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A FIXED POINT THEOREM FOR GENERALIZED CYCLIC

CONTRACTIVE MAPPINGS IN B-METRIC SPACES
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Abstract. The purpose of this paper is to introduce the notion of generalized cyclic

contractive mapping in b-metric spaces by adding four terms
d(T 2x, x) + d(T 2x, Ty)

2s
,

d(T 2x, Tx), d(T 2x, y), d(T 2x, Ty) to the contractive condition and state a fixed point
theorem for this kind of mappings. Also, some corollaries are derived from this theorem.
In addition, some examples are given to illustrate the obtained results.
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1. Introduction and preliminaries

The Banach contraction principle is one of the most powerful and useful tools of
modern mathematics. This principle was extended and improved in many ways and
various fixed point theorems were obtained. One of the interesting generalizations of
this basic principle was given by Kirk et al. [17] in 2003 by introducing the following
notion of cyclic representation.

Definition 1.1. [17] Let A and B be non-empty subsets of a metric space (X, d)
and T : A ∪ B −→ A ∪ B be a mapping. Then T is called a cyclic mapping if
TA ⊂ B and TB ⊂ A.

The following interesting theorem for a cyclic mapping was given in [17].

Theorem 1.1. [17] Let (X, d) be a complete metric space, A and B be non-empty

closed subsets of X, T : A ∪B −→ A ∪B be a cyclic mapping such that

d(Tx, T y) ≤ αd(x, y)

for all x ∈ A, y ∈ B and for some α ∈ (0, 1). Then T has a unique fixed point in

A ∩B.
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Notice that although a contraction is continuous, a cyclic contraction need not
to be. This is one of the important gains of this approach. Following the work
of Kirk et al., several authors stated many fixed point results for cyclic mappings,
satisfied various contractive conditions. The readers may refer to [1, 14, 16, 20] and
references therein.

In recent times, there were some new approaches to generalizing the Banach
contraction principle on complete metric spaces. In 2004, Ran and Reurings [23]
stated a generalization of Banach contraction principle by using a partial order
on a metric space. Some applications of this result to matrix equations were also
established. In 2008, Suzuki [27] proved a generalization of Banach contraction
principle by using a contraction condition depending on a non-increasing function
θ : [0, 1) −→ [ 12 , 1]. In 2015, Kumam et al. [19] introduced a new generalized quasi-
contraction by adding four new values d(T 2x, x), d(T 2x, Tx), d(T 2x, T y), d(T 2x, y)
to a quasi-contraction condition. Also, the authors stated a unique fixed point
theorem which is the generalization of Ćirić fixed point theorem in [8].

There were many generalizations of a metric space and many fixed point theo-
rems on generalized metric spaces were stated [4, 11, 15, 24]. The notion of b-metric
space was introduced by Bakhtin in [6] and then extensively used by Czerwik in
[9, 10] as follows.

Definition 1.2. [10] Let X be a non-empty set and d : X × X −→ [0,∞) be a
function such that for all x, y, z ∈ X and some s ≥ 1,

1. d(x, y) = 0 if and only if x = y.

2. d(x, y) = d(y, x).

3. d(x, y) ≤ s
(

d(x, z) + d(z, y)
)

.

Then d is called a b-metric on X and (X, d, s) is called a b-metric space.

Remark 1.1. (X, d) is a metric space if and only if (X, d, 1) is a b-metric space.

The first important difference between a metric and a b-metric is that the b-
metric need not be a continuous function in its two variables, see [18, Example 13].
In recent years, many fixed point theorems on b-metric spaces were stated, and the
readers may refer to [2, 3, 5, 7, 12, 13, 14, 21, 22, 25, 26] and references therein.

The purpose of this paper is to introduce the notion of generalized cyclic con-

tractive mapping in b-metric spaces by adding four terms
d(T 2x, x) + d(T 2x, T y)

2s
,

d(T 2x, Tx), d(T 2x, y), d(T 2x, T y) to the contractive condition and state a fixed
point theorem for this kind of mappings. Also, some corollaries are derived from
this theorem. In addition, some examples are given to illustrate the obtained results.

First, we recall some notions and lemmas which will be useful in what follows.

Definition 1.3. [10] Let (X, d, s) be a b-metric space.
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1. A sequence {xn} is called convergent to x, written lim
n→∞

xn=x, if lim
n→∞

d(xn, x)=0.

2. A sequence {xn} is called Cauchy in X if lim
n,m→∞

d(xn, xm) = 0.

3. (X, d, s) is called complete if each Cauchy sequence is a convergent sequence.

Aghajani et al. [2] proved the following simple lemma about the convergence in
b-metric spaces.

Lemma 1.1. [2] Let (X, d, s) be a b-metric space and lim
n→∞

xn = x, lim
n→∞

yn = y.

Then

1.
1

s2
d(x, y) ≤ lim inf

n→∞

d(xn, yn) ≤ lim sup
n→∞

d(xn, yn) ≤ s2d(x, y). In particular, if

x = y, then lim
n→∞

d(xn, yn) = 0.

2. For each z ∈ X,
1

s
d(x, z) ≤ lim inf

n→∞

d(xn, z) ≤ lim sup
n→∞

d(xn, z) ≤ sd(x, z).

The following lemma is the equivalent condition for the Cauchy property of {xn}
in b-metric spaces.

Lemma 1.2. Let (X, d, s) be a b-metric space and {xn} be a sequence in (X, d, s).
Then the following statements are equivalent.

1. {xn} is a Cauchy sequence in (X, d, s).

2. {x2n} is a Cauchy sequence in (X, d, s) and lim
n→∞

d(xn, xn+1) = 0.

Proof. (1) ⇒ (2). From the given assumption, we get {x2n} is a Cauchy sequence
in (X, d, s) and lim

n→∞

d(xn, xn+1) = 0.

(2) ⇒ (1). For all n,m ≥ 0, we only consider the following cases.

Case 1. n = 2k + 1,m = 2l for all k, l ≥ 0. Then

d(xn, xm) = d(x2k+1, x2l) ≤ sd(x2k+1, x2k) + sd(x2k, x2l).

Case 2. n = 2k,m = 2l+ 1 for all k, l ≥ 0. Then

d(xn, xm) = d(x2k, x2l+1) ≤ sd(x2k, x2l) + sd(x2l, x2l+1).

Case 3. n = 2k + 1,m = 2l+ 1 for all k, l ≥ 0. Then

d(xn, xm) = d(x2k+1, x2l+1) ≤ sd(x2k+1, x2k) + s2d(x2k, x2l) + s2d(x2l, x2l+1).

By the above cases, it is implied that lim
n,m→∞

d(xn, xm) = 0. Therefore, {xn} is

a Cauchy sequence in (X, d, s).
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2. Main results

First, we introduce the notion of a generalized cyclic contractive mapping in b-
metric spaces. Denote by

1. Φ the family of all increasing, continuous functions ϕ : [0,∞) −→ [0,∞) such
that ϕ(0) = 0.

2. Ψ the family of all non-decreasing, right continuous functions ψ : [0,∞) −→
[0,∞) such that ψ(t) < t for all t > 0.

Definition 2.1. Let (X, d, s) be a b-metric space, A and B be non-empty subsets
of X , Y = A ∪ B and T : Y −→ Y be a mapping. Then T is called a generalized

cyclic contractive mapping if

1. Y = A∪B is a cyclic representation of Y with respect to T , that is, TA ⊂ B

and TB ⊂ A.

2. There exist ϕ ∈ Φ, ψ ∈ Ψ and a constant L ≥ 0 such that

ϕ(s4d(Tx, T y)) ≤ ψ(ϕ(M s(x, y))) + Lϕ(N(x, y))

for all (x, y) ∈ A×B or (x, y) ∈ B ×A, where

Ms(x, y) = max
{

d(x, y), d(x, Tx), d(y, T y),
d(x, T y) + d(y, Tx)

2s
,

d(T 2x, x) + d(T 2x, T y)

2s
, d(T 2x, Tx), d(T 2x, y), d(T 2x, T y)

}

,

N(x, y) = min
{

d(x, Tx), d(y, Tx), d(T 2x, T 2y)
}

.

The following theorem is a sufficient condition for the existence and uniqueness
of the fixed point for a generalized cyclic contractive mapping in b-metric spaces.

Theorem 2.1. Let (X, d, s) be a complete b-metric space, A and B be non-empty

closed subsets of X, Y = A∪B and T : Y −→ Y be a generalized cyclic contractive

mapping. Then T has a unique fixed point in A ∩B.

Proof. Let x0 ∈ A. We construct the sequence {xn} in X by xn+1 = Txn for all
n ≥ 0. Since x0 ∈ A, x1 = Tx0 ∈ TA ⊂ B. So, x2 = Tx1 ∈ TB ⊂ A. Continuing
this process, we have

(2.1) x2n ∈ A, x2n+1 ∈ B

for all n ≥ 0. If there exists k ≥ 0 such that xk+1 = xk, then Txk = xk, that is, xk
is a fixed point of T . Suppose that xn 6= xn+1 for all n ≥ 0. From (2.1), we have
(x2n−1, x2n) ∈ B ×A. Since T is a generalized cyclic contractive mapping, we have

ϕ(d(x2n, x2n+1)) ≤ ϕ(s4d(Tx2n−1, T x2n))

≤ ψ(ϕ(M s(x2n−1, x2n))) + Lϕ(N(x2n−1, x2n))(2.2)
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where

M s(x2n−1, x2n) = max
{

d(x2n−1, x2n), d(x2n−1, x2n), d(x2n, x2n+1),

d(x2n−1, x2n+1) + d(x2n, x2n)

2s
,
d(x2n+1, x2n−1) + d(x2n+1, x2n+1)

2s
,

d(x2n+1, x2n), d(x2n+1, x2n), d(x2n+1, x2n+1)
}

,

N(x2n−1, x2n) = min
{

d(x2n−1, x2n), d(x2n, x2n), d(x2n+1, x2n+2)
}

= 0.

We also have

max
{

d(x2n−1, x2n), d(x2n, x2n+1)
}

≤ Ms(x2n−1, x2n)

= max
{

d(x2n−1, x2n), d(x2n, x2n+1),
d(x2n−1, x2n+1)

2s

}

≤ max
{

d(x2n−1, x2n), d(x2n, x2n+1),
d(x2n−1, x2n) + d(x2n, x2n+1)

2

}

= max
{

d(x2n−1, x2n), d(x2n, x2n+1)
}

.

It implies thatMs(x2n−1, x2n) = max
{

d(x2n−1, x2n), d(x2n, x2n+1)
}

. If there exists
n ≥ 1 such that max{d(x2n−1, x2n), d(x2n, x2n+1)} = d(x2n, x2n+1), then
M s(x2n−1, x2n) = d(x2n, x2n+1) and hence (2.2) becomes

ϕ(d(x2n, x2n+1)) ≤ ψ(ϕ(d(x2n, x2n+1))) < ϕ(d(x2n, x2n+1)).

It is a contradiction. Therefore, for all n≥1, we haveM s(x2n−1, x2n)=d(x2n−1, x2n).
Then, (2.2) becomes

(2.3) ϕ(d(x2n, x2n+1)) ≤ ψ(ϕ(d(x2n−1, x2n))) < ϕ(d(x2n−1, x2n))

for all n ≥ 1. On the other hand, from (2.1) we obtain (x2n, x2n−1) ∈ A × B.
Similarly, we also see that

ϕ(d(x2n+1, x2n+2)) < ϕ(d(x2n, x2n+1)).(2.4)

for all n≥0. Therefore, from (2.3) and (2.4), we have ϕ(d(xn+1, xn))<ϕ(d(xn, xn−1))
for all n ≥ 1. It follows from the increasing property of ϕ that {d(xn, xn+1)} is
a decreasing sequence of positive numbers. Then, there exists r ≥ 0 such that
lim
n→∞

d(xn+1, xn) = r. Taking the limit as n → ∞ in (2.3), we get ϕ(r) ≤ ψ(ϕ(r)).

Therefore, by using the property of ψ, we have ϕ(r) = 0 and hence r = 0. Thus,

lim
n→∞

d(xn, xn+1) = 0.(2.5)

Next, we shall prove that {xn} is a Cauchy sequence. From Lemma 1.2 and (2.5),
it is sufficient to show that {x2n} is a Cauchy sequence. Suppose the contrary, that
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{x2n} is not a Cauchy sequence. Then, there exists ε > 0 for which we can find two
subsequences {xm(k)}, {xn(k)} of {x2n} where m(k) is a smallest integer such that
m(k) > n(k) ≥ k and

d(x2m(k), x2n(k)) ≥ ε.(2.6)

It implies that

d(x2m(k)−2, x2n(k)) < ε.(2.7)

Since (x2n(k)−1, x2m(k)) ∈ B×A and T is a generalized cyclic contractive mapping,

ϕ(s4d(x2n(k), x2m(k)+1))(2.8)

= ϕ(s4d(Tx2n(k)−1, T x2m(k)))

≤ ψ(ϕ(M s(x2n(k)−1, x2m(k)))) + Lϕ(N(x2n(k)−1, x2m(k))),

where

M s(x2n(k)−1, x2m(k))(2.9)

= max
{

d(x2n(k)−1, x2m(k)), d(x2n(k)−1, x2n(k)), d(x2m(k), x2m(k)+1),

d(x2n(k)−1, x2m(k)+1) + d(x2m(k), x2n(k))

2s
,

d(x2n(k)+1, x2n(k)−1) + d(x2n(k)+1, x2m(k)+1)

2s
,

d(x2n(k)+1, x2n(k)), d(x2n(k)+1, x2m(k)), d(x2n(k)+1, x2m(k)+1)
}

,

N(x2n(k)−1, x2m(k))(2.10)

= min
{

d(x2n(k)−1, x2n(k)), d(x2m(k), x2n(k)), d(x2n(k)+1, x2m(k)+2)
}

.

On the other hand, from (2.6), we get

ε ≤ d(x2m(k), x2n(k))(2.11)

≤ sd(x2m(k), x2m(k)+1) + sd(x2m(k)+1, x2n(k)).

Taking the upper limit as k → ∞ in (2.11) and using (2.5), we have

ε

s
≤ lim sup

k→∞

d(x2m(k)+1, x2n(k)).(2.12)

From (2.7), we have

d(x2m(k), x2n(k))(2.13)

≤ sd(x2m(k), x2m(k)−2) + sd(x2m(k)−2, x2n(k))

< s2d(x2m(k), x2m(k)−1) + s2d(x2m(k)−1, x2m(k)−2) + sε.
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Taking the upper limit as k → ∞ in (2.13) and using (2.5), we obtain

lim sup
k→∞

d(x2m(k), x2n(k)) ≤ sε.(2.14)

Also, we have

d(x2m(k), x2n(k)−1) ≤ sd(x2m(k), x2n(k)) + sd(x2n(k), x2n(k)−1).(2.15)

Taking the upper limit as k → ∞ in (2.15) and using (2.14), we obtain

lim sup
k→∞

d(x2m(k), x2n(k)−1) ≤ s2ε.(2.16)

Again, we have

d(x2m(k)+1, x2n(k)−1)(2.17)

≤ sd(x2m(k)+1, x2m(k)) + sd(x2m(k), x2n(k)−1).

Taking the upper limit as k → ∞ in (2.17) and using (2.16), we obtain

lim sup
k→∞

d(x2m(k)+1, x2n(k)−1) ≤ s3ε.(2.18)

We also have

d(x2n(k)+1, x2m(k)) ≤ sd(x2n(k)+1, x2n(k)) + sd(x2n(k), x2m(k)).(2.19)

Taking the upper limit as k → ∞ in (2.19) and using (2.14), we obtain

lim sup
k→∞

d(x2n(k)+1, x2m(k)) ≤ s2ε.(2.20)

Again, we have

d(x2m(k)+1, x2n(k)+1)(2.21)

≤ sd(x2m(k)+1, x2m(k)) + sd(x2m(k), x2n(k)+1).

Taking the upper limit as k → ∞ in (2.21) and using (2.20), we obtain

lim sup
k→∞

d(x2m(k)+1, x2n(k)+1) ≤ s3ε.(2.22)

Taking the upper limit as k → ∞ in (2.9), (2.10) and using (2.14), (2.16), (2.18),
(2.20), (2.22), we have

lim sup
k→∞

M s(x2n(k)−1, x2m(k)) ≤ max
{

s2ε,
s2ε+ ε

2
,
s2ε

2
, s3ε

}

(2.23)

= s3ε,

lim sup
k→∞

N(x2n(k)−1, x2m(k)) = 0.(2.24)
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Taking the upper limit as k → ∞ in (2.8) and using (2.12), (2.23), (2.24), we get

ϕ(s3ε) = ϕ
(

s4
ε

s

)

≤ ψ(ϕ(s3ε)) + Lϕ(0) = ψ(ϕ(s3ε)) < ϕ(s3ε).

It is a contradiction. Thus, {x2n} is a Cauchy sequence in (X, d, s). By Lemma 1.2,
we conclude that {xn} is a Cauchy sequence. Since (X, d, s) is a complete b-metric
space, there exists u ∈ X such that

lim
n→∞

xn = u.

We shall prove that u ∈ A ∩ B. Since {x2n} ⊂ A, {x2n+1} ⊂ B and A, B are
closed subsets of X , we have u ∈ A and u ∈ B. Therefore, u ∈ A ∩B.

Now, we shall prove that u is a fixed point of T . Since (x2n, u) ∈ A× B and T
is a generalized cyclic contractive mapping,

ϕ(s4d(x2n+1, T u)) = ϕ(s4d(Tx2n, T u))(2.25)

≤ ψ(ϕ(M s(x2n, u))) + Lϕ(N(x2n, u))

where

M s(x2n, u)(2.26)

= max
{

d(x2n, u), d(x2n, x2n+1), d(u, Tu),
d(x2n, T u) + d(u, x2n+1)

2s
,

d(x2n+2, x2n) + d(d(x2n+2, T u)

2s
, d(x2n+2, x2n+1), d(x2n+2, u), d(x2n+2, T u)

}

,

N(x2n, u) = min{d(x2n, x2n+1), d(u, x2n+1), d(x2n+2, T
2u)}.(2.27)

Taking the upper limit as n→ ∞ in (2.26), (2.27) and using (2.5), Lemma 1.1, we
have

lim sup
n→∞

Ms(x2n, u) ≤ max
{

d(u, Tu),
sd(u, Tu)

2s
, sd(u, Tu)

}

(2.28)

= sd(u, Tu),

lim sup
n→∞

N(x2n, u) = 0.(2.29)

Taking the upper limit as n→ ∞ in (2.25) and using (2.28), (2.29), Lemma 1.1, we
obtain

ϕ(s3d(u, Tu)) = ϕ(s4
1

s
d(u, Tu)) ≤ ψ(ϕ(sd(u, Tu))).(2.30)

Suppose that d(u, Tu) > 0. Then, from (2.30) and the property of ϕ and ψ, we have

ϕ(s3d(u, Tu)) ≤ ψ(ϕ(sd(u, Tu))) < ϕ(sd(u, Tu)).
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It is a contradiction. Therefore, d(u, Tu) = 0. It implies that u is a fixed point
of T .

Finally, we prove that u is a unique fixed point of T . Suppose that v is also a
fixed point of T , that is, Tv = v. Then, v ∈ A ∩ B. Therefore, (u, v) ∈ A × B.
Since T is a generalized cyclic contractive mapping, we have

ϕ(d(u, v)) ≤ ϕ(s4(d(Tu, T v))) ≤ ψ(ϕ(M s(u, v))) + Lϕ(N(u, v))(2.31)

where

Ms(u, v) = max
{

d(u, v), d(u, Tu), d(v, T v),
d(u, T v) + d(v, Tu)

2s
,

d(T 2u, u) + d(T 2u, T v)

2s
, d(T 2u, Tu), d(T 2u, v), d(T 2u, T v)

}

= d(u, v),

N(u, v) = min
{

d(u, Tu), d(v, Tu), d(T 2u, T 2v)
}

= 0.

Suppose that d(u, v) > 0. Then, (2.31) becomes

ϕ(d(u, v)) ≤ ψ(ϕ(M s(u, v)) < ϕ(d(u, v)).

It is a contradiction. Therefore, d(u, v) = 0 and hence u = v. So, u is a unique
fixed point of T .

From Theorem 2.1, we obtain the following corollary.

Corollary 2.1. Let (X, d, s) be a complete b-metric space, A and B be non-empty

closed subsets of X, Y = A ∪B and T : Y −→ Y be a mapping such that

1. Y = A ∪B is a cyclic representation of Y with respect to T .

2. There exist ϕ ∈ Φ, ψ ∈ Ψ and a constant L ≥ 0 such that

(2.32) ϕ(s4d(Tx, T y)) ≤ ψ(ϕ(Ms(x, y))) + Lϕ(N(x, y))

for all (x, y) ∈ A×B or (x, y) ∈ B ×A, where

Ms(x, y) = max
{

d(x, y), d(x, Tx), d(y, T y),
d(x, T y) + d(y, Tx)

2s

}

,

N(x, y) = min
{

d(x, Tx), d(y, Tx), d(T 2x, T 2y)
}

.

Then T has a unique fixed point in A ∩B.
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Proof. Notice that Ms(x, y) ≤M s(x, y) for all (x, y) ∈ A×B or (x, y) ∈ B×A. By
using the increasing property of ϕ and the non-decreasing property of ψ, it follows
from (2.32) that T is a generalized cyclic contractive mapping. By Theorem 2.1, T
has a unique fixed point in A ∩B.

Since every metric space is a b-metric space with s = 1, from Theorem 2.1 and
Corollary 2.1, we get the two following corollaries. Notice that Corollary 2.2 is a
generalization of [20, Theorem 2.1] and Corollary 2.3 is an analogue of [20, Theorem
2.1].

Corollary 2.2. Let (X, d) be a complete metric space, A and B be non-empty

closed subsets of X, Y = A ∪B and T : Y −→ Y be a mapping such that

1. Y = A ∪B is a cyclic representation of Y with respect to T .

2. There exist ϕ ∈ Φ, ψ ∈ Ψ and a constant L ≥ 0 such that

ϕ(d(Tx, T y)) ≤ ψ(ϕ(M(x, y))) + Lϕ(N(x, y))

for all (x, y) ∈ A×B or (x, y) ∈ B ×A, where

M(x, y) = max
{

d(x, y), d(x, Tx), d(y, T y),
d(x, T y) + d(y, Tx)

2
,

d(T 2x, x) + d(T 2x, T y)

2
, d(T 2x, Tx), d(T 2x, y), d(T 2x, T y)},

N(x, y) = min
{

d(x, Tx), d(y, Tx), d(T 2x, T 2y)
}

.

Then T has a unique fixed point in A ∩B.

Corollary 2.3. Let (X, d) be a complete metric space, A and B be non-empty

closed subsets of X, Y = A ∪B and T : Y −→ Y be a mapping such that

1. Y = A ∪B is a cyclic representation of Y with respect to T .

2. There exist ϕ ∈ Φ, ψ ∈ Ψ and a constant L ≥ 0 such that

(2.33) ϕ(d(Tx, T y)) ≤ ψ(ϕ(M(x, y))) + Lϕ(N(x, y))

for all (x, y) ∈ A×B or (x, y) ∈ B ×A, where

M(x, y) = max
{

d(x, y), d(x, Tx), d(y, T y),
d(x, T y) + d(y, Tx)

2

}

,

N(x, y) = min
{

d(x, Tx), d(y, Tx), d(T 2x, T 2y)
}

.

Then T has unique fixed point in A ∩B.

Finally, some examples are provided to support our results. The following ex-
ample is an illustration of the existence of the fixed point of T in Theorem 2.1.
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Example 2.1. Let X = R and a b-metric defined by d(x, y) = (x− y)2 for all x, y ∈ X.

Then, (X, d, s) be a complete b-metric space with s = 2. Let A =
[

−
π

2
, 0
]

, B =
[

0,
π

2

]

, Y =

A ∪B and a mapping T : Y → Y be defined by

Tx =







−
x

16

∣

∣

∣
cos

1

x

∣

∣

∣
if x ∈

[

−
π

2
, 0
)

∪
(

0,
π

2

]

0 if x = 0.

Then, it is easy to check that TA ⊂ B and TB ⊂ A. It implies that Y = A∪B is a cyclic

representation of Y with respect to T . Let ϕ ∈ Φ and ψ ∈ Ψ be defined by ψ(t) =
t

4
and ϕ(t) = t for all t ≥ 0. Then, for all (x, y) ∈ A × B or (x, y) ∈ B × A, we consider
following cases.
Case 1. x = y = 0 with (x, y) ∈ A×B or (x, y) ∈ B ×A. Then

ϕ(s4d(T0, T0)) = 24d(0, 0) = 0 ≤ ψ(ϕ(Ms(0, 0))) + Lϕ(N(0, 0)) = 0.

Case 2. x 6= 0, y = 0 with (x, y) ∈ A×B or (x, y) ∈ B × A. Then

ϕ(s4d(Tx, Ty)) = 24d
(

−
x

16

∣

∣

∣
cos

1

x

∣

∣

∣
, 0
)

= 24
(

−
x

16

∣

∣

∣
cos

1

x

∣

∣

∣
− 0

)2

≤
1

16
x
2 cos2

1

x
=
x2

16
=

1

16
d(x, 0) ≤

1

4
M s(x, 0).

Case 3. x = 0, y 6= 0 with (x, y) ∈ A×B or (x, y) ∈ B × A. Then

ϕ(s4d(Tx, Ty)) = 24d
(

0,−
y

16

∣

∣

∣ cos
1

y

∣

∣

∣

)

= 24
(

0 +
y

16

∣

∣

∣ cos
1

y

∣

∣

∣

)2

≤
1

16
y
2 cos2

1

y
=
y2

16
=

1

16
d(y, 0) ≤

1

4
Ms(0, y).

Case 4. x 6= 0, y 6= 0 with (x, y) ∈ A×B or (x, y) ∈ B × A. Then

ϕ(s4d(Tx, Ty)) = 24d
(

−
x

16

∣

∣

∣
cos

1

x

∣

∣

∣
,−

y

16

∣

∣

∣
cos

1

y

∣

∣

∣

)

=
1

16

(

x
∣

∣

∣
cos

1

x
| − y

∣

∣

∣
cos

1

y

∣

∣

∣

)2

≤
1

16

(

|x|
∣

∣

∣
cos

1

x

∣

∣

∣
+ |y|

∣

∣

∣
cos

1

y

∣

∣

∣

)2

≤
1

16
(|x|+ |y|)2

≤
1

8
(x2 + y

2) ≤
1

4
max{x2

, y
2}.

On the other hand, x2 ≤
(

x +
1

16
x
∣

∣

∣
cos

1

x

∣

∣

∣

)2

= d(x, Tx) and y2 ≤
(

y +
1

16
y
∣

∣

∣
cos

1

y

∣

∣

∣

)2

=

d(y, Ty). Therefore,

ϕ(s4d(Tx, Ty)) ≤
1

4
max

{

d(x, Tx), d(y, Ty)
}

≤ ψ(ϕ(Ms(x, y))) + Lϕ(N(x, y)).

By the above cases, we conclude that T is a generalized cyclic contractive mapping.
Therefore, all the assumptions of Theorem 2.1 are satisfied. So, Theorem 2.1 is applicable
to T , b-metric space (X, d, s), ψ and ϕ.
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The following example proves that Theorem 2.1 is a proper generalization of
Corollary 2.1.

Example 2.2. Let X = {1, 2, 3, 4, 5} and a b-metric d be defined by

d(x, y) =























0 if x = y

38 if (x, y) ∈ {(1, 4), (4, 1), (1, 5), (5, 1)}
1 if (x, y) ∈ {(1, 2), (2, 1), (1, 3), (3, 1)}
2 if (x, y) ∈ {(2, 3), (3, 2)}
18 otherwise.

Then, (X, d, s) be a complete b-metric space with s = 2. Let A = {1, 2, 3, 4}, B =
{1, 2, 3, 5}, Y = A ∪B and a mapping T : Y −→ Y be defined by

T1 = T2 = T3 = 1, T4 = 2, T5 = 3.

Then, TA = {1, 2} ⊂ {1, 2, 3, 5} = B and TB = {1, 3} ⊂ {1, 2, 3, 4} = A. This implies that
A∪B is a cyclic representation of Y with respect to T . By choosing (x, y) = (4, 5) ∈ A×B,
we have d(Tx, Ty) = 2,Ms(x, y) = 18 and N(x, y) = 0. Therefore, for all ϕ ∈ Φ, ψ ∈ Ψ
and a constant L ≥ 0, we have

ψ(ϕ(Ms(x, y))) + Lϕ(N(x, y)) = ψ(ϕ(18)) + Lϕ(0))

< ϕ(18) < ϕ(32) = ϕ(s4d(Tx, Ty)).

This implies that condition (2.32) in Corollary 2.1 is not satisfied. Therefore, Corollary 2.1
can not be applicable to T and b-metric space (X, d, s). Now, let ϕ ∈ Φ and ψ ∈ Ψ be

defined by ψ(t) =
8t

9
and ϕ(t) = t for all t ≥ 0. For all (x, y) ∈ A×B or (x, y) ∈ B × A,

we consider following cases.
Case 1. x, y ∈ {1, 2, 3}. Then

ϕ(s4d(Tx,Ty)) = d(1, 1) = 0 ≤ ψ(ϕ(Ms(x, y))) + Lϕ(N(x, y)).

Case 2. x ∈ {1, 2, 3}, y ∈ {4, 5} or x = 4, y ∈ {1, 5} or x = 5, y ∈ {1, 4}. Then

ϕ(s4d(Tx, Ty)) = 16 ≤
304

9
≤ ψ(ϕ(Ms(x, y))) + Lϕ(N(x, y)).

Case 3. x ∈ {4, 5}, y ∈ {2, 3}. Then

ϕ(s4d(Tx, Ty)) = 16 ≤ ψ(ϕ(Ms(x, y))) + Lϕ(N(x, y)).

By the above cases, we conclude that T is a generalized cyclic contractive mapping.
Therefore, all assumptions of Theorem 2.1 are satisfied. Thus, Theorem 2.1 is applicable
to T , b-metric space (X, d, s), ψ and ϕ.

The following example proves that Corollary 2.2 is a proper generalization of
Corollary 2.3.

Example 2.3. Let X = {1, 2, 3, 4, 5} and a metric d be defined by

d(x, y) =















0 if x = y

3 if (x, y) ∈ {(1, 4), (4, 1), (1, 5), (5, 1)}
1 if (x, y) ∈ {(1, 2), (2, 1), (1, 3), (3, 1)}
2 otherwise.
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Then, (X, d) is a complete metric space. Let A = {1, 2, 3, 4}, B = {1, 2, 3, 5}, Y = A ∪ B
and a mapping T : Y −→ Y be defined by T1 = T2 = T3 = 1, T4 = 2, T5 = 3. Then,
TA = {1, 2} ⊂ {1, 2, 3, 5} = B and TB = {1, 3} ⊂ {1, 2, 3, 4} = A. This implies that A∪B
is a cyclic representation of Y with respect to T . By choosing (x, y) = (4, 5) ∈ A×B, we
have d(Tx, Ty) = 2,M(x, y) = 2 and N(x, y) = 0. Therefore, for all ϕ ∈ Φ, ψ ∈ Ψ and a
constant L ≥ 0, we have

ψ(ϕ(M(x, y))) + Lϕ(N(x, y)) = ψ(ϕ(2)) + Lϕ(0))

< ϕ(2) = ϕ(d(Tx, Ty)).

This implies that condition (2.33) in Corollary 2.3 is not satisfied. Therefore, Corollary 2.3
can not be applicable to T and metric space (X, d). Now, let ϕ ∈ Φ and ψ ∈ Ψ be defined

by ψ(t) =
2t

3
and ϕ(t) = t for all t ≥ 0. For all (x, y) ∈ A × B or (x, y) ∈ B × A, we

consider following cases.
Case 1. x, y ∈ {1, 2, 3}. Then

ϕ(d(Tx, Ty)) = d(1, 1) = 0 ≤ ψ(ϕ(M(x, y))) + Lϕ(N(x, y)).

Case 2. x ∈ {1, 2, 3}, y ∈ {4, 5} or x = 4, y ∈ {1, 5} or x = 5, y ∈ {1, 4}. Then

ϕ(d(Tx, Ty)) = 1 ≤ 2 ≤ ψ(ϕ(M(x, y))) + Lϕ(N(x, y)).

Case 3. x = 4, y = 2 or x = 5, y = 3. Then

ϕ(d(Tx, Ty)) = 1 ≤
4

3
≤ ψ(ϕ(M(x, y))) + Lϕ(N(x, y)).

Case 4. x = 4, y = 3 or x = 5, y = 2. Then

ϕ(d(Tx, Ty)) = 1 ≤
5

3
≤ ψ(ϕ(M(x, y))) + Lϕ(N(x, y)).

Thus, from the above cases, we conclude that T is a generalized cyclic contractive
mapping. Therefore, all assumption of Corollary 2.2 are satisfied. Thus, Corollary 2.2 is
applicable to T , metric space (X, d), ψ and ϕ.

Finally, we apply Theorem 2.1 to study the existence and uniqueness of solutions
to the nonlinear integral equation.

Example 2.4. Let C[a, b] be the set of all continuous functions on [a, b] and the b-metric
d with s = 2p−1 defined by

d(x, y) = sup
t∈[a,b]

|x(t)− y(t)|p

for all x, y ∈ C[a, b] and for some p > 1. Consider the nonlinear integral equation

(2.34) x(t) = g(t) +

∫ b

a

K(t, s, x(s))ds

where t ∈ [a, b], g : [a, b] → R, K : [a, b]× [a, b]× x[a, b] → R for each x ∈ C[a, b]. Suppose
that the following statements hold.
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1. g is continuous and K(t, s, x(s)) is integrable with respect to s on [a, b].

2. There exist α, β ∈ C[a, b] and (α0, β0) ∈ R
2 such that α0 ≤ α(t) ≤ β(t) ≤ β0 and

α(t) ≤ g(t) +

∫ b

a

K(t, s, β(s))ds,

β(t) ≥ g(t) +

∫ b

a

K(t, s, α(s))ds

for all t ∈ [a, b].

3. If x(s) ≥ y(s) for all s ∈ [a, b], then K(t, s, x(s)) ≤ K(t, s, y(s)) for all t, s ∈ [a, b].

4. For all t, s ∈ [a, b] and all x, y ∈ C[a, b] with α0 ≤ x(t) and y(t) ≤ β0 or x(t) ≤ β0
and y(t) ≥ α0 for all t ∈ [a, b],

|K(t, s, x(s))−K(t, s, y(s))|p

≤ ξ(t, s)max
{

|x(s)− y(s)|p, |x(s)− Tx(s)|p, |y(s)− Ty(s)|p,

|x(s)− Ty(s)|p + |y(s)− Tx(s)|p

2p
,
|T 2x(s)− x(s)|p + |T 2x(s)− Ty(s)|p

2p
,

|T 2
x(s)− Tx(s)|p, |T 2

x(s)− y(s)|p, |T 2
x(s)− Ty(s)|p

}

+min
{

|x(s)− Tx(s)|p, |y(s)− Tx(s)|p, |T 2
x(s)− T

2
y(s)|p

}

where Tx(t) = g(t) +

∫ b

a

K(t, s, x(s))ds for all x ∈ C[a, b], t ∈ [a, b] and ξ : [a, b]×

[a, b] −→ [0,∞) is a continuous function satisfying

sup
t∈[a,b]

∫ b

a

ξ(t, s)ds ≤
1

24p−4(b− a)p−1
.

Then nonlinear integral equation (2.34) has a unique solution u ∈
{

u ∈ C[a, b] :
α(t) ≤ u(t) ≤ β(t) for all t ∈ [a, b]

}

.

Proof. (1). For α and β defined by assumption (2), we consider two closed subsets
of C[a, b] as follows.

A =
{

u ∈ C[a, b] : u(t) ≤ β(t) for all t ∈ [a, b]
}

and
B =

{

u ∈ C[a, b] : u(t) ≥ α(t) for all t ∈ [a, b]
}

.

Define the mapping T : A ∪B −→ A ∪B by

Tu(t) = g(t) +

∫ b

a

K(t, s, u(s))ds

for all t ∈ [a, b] and all u ∈ A ∪ B. We shall prove that TA ⊂ B and TB ⊂ A.
Let u ∈ A. Then u(s) ≤ β(s) for all s ∈ [a, b]. By using assumption (3), we have
K(t, s, u(s)) ≥ K(t, s, β(s)) for all t, s ∈ [a, b]. It follows from assumption (2) that

Tu(t) = g(t) +

∫ b

a

K(t, s, u(s))ds ≥ g(t) +

∫ b

a

K(t, s, β(s))ds ≥ α(t)
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for all t ∈ [a, b]. It implies that Tu ∈ B and hence TA ⊂ B. Similarly, we also see
that if u ∈ B, then Tu ∈ A and hence TB ⊂ A.

(2). Let (x, y) ∈ A×B or (x, y) ∈ B×A, that is,

{

x(t) ≤ β(t)
y(t) ≥ α(t)

or

{

x(t) ≥ α(t)
y(t) ≤ β(t)

for all t ∈ [a, b]. By assumption (2), we have

{

x(t) ≤ β0
y(t) ≥ α0

or

{

x(t) ≥ α0

y(t) ≤ β0
for all

t ∈ [a, b].

Now, let q > 1 with
1

p
+

1

q
= 1. By using assumption (4), we have

24p−4|Tx(t)− Ty(t)|p

≤ 24p−4
[

∫ b

a

|K(t, s, x(s))−K(t, s, y(s))|ds
]p

≤ 24p−4
[(

∫ b

a

ds
)

1

q

(

∫ b

a

∣

∣

∣
K(t, s, x(s))−K(t, s, y(s))

∣

∣

∣

p

ds
)

1

p

]p

≤ 24p−4
(

b− a)p−1
[

∫ b

a

(

ξ(t, s)max
{

|x(s) − y(s)|p, |x(s) − Tx(s)|p,

|y(s)− Ty(s)|p,
|x(s)− Ty(s)|p + |y(s)− Tx(s)|p

2p
,

|T 2x(s)− x(s)|p + |T 2x(s)− Ty(s)|p

2p
, |T 2x(s)− Tx(s)|p,

|T 2x(s)− y(s)|p, |T 2x(s) − Ty(s)|p
}

+min
{

|x(s)− Tx(s)|p,

|y(s)− Tx(s)|p, |T 2x(s)− T 2y(s)|p
}

)

ds
]

≤ 24p−4
(

b− a)p−1
[(

∫ b

a

ξ(t, s)ds
)

M s(x, y) +N(x, y)
]

≤ 24p−4
(

b− a)p−1
(

∫ b

a

ξ(t, s)ds
)

M s(x, y) + 24p−4
(

b− a)pN(x, y).

Put λ = 24p−4(b − a)p−1 sup
t∈[a,b]

∫ b

a

ξ(t, s)ds ∈ [0, 1) and L = 24p−4(b − a)p ≥ 0. It

implies that
(2p−1)4d(Tx, T y) ≤ λM s(x, y) + LN(x, y).

Therefore, T is a generalized cyclic contractive mapping with ψ(t) = λt, ϕ(t) = t

for all t ≥ 0 and L = 24p−4(b − a)p. Thus, all assumptions of Theorem 2.1 are
satisfied. By using Theorem 2.1, T has a unique fixed point in A ∩ B and hence
nonlinear integral equation (2.34) has a unique solution in

{

u ∈ C[a, b] : α(t) ≤

u(t) ≤ β(t) for all t ∈ [a, b]
}

.
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