let X = {0, 1, 2, 3, 4} be equipped with the b-metric defined by

d(x, y) =

{

(x+ y)2, x 6= y,

0, x = y,

for all x, y ∈ X. Obviously, (X, d) is a b-complete b-metric space with s = 49
25
. Define the

partial order “ � ” by

�:=
{

(0, 0), (1, 1), (1, 2), (2, 2), (3, 3), (4, 2), (4, 4)
}

.

Consider self-maps f and g as

f =

(

0 1 2 3 4
0 2 2 1 2

)

, g =

(

0 1 2 3 4
0 2 2 1 1

)

.

It is easy to see that f and g are weakly increasing mappings with respect to �, and that
f and g are continuous.
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Take ψ, φ ∈ Ψ given by ψ(t) =
√
t and φ(t) = t

300
. In order to check the contractive

condition 3.1, only the case x = 2, y = 4 is nontrivial (when x and y are comparable and
the left-hand side of the contractive condition 3.1 is positive). Then

ψ
(

s
2
d(f2, g4)

)

=
√
s2 · 32 =

147

25
=

√
36− 36

300
= ψ

(

Ms(2, 4)
)

− φ
(

Ms(2, 4)
)

.

Thus, all the conditions of Theorem 3.1 are satisfied and hence f and g have a common
fixed point. Indeed, 0 and 2 are two common fixed points of f and g. (Note that the
ordered set ({0, 2},�) is not well ordered.

However, take x = 1 and y = 4 (which are not comparable). Then

ψ
(

s
2
d(f1, g4)

)

=
√
s2 · 32 =

147

25

>
59

12
=

√
25− 25

300
= ψ

(

Ms(1, 4)
)

− φ
(

Ms(1, 4)
)

.

Hence, this result cannot be applied in the context of b-metric spaces without order.

5. An application to integral equations

In this section, we present an application of our results to establish the existence
of a solution for a class of nonlinear quadratic integral equations.

Consider the nonlinear quadratic integral equation

x(t) = g(t) + λ

∫ 1

0

k(t, s)f(s, x(s))ds, for all t ∈ [0, 1], λ ≥ 0.(5.1)

Let Γ denote the class of those functions γ : [0,+∞) → [0,+∞) which satisfy the
following conditions:

(a) γ is nondecreasing and (γ(t))p ≤ γ(tp) for al p ≥ 1.

(b) There exists φ ∈ Ψ such that γ(t) = t− φ(t) for all t ∈ [0,+∞).

For example, γ1(t) = kt, where 0 ≤ k < 1 and γ2(t) =
t

t+1 are in Γ.

Let X = C([0, 1],R) be the set of all real continuous functions defined on [0, 1]
with the standard metric given by

ρ(x, y) = sup
t∈[0,1]

∣

∣x(t)− y(t)
∣

∣ for all x, y ∈ X.

Now, for p ≥ 1, we define

d(x, y) =
(

ρ(x, y)
)p

=
(

sup
t∈[0,1]

∣

∣x(t) − y(t)
∣

∣

)p

= sup
t∈[0,1]

∣

∣x(t) − y(t)
∣

∣

p

for all x, y ∈ X . Obviously, (X, d) is a b-complete b-metric space with s = 2p−1.
We endow X with the partial order “ � ” given by

x, y ∈ X, x � y ⇐⇒ x(t) ≤ y(t) for all t ∈ [0, 1].
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Moreover, as in [29], it is proved that (X,�, d) is regular.

We will analyze the integral equation 5.1 under the following assumptions:

(i) g : [0, 1] → R is a continuous function.

(ii) f : [0, 1]×R → R is a continuous function, f(t, x) ≥ 0 and there exist constant
0 ≤ L < 1 and γ ∈ Γ such that for all x, y ∈ R,

∣

∣f(t, x)− f(t, y)
∣

∣ ≤ Lγ
(

|x− y|
)

.

(iii) k : [0, 1] × [0, 1] → R is continuous at t ∈ [0, 1] for every s ∈ [0, 1] and

measurable at s ∈ [0, 1] for all t ∈ [0, 1] such that k(t, s) ≥ 0 and
∫ 1

0 k(t, s)ds ≤
K.

(iv) λpKpLp ≤ 1
22p−2 .

(v) There exists x0 ∈ X such that x0(t) ≤ g(t) + λ
∫ 1

0
k(t, s)f(s, x0(s))ds for all

t ∈ [0, 1].

Now, we have the following result of existence of solutions for nonlinear quadratic
integral equations.

Theorem 5.1. Under the assumptions (i)-(v), the equation 5.1 has a unique so-

lution in X = C([0, 1],R).

Proof. We consider the self-map T : X → X defined by

Tx(t) = g(t) + λ

∫ 1

0

k(t, s)f
(

s, x(s)
)

ds for all t ∈ [0, 1].

By virtue of our assumptions, T is well defined, that is, if x ∈ X , then Tx ∈ X .
Note that u∗ ∈ X is a solution of 5.1 if and only if u∗ is a fixed point of T .

Now, let x, y ∈ X with x � y. By applying the condition (ii), we conclude that
0 ≤ f(s, y(s))− f(s, x(s)) for all s ∈ [0, 1]. On the other hand, by definition of T ,
we have

Ty(t)− Tx(t) = g(t) + λ

∫ 1

0

k(t, s)f
(

s, y(s)
)

ds− g(t)− λ

∫ 1

0

k(t, s)f
(

s, x(s)
)

ds

= λ

∫ 1

0

k(t, s)
[

f
(

s, y(s)
)

− f
(

s, x(s)
)]

ds ≥ 0

for all t ∈ [0, 1]. This implies that Ty(t) ≥ Tx(t) for all t ∈ [0, 1] and hence
Tx � Ty. Therefore, T is a nondecreasing mapping with respect to �.
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Now, suppose that x, y ∈ X with x � y. Hence, by using condition (ii) and the
definition of T , for all t ∈ [0, 1], we have

∣

∣Tx(t)− Ty(t)
∣

∣ =

∣

∣

∣

∣

g(t) + λ

∫ 1

0

k(t, s)f
(

s, x(s)
)

ds

−g(t)− λ

∫ 1

0

k(t, s)f
(

s, y(s)
)

ds

∣

∣

∣

∣

≤ λ

∫ 1

0

k(t, s)
∣

∣f
(

s, x(s)
)

− f
(

s, y(s)
)∣

∣ds

≤ λ

∫ 1

0

k(t, s)λ
(

|x(s)− y(s)|
)

ds.

Since the function γ is nondecreasing, it follows that

γ
(∣

∣x(s)− y(s)
∣

∣

)

≤ γ
(

sup
t∈[0,1]

∣

∣x(s)− y(s)
∣

∣

)

= γ
(

ρ(x, y)
)

.

Hence, we obtain

∣

∣Tx(t)− Ty(t)
∣

∣ ≤ λKLγ
(

ρ(x, y)
)

.

Then, we have

d(Tx, T y) = sup
t∈[0,1]

∣

∣Tx(t)− Ty(t)
∣

∣

p

≤
{

λKLγ
(

ρ(x, y)
)}p

≤ λpKpLpγ
(

d(x, y)
)

≤ λpKpLpγ
(

Ms(x, y)
)

≤ λpKpLp
[

Ms(x, y)− φ
(

Ms(x, y)
)]

≤
1

22p−2

[

Ms(x, y)− φ
(

Ms(x, y)
)]

.

Now, by applying condition (v) there exists x0 ∈ X such that x0 � Tx0. Conse-
quently, all the required hypotheses of Corollary 3.6 are satisfied and hence T has
a unique fixed point u∗ ∈ C([0, 1],R), that is, u∗ is the unique solution to 5.1. This
completes the proof.

Example 5.1. Consider the functional integral equation

x(t) =
t2

1 + t4
+

1

27

∫ 1

0

s cos t

18(1 + t)

|x(s)|
1 + |x(s)|ds for all t ∈ [0, 1].(5.2)

Observe that this equation is a special case of the equation 5.1 with

g(t) =
t2

1 + t4
, k(t, s) =

s

1 + t
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and

f(t, x) =
cos t

18

|x|
1 + |x| .

Put

Tx(t) =
t2

1 + t4
+

1

27

∫ 1

0

s cos t

18(1 + t)

|x(s)|
1 + |x(s)|ds

for all t ∈ [0, 1] and for all x ∈ C([0, 1],R). Then

(i) g : [0, 1] → R is a continuous function.

(ii) f : [0, 1] × R → R is a continuous function and f(t, x) ≥ 0. Indeed, by using
γ(t) = 1

3
t, we see that γ ∈ Γ and

(

γ(t)
)p

=

(

1

3

)p

=
1

3p
t
p ≤ 1

3
t
p = γ(tp)

for all p ≥ 1. Further, for arbitrarily fixed x,∈ R such that x ≥ y and for all
t ∈ [0, 1], we obtain

∣

∣

∣
f(t, x)− f(t, y)

∣

∣

∣
=

∣

∣

∣

∣

cos t
18

|x|
1+|x| − cos t

18
|y|

1+|y|

∣

∣

∣

∣

≤ 1
18
|x− y| = 1

6
γ
(

|x− y|
)

.

Thus, L = 1
6
.

(iii) k : [0, 1]× [0, 1] → R is continuous at t ∈ [0, 1] for every s ∈ [0, 1] and measurable at
s ∈ [0, 1] for all t ∈ [0, 1] and k(t, s) ≥ 0. Moreover, we have

∫ 1

0

k(t, s)ds =
∫ 1

0
s

1+t
ds = 1

2(1+t)

≤ 1
2
= K.

(iv) By taking L = 1
6
, K = 1

2
and λ = 1

27
, then inequality λpKpLp ≤ 1

22p−2
appearing

in assumption (iv) has the following form:

1

27p
× 1

2p
× 1

6p
≤ 1

22p−2
.

It is easily seen that each number p ≥ 1 satisfies the above inequality.

(v) By choosing x0(t) = t for all t ∈ [0, 1], we have Tx0(t) = t for all t ∈ [0, 1]. Hence,
x0(t) ≤ Tx0(t) for all t ∈ [0, 1]. Therefore, x0 � Tx0.

Consequently, all required assumptions of Theorem 5.1 are satisfied. Hence the integral
equation 5.2 has a unique solution in C([0, 1],R).
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