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WITH DENSITY IN R”
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Abstract. A system of viscoelastic wave equations of Kirchhoff type is considered. For
a wider class of relaxation functions, we use spaces weighted by the density function to
establish a very general decay rate of the solution.
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1. Introduction

We consider the following system

(|u’|q—2u’)l —é(x) ( M(||Veul|3)Apu — fg g1t — S)Amu(s)ds) +av=0

(1.1) , :
(|U/|q721/) —p(z) (M(||V4v]|3)Apv — fo g2(t — S)sz(s)ds) +au=0

where z € R", a,t > 0,¢,n > 2 and M is a positive C'!' function satisfying for
s > 0,mg > 0,my > 0,y > 1, M(s) = mog+ mys? and the scalar functions
gi(s),i = 1,2 (the so-called relaxation kernel) are assumed to satisfy (Al).

The problem (1.1) is equipped by the following initial data.

(1.2) u(0,2) = uo(x) € H(R"), o' (0,2)=mwu(x) € LIYR"),

(1.3) v (0,2) = vo(x) € H(R"), o' (0,2) =wvi(x) € LLR"),

where the weighted spaces H is given in Definition 2.1 and the density function
(¢(z))~t = p(x) satisfies

(1.4) p:R" =R, p(z) € C™I(R™)
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with 4 € (0,1) and p € L*(R™) N L>*(R"™), where s = %757:%2(1.

In this framework, (see [8], [9], [15], [16], [19], [21]), it is well known that for

any initial data ug,vo € H(R") and u1,v1 € LI(R"), the problem (1.1)-(1.3) has a
unique solution (u,v) € (C([0,T), H(R™)))?, (u/,v') € (C’([O,T),Lg(R")))Q, under
the hypothesis (A1) — (A2). The problem (1.1) is usually encountered in viscoelas-
ticity in various areas of mathematical physics, it was first considered by Dafermos
in [7], where the general decay was discussed. The problems related to (1.1) have
attracted a great deal of attention in the last decades and numerous results ap-
peared on the existence and long time behavior of solutions but their results are by
now rather developed, especially in any space dimension.
This kind of system appears in the models of the nonlinear Kirchhoff-type. It is a
generalization of a model introduced by Kirchhoff [13] as the equation in the case
n = 1 describes this type of problem as a small amplitude vibration of an elastic
string. The original equation is:

Eh [* )
(1.5) phug +Tuy = | Py + E/o |ug(x,t)|*ds | uge + f,
where 0 < < Land t > 0,u(z,t) is the lateral displacement at the space coordinate
x and the time ¢, p the mass density, h the cross-section area, L the length, Py the
initial axial tension, 7 the resistance modulus, E the Young modulus and f the
external force (for example, the action of gravity).

The motivation for our study is due to some results regarding viscoelastic wave
equations of the Kirchhoff type in a bounded domain. The wave equation of the
form

¢
(1.6) u” — M(|V,ul3)Au —i—/o g(t — 8)Azu(s)ds + h(u') = f(u), x€Q,t>0

is a model to describe the motion of deformable solids as the hereditary effect is
incorporated. Eq.(1.6) was studied by [20] and they proved the existence of weak
solution for a large datum. Later, for a small datum and under some restrictions,
global solutions and exponential decay to zero is shown in [17].

The work with weighted spaces was studied by many authors (see in this di-
rection [5], [12], [18] and [22]). For the decay rate of solution for equations in
R™, we quote the results by [2], [9], [10], [11], [16]. In [10], the authors showed
that for compactly supported initial data and for an exponentially decaying relax-
ation function the decay of the energy of the solution to the linear Cauchy problem
(1.1),(1.3) in one equation with « = 0,q = 2, p(x) = 1, M = 1 is polynomial. The
finite-speed propagation is used to compensate for the lack of Poincare’s inequality.
In case « = 0,q = 2, M = 1, in [9], the author looked into a linear Cauchy vis-
coelastic problem with density. His study included the exponential and polynomial
rates, where he used the spaces weighted by density to compensate for the lack
of Poincare’s inequality. The same problem, treated in [9], was considered in [11],
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where they considered the Cauchy problem for the viscoelastic wave equation. Un-
der suitable conditions on the initial data and the relaxation function, they prove a
polynomial decay result of solutions. The conditions used on the relaxation function
¢ and its derivative ¢’ are different from the usual ones.

The problem (1.1),(1.3) in case a = 0,z € R™ with the relaxation function g is
a positive nonincreasing function, was considered as one equation in [21], where the
author established a general decay rate result for relaxation functions satisfying the
assumptions (A1) — (A2). The main purpose of the present paper is to extend this
result to a coupled system of linear equations.
We omit the space variable x of u(z,t),u (x,t) and, for simplicity reasons, denote
u(z,t) = uw and u/(z,t) = u/, when no confusion arises. The constants ¢ used

throughout this paper are positive generic constants which may be different, here
v = du(t)/dt and v = d*u(t)/dt>.

2. Material, spaces and Assumptions

First, we recall and make use the following assumptions on the functions g;,i = 1,2
as:

(A1) We assume that the functions g; : Rt — RT is of class C? satisfying:
(2.1) mo—g; =1; >0, gi(0) =goi >0,

where g7 = [ gi(t)dt.
(A2) There exists a positive function H € C*(R™) such that

(2.2) 9;(t) + H(gi(t)) <0, >0, H(0)=0
and H is linear or strictly increasing and strictly convex C? function on (0,7],1 > 7.

Remark 2.1. [16]
A) We can deduce that there exists ¢1 > 0 large enough such that for ¢ = 1, 2:
1) Vt > t1: We have lirf gi(s) = 0, which implies that lirf —g;(s) cannot be posi-
_ s——+oo s§—r+o00
tive, so hT —gi(s) = 0. Then g;(t1) > 0 and
S—r+00
(23) max{gl (5)7 92(8)7 _gll (5)7 _gé (S)} < min{r, H(?”), HO(T)}v
where Ho(t) = H(D(t)) provided that D is a positive C* function, with D(0) = 0, for
which Hp is a strictly increasing and strictly convex C? function on (0, 7] and

+o0
/O gi(8)Ho(—gi(s))ds < 4o0.

2) Vt € [0,1]: As g; are nonincreasing, g;(0) > 0 and g;(¢1) > 0 then g;(¢) > 0 and

9i(0) > gi(t) > gi(t1) > 0.
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Therefore, since H is a positive continuous function, then

o < H(gi(t)) <b

¢ < H(ga(t)) <d
for some positive constants a, b, c and d. Consequently,
g:i(t) < —H(gi(t)) < —kgi(t), k>0
which gives
(2.4) gi(t) < —kgi(t),k >0

B) Let Hj be the convex conjugate of Ho in the sense of Young (see [3], pages 61-64),
then

Hg(s) = s(Ho) ™" (s) — Ho[(Hy) ™' (s)], s € (0, Hy(r))
and satisfies the following Young’s inequality

(2.5) AB < Hi(A) + Ho(B), A€ (0, Hy(r)), B € (0,7].

Definition 2.1. [[9], [18]] We define the function spaces of our problem and its
norm as follows:

(2.6) H(R™) = {f € L2/(D(RY) .V, f € (L2(R"))"}

and the space Li(R”) to be the closure of C§°(R™) functions with respect to the
inner product

(FW)szen = [ pihde

For 1 < ¢ < o0, if f is a measurable function on R", we define

1/q
27) lssceer = ([ olsirae)

The space L%(R") is a separable Hilbert space.

The following technical lemma will play an important role in the sequel.

Lemma 2.1. [6] (Lemma 1.1) For any two functions h, v € C*(R) and 6 € [0,1]

we have
/ 1d / 1d /
/ _ __ - 2 - 2
v (t)/ h(t—s)v(s)d 5 7 h(t—s)|v(t)—v(s)|*ds + 5 7 /h(s)ds [v()]
0 0 0
1 / 1
(2.8) +5 /h' (t — s)|v(t) —v(s)|>ds — §h(t)|v(t)|2.

0
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and
2

/h(t $)(w(t)—v(s))ds

(/m (5)20-0)4 )/m P () o(s) ds

The energy of (u,v) at time ¢ is defined by

(2.9)

B0 = L8 [+ 10 g

m1 2(v+1) 2(v+1)
— |||Vau Ve
oy IVaula 4 Vel 37

1 ¢ t )
(2.10) +ﬂm—/ 1()ds) [ V3 + Qm—Am@%ﬂ%Mz
1 1
+ 5(91 o Vyu) + 5(92 o V,v) + a/ puvdx

For o small enough we use Lemma 3.1 to deduce for ¢ > 0 that:

B0 = (- clallolgh T [y + 10 g
m v+1) 2(y+1)
gy V=l 1903
1 t t )
@)+ g(mo— [ o) IVl + g (mo - [ am(e)as) .0l
1 1
+ 5(91 o Vzu) + 5(92 o Vav)

and the following energy functional law holds:
1 1
(2.12) E'(t) < 5(9'1 o Vu)(t) + g(gé oV,v)(t), forall ¢>0.

which means that our energy is uniformly bounded and decreasing along the tra-
jectories. The following notation will be used throughout this paper

(2.13) (gi 0 Vo) (t) = /O gi(t =) | Vatp(t) = Varp(r) |5 dryi = 1,2,

for ¥ (t) € H(R™),t > 0.
We are now ready to state and prove our main results.

3. Main results

The next Lemma can be easily shown (see [12], Lemma 2.1).
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Lemma 3.1. Let p satisfies (1.4), then for any u € H(R™)

(3.1) lullLagny < llollns@n) | Vaull L2 @n)
withs:ﬁ%ﬂﬁqﬁ%

Our main result reads as follows.
Theorem 3.1. Let (ug,vo) € (H(R™))?, (u1,v1) € (LYR™))* and suppose that
(A1) — (A2) hold. Then there exist positive constants a,b,c,d such that the energy
of the solution given by (1.1),(1.3) satisfies,

E(t) <dH;'(bt+¢), forall t>0,

where

(3.2) Hi(t) = /t mds

To prove Theorem 3.1, let us define

(3.3) L(t) = &E(t) + 1 (t) + Ea1ba(t)

for £&1,€2 > 1. In order to obtain useful estimates, we prepare some functionals
associated with the nature of our problem introduced in Lyapunov function L as

(3.4) P1(t) = /n p(x) [ulu/|97 %0 + o' |97%0'] da,

and the existence of the memory terms force us to introduce the next functional
t
valt) = = [ @l [ e 9)ule) - u(s)dsda
n O
t
(3.5) — / p(:v)|v'|q_21// go(t — s)(v(t) — v(s))dsdz.
n 0

Lemma 3.2. Under the assumptions (A1) and (A2), the functional ¢y satisfies,
along the solution to (1.1),(1.3)
U4 < (= dalllolZh ) (101 gy + 101 g o) |
+ermn (| VaulfTH + 9,030

(1-1)
4o

+ (o =1) ([[Vaul3 + [IVavll3) + (910 Vau) + (g2 © V4v)),

where | = min{ly, l2}.
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Proof. From (3.4), integrate over R", we have

Pi(t)

[ e+ [ payu (w720 da
R™ R™

o [ p@wirdes [ paye (112 da
R® R
t
= / (p(x)|u'|q + M(||Veu|2)uAzu — u/ g1(t — s)Agu(s,x)ds — auv) dx
R™ 0
t
+ / (p(w)|v/|q + M(||Vv]|2)vAzv — v/ g2(t — s)Agzv(s, z)ds — auv) dx
R™ 0

< 0= clallol o) (1018 gy + 10 W ey | + 1 (1920570 419201570
+ - qu/o g1(t — 8)(Vau(s) — Vau(t))dsde — 11||Veul|2
+ /n va/()t g2(t — 8)(Vau(s) — Vau(t))dsdz — 12| V40]|3.
Using Young’s inequality and Lemma 2.1 for §# = 1/2, we obtain for I = min{ly, 5}
Vi) < @=clalloll; )
- Ul[Vaull3 — 2]Vl

(3.6) +  o||Veul2 + i /]R” (/Ot g1(t — s)|Vau(s) — Vmu(t)|ds)2 dx

“+1 2(v+1
/17 gy + 11071 (Rn)} +m1 (IVul30) + V030

1 t 2
+ o||Vzv||% + — / (/ g2(t — 8)|Vav(s) — Vzv(t)\ds) dx
40 R" 0

IN

“+1 2(v+1
(1= calloliz} ) 11 e +||v’||‘;q ey 1 (1920130 + 9201300)

b @0 (9l + 19:013) + - (010 Vaw) + (g2 0 Vaw)).

O

Lemma 3.3. Under the assumptions (A1) and (A2), the functional 1o satisfies,
along the solution of (1.1),(1.3), for any o € (0,my)

() < o (1+allpl s ) (IVaul + 1 9,0]3)

+ o (1+allol g ) (910 Vo) + (92 0 Vi)
_ cg||p||%S(Rn) ((9/1 o un)q/z + (gé o va)qm)
¢ /2 /2
+ (o= [ aas) (1018, + 19125500))
+ macs (I V2l 4+ 920300

(37) [ atas <min{ [ utorts [t}
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Proof. Exploiting Eq. (1.1), (3.5) to get

Pa(t)

then

Ua(t)

+

+

, t
= [ @ (172 [ are - )0 - u(s)dsde
R™ 0
t t
L r@ 72 [ e = s)(t) — u(s)asde = [ ar (sl .
t
[ o) (W1772) [ gale = 9)0(0)  o(s))dsde
R™ 0
t t
[ el 2 /O gh(t — $)(v(t) — v(s))dsda — /O 92 ()09
t
/ M(”vu”%)vxu/ g1(t — 8)(Vau(t) — Veu(s))dsdz
R™ 0
/n (/(; g1(t — s)Vzu(s,x)ds) (/0 g1(t — s)(Vzu(t) — Vzu(s))ds) dx
t
[ p@l2a [ gt = ute) — u(s)dsds
t t
/O (sl g gy + [ ol /O g1(t — 5)(u(t) — u(s))dsda
t
/ M(”VU”%)VxU/ g2(t — 5)(Vazv(t) — Vazu(s))dsdx
R7™ 0
t t
/n (/(; g2(t — s)Vzv(s,x)ds) (/0 g2(t — s)(Vao(t) — Vzv(s))ds) dx
t
[ el 2 [ gt = 9)0(e) - v(s))dsde
R™ 0
t t
/O 92 (s [ gy 0 [ ol /O ga(t — 5)(0(t) — v(s))dsde,

(mo /Otgl ds) /nV u/ g1(t — 8)(Vyu(t) — Vyu(s))dsdz

/Rn (/0 (t —s)(Vau(t) — Viu(s ))ds> dr + c1m1||vxu||§(v+1)

J.

t
| ar(6)sl 3y + el o T

(mo /092 ds) /nV v/ g2(t — 8)(Vyu(t) — Vyu(s))dsdz

/Rn (/ g2t — s)(Vau(t) — V(s ))ds) dz + com1 ||V v||2(7+1

e WWQ’AQW—@W@—u@MMw

%

[}
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= [ @l [ e = 0 —os)dsas
[ (o)l g+ el 0 Vo)1)

+a [ oo (v / o1t = 3)(ult) — u(s)ds +u [ t92<t_s><v<t)_v<s)>d8) s

By Holder’s and Young’s inequalities and Lemma 3.1, we estimate the last term as

o

[ otare / gt — 8)(u(t) — u(s))dsd

sa (/Rn p(x)|v|2dx>l/2 y
< Rn (x)’ /Ot gi(t — s)(u(t) — u(s))d$‘2>
<

¢ 2
/ 1(t — 3)(au(t) — u(s))ds|

L2 (")

1/2

Y

< a0llpl2 /2y 172013 + o 191212y (91 © Vo)1),

and

o

[ @ [ gt = s)(0te) = w(s) s

a (/R p(;v)|u|2dx>1/2 y

p(a)| [ antt = 5)(0(t)  o(s)ds|
(Lol ]
< [ e = o)0t0) — otsis|

L2 (")

IN

1/2

aoljul3(en) + ac,

< 01 sy [Vl + a1 3y (92 © Vo) 0):

q
and for the exponents 14



1082 A. Benaissa, A. Beniani and K. Zennir

= [ ol [ ghe = s)(u(t) — u(s)dsd

<(/. <nwmmf?nmx
(/ \/gm—s (t) - @m@ﬁ”q
<

LA—%@—&W@—U®M4q

Li(R™)

UHUI”LQ(Rn) +¢o

< e[y gy — o llPlL ) (65 © V)2 (0).

and

—/ﬁmmm*uAgW—$w@—wmwm

S(/;P@Mdmm)ml”qx
<~/]Rn P(:c)’ /Ot gh(t — 8)(v(t) — ’U(S))ds’q> 1/q
<

[ sttt = )00 o

< 0102y gy — ollol%: gy (92" © V)2 (1),

q

/1149
oIl zg@n) + o L")

Using Young’s and Poincare’s inequalities and Lemma 2.1 for § = 1/2, we obtain

) < o (Lt aloldagn) (19:ul3 +19.003)
o (1 allpldagun)) (910 Vo) + (92 0 Vi)
— ol (91 0 Var)? + (5 0 Vor)?)
t t
(o= [ 06s) 1 + (0= [ mlo)ds) 191855

+ my (Cll|v UH2 (r+1) + CQHV ’UHQ(’YJFD) .
o

We need the next Lemma, which means that there is equivalent between the Lya-
punov and energy functions, that is for £1,& > 1, we have

(3.8) BIL(Y) < E(t) < BaL(t)

holds for two positive constants 81 and [s.
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Lemma 3.4. For &;,& > 1, we have
(3.9) L(t) ~ E(t).
Proof. By (3.3) we have
IL(t) =& E@] < [¢1(b)] + Ealiba(t)]

< /R |p()ul |92 | da + /R ()]’ |72 da
b [ ol [ - uto - uts)is|
b [ ot [ o= 900 - (o) .

Thanks to Holder and Young’s inequalities with exponents —L, q, since +2 >q>2,

we have by using Lemma 3.1
1/q (a—=1)/q
| oy 2las < ([ ptvac) ([ ool )
Rn n R’Vl

(3.10) é (/ p(x)|u|qd3:) + q;—l </ p(x)|u/|qd3:)

cllulIggny + llolT e gy I Vaull3
and

Lo = (o) ()™
Y é </Rn p(x)|v|qu> + % (/ p(ar)lv'lqd:z:>

[Vavll3

IN

IN

IN

IN

IN

IN

CHUIHL‘Z R™ Rn)|

and

dzr

/n (p(;v)%luﬂq‘zu’) (p(x)% /Ot gt — 5)(ult) — U(S))ds>
< ([ oeerar) "

<Rn ’/ g1(t — s)(u(t) — u(s))ds qu>1/q

<

T 1 am + | /0 (= 5)(u(t) ~ u(s)ds|

Ly (R™)

q— 1
< L g + 100y (91 0 T2
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/n (p(x)%lvﬂqf?v/) (P(x)é /Ot ga(t — s)(v(t) — U(S))ds)
< </n p($)|v,|qu) (a-1)/q §

<~/ p(x)’ /t ga(t — s)(v(t) — U(S))ds’qd$> 1/q
<4--

q
L L )9, g + ~ H/g2t—s — o(s))ds|

Ly(R™)

and

dx

q—
<1 ||v’||Lq o+ 5||p||qs<Rn)<gz 0 V,0)"2(0).

Then, since ¢ > 2, we have

IL(t) —&E(t)] < c(E(t) + EY3(1))
< o(B(t) + E@EBYD()
< (B(t) + E()EWH0)
< CcE(t).
Therefore, we can choose &; so that
(3.12) L(t) ~ E(t)
O

Proof of Theorem 3.1 From (2.12), results of Lemma 3.2 and Lemma 3.3, we
have

L'(t) = &E'(t) + 1 (t) + Lh(t)

(% — o&allol}. @) [ (91 © V)2 + (gh 0 V)]
+ Mo [(g2 0 Vou) + (g2 0 Vov)] — My [Hu 1, s@ny + o/ ”Lq o }
+

1 2 1)
em1(1+&) [Vl 57 + | Vooll;7* ] My [|[Vaull3 + [ Vovll3]

IN

where
e (14 allol? ey ) + (= Z>)
4o ’

t1
w = (& ([ aas =) + clallol s, - 1)
0

M,y = (—520 (1 + O‘Hp”inﬂ(R")) + (- U)) ’

0=
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and t; was introduced in Remark 2.1.

We choose o so small that & )52. Whence o is fixed, we can
choose &1, & large enough so that My, My > 0, which yields

(3.13) L'(t) < Mo [(g1 0 Vazu) + (g2 0 Vzv)]
+ emy vaqu('erl) + ||VI’UH§(7+1)} —cE(t), forall t>t.

Now we set F(t) = L(t) + cE(t), which is equivalent to F(t). Then by (3.13), we
get for a positive constant ¢

(3.14) F'(t) = L'(t) + cE'(t

—cE(t +c/ / g1t — 8)|Veu(t) — Vyu(s)|*dsde

IN

c/ / ga(t — 8)|Vv(t) — Vyv(s)|*dsdr,, forall t>t.
n Jtg
By (2.4) and (2.12), we have for all ¢t > ¢;

/n /tl g1(t — 8)|Vau(t) — Vou(s)|*dsdz + /n /Otl ga(t — 8)|Vav(t) — Vau(s)Pdsdz

<1 (/n/ gL (t—8)[Vault) — Vzu(s)|2dsdx+/n/otlgé(t—sﬂvzfu(t) —szu(s)|2d5d:c)

—cE

At this point, we define

t

Ho(=g/(s))(g1 © Vau)(t)ds

t1

(3.15) + [ Ho(gh(s)) 02 0 Vo))

1(t)

Since [, Ho(—g}(s))g(s)ds < +00,i = 1,2, from (2.12) we have
0= [ o) [ (T ut0) - Tt o)
[ Hoaho) [ (T ol0) = V(e )P
[ o=t (6ar(s) [ 190 + (9 ute = o) das

2 [ Ho(=gh(Dn(s) [ V0O + [V0(t ) Pdads

(3.16) < cE(0) [ / Ho(~g,(3))g1 (s)ds + / Ho(—gb(5))g2(s)ds
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As in ([16], Eq. (3.11)), we have I(t) < 1. Now, we define again a new functional
A(t) related to I(t) as

A0 = = [ Bl )i(o) [ on(s)I Vo) = V(e = s)dods

317 — [ Ho(—gh()ab(s) /ngg<s>|vmv<t>—vmv<t—s>|2dxds.

From (A1)-(A2) and Remark 2.1 we get
Ho(—gi(s))gi(s) < Ho(H(9i(5)))gi(s) = D(gi(5))gi(s) < ko-

for some positive constant kg. Then, for all ¢t > ¢;

A(t)

IA
|
g

/t g1 (s) /Rn \Veu(t) — Vau(t — s)|?deds

t1

IN
|
o~

S

/ g1(s) /Rn IVou(t) ] + |Vou(t — s)|>dds

t1

¢
— ko/ gé(s)/ |Vov(t)|]? + |Veu(t — s)|[2deds
Rn

t1

< —cE(0) {/t (s)ds—l—/t (s)ds]
< cE(0)max{g1(t1), g2(t1)}
(3.18) < min{r, H(r), Ho(r)}.

Using the properties of Hy (strictly convex in (0,7], Ho(0) = 0), then for z €
(0,r],6 €0,1]

Using Remark 2.1, (3.16), (3.18) and Jensen’s inequality leads to
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o= 171 I(t)Ho[Ho (=gl ()] Ho (=g} ()9 (5) /]R ()| Vau(t) — Vault - ) Pduds
+ / 1(t>Ho[Hal(—gg(s»wo(—gé(s))gg(s) / 02(5)| Vv (t) — Voot — 5)?duds}
t R™
t
> 170 HolI()HG ! (=} () o=} (5))6} (3 /R () Vault) ~ Vou(t — ) Pdrds
t
+ / HolT(t)Hy ' (—gh(s))] Ho(—g4())gh(s) / 02(5)| Vv (t) — Vav(t — 5)|*dads}
t R™
> Ho(I (1) / L) HG ™ (~g(5)) Ho(— g} ())g} (5) / 01(8)|Vau(t) — Vou(t — ) 2dads
t R™
t
+17() / () Hy  (—gh(5)) Ho(—gh(5)) g5 (5) / 02(5)|Vav(t) — Vot — )| 2dads)
ty RN
t t
> Hy (/tl /n 91(8)|Vau(t) — Vyu(t — s)|?deds + /tl /Rn g2(8)|Vazo(t) — Vau(t — s)|2d:cds)
which implies
/ / 91(8)|Vou(t)—Vau(t — s)|*deds —|—/ / 92(8)| Vo0 (t) = Vu(t — s)|*deds
t1 n n
< H' (A1),
Then
F'(t) < —cE(t)+cHy (A1), forall t>t.

Now, we will following the steps in ([16]) and using the fact that £’ < 0,0 < H,0 <
H{/ on (0, 7] to define the functional

Fi(t) = H} (a%) F(t)+cE(t), a<r0<ec,
where F(t) ~ E(t) and
Fl(@t) = g((o; H{ < ggéi) F(t) + H) (ag(((t)))) F'(t) + cE'(t)
< —cE(t)H| (a%) + cH,) (a%) Hy (A1) + cE'(1).

Let H given in Remark 2.1 and using Young’s inequality (2.5) with A = H]| (a%) ,

B = Hy *(\(t)), to get

F/(t) < —cE(t)H} ( gé;) +cHy (H() (a% ) + cA(t) + cE'(t)
)

—c i ca& ; a& —JF cE'
E(t)H0< (0)>+ E(O)H0<E(O)> E'(t) + cE'(t).

IN
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Choosing a, ¢, ¢/, such that for all ¢ > t; we have

E()

< g (*50)

E@)

Fi(t)

A

where Hy(t) = tH|(aot). Using the strict convexity of Hy on (0,7], to find that
H), Hy are strict positives on (0, 1], then

ME()

(3.19) RO =755

and
R'(t) < —TkoHa(R(t)), ko € (0,+00),t > t1.
Then, a simple integration and a suitable choice of 7 yield,
R(t) < H'(bt+c¢), byce(0,+00),t> 1.
here Hy(t) = ftl H;'(s)ds. From (3.19), for a positive constant a3z, we have
E(t) < dH[ (bt +c).

The fact that H; is strictly decreasing function on (0, 1] and due to properties of
Hs, we have

lim H; (t) = +o0.

t—0

Then
E(t) <dH; (bt +¢), forall t>0.

This completes the proof of Theorem 3.1.
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