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A NEW COMPANION OF OSTROWSKI TYPE INEQUALITIES
FOR FUNCTIONS OF TWO VARIABLES WITH BOUNDED
VARIATION

Hiiseyin Budak and Mehmet Zeki Sarikaya

Abstract. In this paper, we first define two functionals which are obtained using the
Riemann-Stieltjes integral. Then, we establish a new companion of Ostrowski type
inequalities for functions of two independent variables with bounded variation and give
numerical cubature formulae for the Riemann-Stieltjes integral.
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1. Introduction

Let f : [a,b] — R be a differentiable mapping on (a,b) whose derivative f’ :
(a,b) — R is bounded on (a,b), i.e. |[f|,, := sup |f'(t)] < co. Then we have the
t€(a,b)
inequality

b
) |r@) -y [ o] <

7] b—=a) [l >

for all = € [a,b][26]. The constant 1 is the best possible. This inequality is well
known in the literature as the Ostrowski inequality.

In [18], Dragomir proved the following Ostrowski type inequalities for functions
of bounded variation:

Theorem 1.1. Let f : [a,b] = R be a mapping of bounded variation on [a,b].
Then

/bf(t)dt—(b—a)f(:c) <3 (b—a>+\x—“bﬂ \i/(f)

2 2

holds for all z € [a,b]. The constant & is the best possible.
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In [5], Barnett et. al. proved the following inequalities for functions of bounded
variation:

Theorem 1.2. Assume that the function f : [a,b] — R is of bounded variation on
[a,b]. Then we have the inequalities:

(1.2)

a+b b
3+ 5 v,
= KZ:_Z) +(§:Z)qr l(?(f)>p+<\i/(f))p+ ' ifp>1, 1+1=1,
VO + 1V -V
where

@)t —a)+ (b—1)f(b)
b—a '

The first inequality is sharp and the constant % s also the best possible in both
branches in (1.2).

2. Preliminaries and Lemmas

In 1910, Fréchet [23] provided the following characterization for the double
Riemann-Stieltjes integral. Assume that f(z,y) and g(z,y) are defined over the
rectangle Q = [a,b] X [¢,d]; let R be the divided into rectangular subdivisions, or
cells, by the net of straight lines z = x;, y = v,

a=xg<x1<..<xp=b,andc=yo <y < ... < Ym = d;

let &, n; be any numbers satisfying & € [x;—1,2:], 7; € [y-1,95], (¢ = 1,2,...,n
j=1,2,...,m); and for all 7, j let

Allg(iﬂi,yj) = g(xi—luyj—l) - g(xi—layj) - g(xiayj—l) + g($iuyj)'

Then if the sum

:ZZ (&, m;) Anig(zi, ;)

tends to a finite limit as the norm of the subdivisions approaches zero, the integral
of f with respect to g is said to exist. We call this limit the restricted integral, and
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designate it by the symbol

b d
(2.1) //f(:v, y)dydyg(z,y).
If in the above formulation S is replaced by the sum
S =D F(&jimy) Ang(@i,yy),
i=1 j=1

where &;;,7;; are numbers satisfying &;; € [zi—1,2:], m; € [y;—1,Y;], we call the
limit, when it exists, an unrestricted integral, and designate it by the symbol

(2:2) /b/df(w,y)dydwg(w,y).

Clearly, the existence of (2.2) implies both the existence of (2.1) and its equality
(2.2). On the other hand, Clarkson [15] has shown that the existence of (2.1) does
not imply the existence of (2.2).

In [14], Clarkson and Adams gave the following definitions of bounded variation
for functions of two variables:

2.1. Definitions

The function f(z,y) is assumed to be defined in rectangle R(a < x < b, ¢ <y < d).
By the term net we shall, unless otherwise specified mean a set of parallels to the
axes:

x = x;(1=0,1,2,...,m), a=xg < 21 < ... < Ty, =b;
Yy

Each of the smaller rectangles into which R is devided by a net will be called a cell.
We employ the notation

yi(1=0,1,2,..n), c=yo < y1 < ... < yp, =d.

Avif(mi,y5) = f(@iv1, yj1) — f(@iv1,y5) — f(@i Y1) + f(2i,95)

Af(zi,y) = f(@ivr, yie1) — f(@i )
The total variation function, ¢(Z) [1(7)], is defined as the total variation of f(Z,y)
[f(z,7)] considered as a function of y [z] alone in interval (c,d) [(a,b)],or as +oo if
f(@,y) [f(x,7)] is of unbounded variation.

Definition 2.1. (Vitali-Lebesque-Fréchet-de la Vallée Poussin). The function f(z,y)
is said tobe of bounded variation if the sum

m—1,n—1

| > Aty

is bounded for all nets.
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Definition 2.2. (Fréchet). The function f(z,y) is said tobe of bounded variation

if the sum
m—1,n—1

> aqm|Anf(@y))l

i=0 , j=0

is bounded for all nets and all possible choices of €¢; = +1 and € = +1.

Definition 2.3. (Hardy-Krause). The function f(z,y) is said to be of bounded
variation if it satisfies the condition of Definition 2.1 and if in addition f(Z,y) is
of bounded variation in y (i.e. ¢(T) is finite) for at least one T and f(z,7) is of
bounded variation in y (i.e. ¢(7) is finite) for at least one 7.

Definition 2.4. (Arzeld). Let (z;,y;) (¢ = 0,1,2,...,m) be any set of points sat-
isfying the conditions
a = <1 <...< Ty =0
= yY<y<..<yny=d.

Then f(z,y) is said to be of bounded variation if the sum

m

> IAf (@i, i)l

i=1

is bounded for all such sets of points.

Therefore, one can define the consept of total variation of a function of variables,
as follows:

Let f be of bounded variation on @ = [a,b] X [¢,d], and let > (P) denote the
sum > > |Ay1f(mi,y;)| corresponding to the partition P of (). The number
1

1=17j=

d b
Vi =VV ) =sw{> (P):PeP@}.

Q

is called the total variation of f on Q.

In [24], authors proved the following Lemmas for double Riemann-Stieltjes in-
tegral:

Lemma 2.1. (Integrating by parts) If f € RS(g) on Q, then g € RS(f) on Q,
and we have

d b

(2.3) / / fts)ddegltos) + [ [ ott.)dd.s(t.5)

= f(bv d)g(b, d) - f(bv C)g(b, C) - f(av d)g(a, d) + f(a7 c)g(a, C)'



A New Companion of Ostrowski Type Inequalities 451

Lemma 2.2. Assume that Q € RS(g) on Q and g is of bounded variation on Q,
then

d b
(2.4) / / U, dadyg( )| < sup (90| \ (9).-

(z,9)€Q Q

In [24], Jawarneh and Noorani proved the following Ostrowski type inequality
or functions of two variables with bounded variation:

Theorem 2.1. Let f: Q —— R be mapping of bounded variation on Q. Then for
all (z,y) € Q, we have inequality

d b
(2.5) (b—a)(d—c) f(z,y) — //f(t, s)dtds

1 a+b c+d
< [zo-a+o- 2| [Fa-a]y- H\Q/m
where \/ (f) denotes the total (double) variation of f on Q.
Q

In [7], Budak and Sarikaya have proved the following generalization of the in-
equality (2.5):

Theorem 2.2. Let f : Q — R be mapping of bounded variation on Q. Then for
all (z,y) € Q, we have inequality

fla,0) + f(a,d) + f(b,c) + f(b,d)
4

(2.6) ‘(b —a)(d—c) [)\77

f(z,0) + f(z,d)

+(1-=XNn 5

+A(1-n)

ﬂ—Mﬂ—Mf@wN—jif@$%ﬁ
. max{/\b;a7($_(2—:\1)2;4—/\19),(( ~Nb+Aa )}
Xmax{nd;c,<y_(2—n)2c+77d>7<( d+nc )}

for any A, n € [0,1] and a+\25% <2 <b— A2, c+ s

fla,y) + f(b,y)
2

¢ <y<d-—ns

2 b
(f) denotes he total variation of f on Q.

o<l
o <a
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In [10], authors have proved the following Ostrowski type inequality for mappings
of bounded variation.

Theorem 2.3. If the function [ : Q = [a,b] X [¢,d] = R is of bounded variation
on Q, then we have

(2.7 U7+ faetd =)+ flatb=a)

1

b d
+f(a+b—:c,c+d—y)]—m//f(t,s)dsdt

3ct+d
y_CT

d—c

L,
4

Ly
4

T
b—a

_ 3a+b
4

] V)

for any x € [a, “LL] and y € [c, $2], where g(f) denotes the total (double) vari-
ation of f on Q.

Ostrowski type inequalities for function of two variables with bounded variation
were first given in [24]. Then, Budak and Sarikaya established the generalization
of these inequalities in [6] and [7]. A companion of Ostrowski type inequalities for
functions of two variables with bounded variation were given by Budak and Sarikaya
in [10]. Then, in [11], authors gave the generalization of inequalities in [10]. In this
paper, using inequalities in [10] and some functional, we establish a new companion
of Ostrowski Ostrowski type inequalities for functions of two independent variables
with bounded variation similar to inequalities in (1.2)

Recently, many of inequalities for functions of a single variable with bounded
variation have been proved. For more information and recent developments on
inequalities for mappings of single variable with bounded variation, please refer to
([1]-[4],[8],[12],[13],[16],[17],[19]-[22],[25],[27]-[32]). In the literature, there are a few
study for functions of two variables with bounded variation(see [6],[7],[9]-[11],[24]).

3. Main Results

First of all, we give the following notations used to simplify the details of pre-
sentations of Theorem 3.1 and Theorem 3.2:

Q1 = [Q,I]X[C,y],QQZ[CL,IE]X[y,d],
Qs = [x,b]x[c,y],Q4=[:v,b]><[y,d],



A New Companion of Ostrowski Type Inequalities 453
1
R eI
% [(b—a) (d =) f(z5) — (b— ) (y— ) f(@,) — (b—a) (d ) [z, d)
—(@—a)(d—c) fla,y) = (b—x)(d—c) f(by) + (x —a)(y —c) fla,c)
+(x—a)(d—y) fla,d)+ (b —x)(y—c) f(bc)+ (b—x)(d—y) f(b,d)],

GS(f;u)

[ [ fay)+faetrd—y) + flatb—ay) +flatb—zctd—y)
/ / : dydeu(z,y)

Cu (et ) - (a o) - /b/dftsdsdt

We may state the following results.

Theorem 3.1. If the function [ : Q = [a,b] X [¢,d] = R is of bounded variation
on Q, then we have

(3.1) V(2,9

IN
<
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for all (z,y) € Q.

Proof. Let us consider the mappings 7" defined by

greg pde
T —a - if (¢,5) € Q2
T@tus) =0 @ ) (y—o) i (ts) < O,

(x=0b)(y—d) if (¢, )€ Qa.

Using the integrating by parts (Lemma 2.1), we have

Hence,

(3.2)

b d
//T(Iat;yas)dsdtf(tvs)
(z —a) (y—C)jidsdtf(t, s)+ (z —a) (y—d)]/ddsdtf(t, s)

by

ta-0w-0 [ [ddits) + @b -d / / dudy [, 5)

(@ —a)(y—c)[f (@,y) = f(2,¢) = f(a,y) + f(a,c)]

(@ —a)(y—d)[f(z,d) = [ (z,y) = f(a,d) + f(a,y)]
+@=b)y—olf by) = f )= f(z.y)+ f(z,0)]
+@=b)(y—d)[f(b,d) = f(by) = f(x,d)+ [ (z,y)]

(b—a)(d—c)¥s(z,y).

b od
Vy(z,y) = m//T(xvt;yvs)dsdtf(tvs)'
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On the other hand, taking modulus in (3.2), then we have

3.3)  [Vy(z,y)|

(b—a)(d—0)

v
(b—a)(d—rc)

IN

x

X (x—a)(y—c/x/yddtf(t,s)—i-(:zr—a y—d/ dddt (t,s)

a c
Yy

b
+ (z —b)( —c//ddt flt, )+ (x—0)(y— d//dS ft,s)

Y
d
r Yy

v
(b—a)(d—c)

x [(w—a)(y—C)

b
\

IN

]/Udsdtf(tas)

Yy
/ dyd, (8, 5)

+(x—a)(d-y)

]/ddsdtf(t,s)
ba dy
//dsdtf(t,s)].

+O—2z)(y—c +(b-2)(d-y)

Applying Lemma 2.2 in (3.3), we obtain

(3.4) Wy (2, y)|

1
< gmaE—g |C OVt E-a@-n V)

Q1 Q2

+(0—2)(y =)\ () +b-2)(d=y») /()] = N(z,y)

Q3 Qa
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which completes the proof of the first inequality in (3.1).

N(z,y)

1
mmax{(ﬂ?—a)(y—C),(x—a)(d—y),

IN

z,y

(b—z)(y—c),(b—=)(d—y)}
x {\/(f) +\VH+\V0H+ \/(f)}
Q1 Q2 Q3 Q4

1
— mmax{(x—a)mgx{y_cjd_y}j

x

(0= oy — .=} /)

Q
Since max is independent of z, we have
y
N(z,y)

< ;ma {z —a,b—z}max{y —c,d— }\/(f)
< Bl : ax {y —c,d -y v

1 |o— ot 1 |y— <
B [i—i_ b—a §+ d—c \Q/(f)

This finishes the proof of the first branch of the second inequality in (3.1).
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For é + % = 1, using Holder’s discrete inequality in (3.4), then we have

N(z,y)

v
(b—a)(d—rc)

Fh-2)" (Y- +(b-2)"(d-y

x [\/(f)] ﬁ + [\/(f)] ﬁ + [\/(f)

[(@—a)* (y— o)+ (x—a)* (d—y)"

IN

S~—
w .8
+ Q=
—
=
~
S—
[
isy
|

| I

Q1 Q2 Qs Q

_ z—a\" [y—c a+ z—a\" (d—y\"
N b—a d—c b—a d—c

1

b—z\" (y—c\“ b—z\” (d—y\"]"~
+<b—a> <d—c> +<b—a> d—c>]

x [\/(f)} ﬁ + [\/(f)} ﬁ + [\/(f)} 6 + [\/(f)} ﬁ

Q1 Q2 Qs Qa

@l

which completes the proof of the second branch of the second inequality in (3.1).

Finally, using the function of maximum, we have

N(z,y)

Wl(d_c) max {\/m, V@), \/(f)}

Q1 Q2 Qs Qa

x[(z—a)(y—c)+(@—a)(d=y)+(b-2)(y—c)+ (b—2x)(d-y)

max {\/<f>,\/<f>,\/<f>, \/<f>} :

Q1 Q2 Q3 Qa

Herewith, the proof is completed. O

a+b _
G andy =

Corollary 3.1. Under the assumption Theorem 3.1, choosing x =
c+d
2

, we have
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}f(a,C)+f(a7d)+f(b,6)+f(b,d)
4

SR (g d) £ () £ (0 5T) | (akb etd
2 2 72

IN
B~ =

\ ().
Q

Theorem 3.2. Let u: Q = [a,b] X [¢,d] = R be a mapping of bounded variation
on Q and f: @Q — R be continuous and of bounded variation on Q. Then we have
the inequality:

Proof. Using Lemma 2.2, we have

1GS(f;u)l

a+b c+d

/2/2[i[f(m)+f<x,c+d—y>+f<a+b—x,y>

b od
—I—f(a—l—b—x,c—l—d—y)]—m//f(t,s)dsdt] dydzu(z,y)

< sup

s T ) + 1ot d =)+ St b= y)
T,y

a

V V.

C

ct+d

bod
—l—f(a—l—b—x,c—l—d—y)]—Wl(d_c)//f(t,s)dsdt

Since f is of bounded variation, using Theorem 2.3, we have

‘f(:c,y)—l—f(x,c—l—d—y)—l—f(a—l—b—x,y)—I—f(a—l—b—x,c—l—d—y)
4

_m f /d F(t, 5)dsdt

< |14
- |4

_ 3a+b
== 1

it

_ 3c+d
x 1

b—a

L
d—c

i

c
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Hence
1 |z ab 1 |y— 3etd|] b4 e e
GS(f: < - 4 - 4
asl < s e |5 L 2R VWOV Ve
K afb e4d
This completes the proof. O
atb ctd atb ctd
2 T2 2 b ) b d
Corollary 3.2. If we take \/ \/ (u) = V wy=YV V=V V@ in
a c a ctd atb ¢ atb ctd
2 2 2 2

Theorem 3.2, then we have

b d
NV V@)

n<sa~
—~

1 b
GS(fFu)l < 75\

4. Application to Cubature Formulae

Let us consider an arbitrary division I, : a = 29 < 21 < ... < z, = b, and
I 1 Cc= Yo <Y1 < ... <Ym = d, h; := Tit1 — T4, and lj = Yj+1 — Yj-
Then the following Theorem holds.

Theorem 4.1. Let f and u be as in Theorem 3.2. Then we have the cubature
formulae:

a+b c+d

/2 /2 flx,y)+ fle,e+d—y)+ fla+b—2z,y)+ fla+b—xz,c+d—y)
4

dydzu(z,y)

B ZZ hil;
Tit1 Yj+1
></ /f(t,s)dsdt—l—R(In,Jm,f,u)

Ti  Yj

The remainder term R(I,, Jm, f,u) satisfies

T4 +11+1 Yj +y]+1

b d
R (L T, fo)| < i;nax \/ \/ e\ V()
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Proof. Applying Theorem 3.2 to bidimensional interval [z;, zi11] X [y;,y;j4+1], we
have the inequality

(4.1)

T4 +11+1 vitvi41 +y]+1

/ / % fl@,y) + flz.c+d—y) + fla+b—a,y)

TitTit1 Yj+Yji+1 zi +x1+1 Yit+yit1
u( 2 = 2J )_u( 797) (‘Tiv : 2J )+u(xi=yj)

hil;
Ti+1 Yj+1
X / / f(t,s)dsdt
Ti Yj
+ v+,
mZJrl Yj+1 e Zl+1 =l J+1

SIVVO VoV

Summing the inequality (4.1) over ¢ from 0 to n — 1 and j from 0 to m — 1, then
we get

|R(In7Jm7f7u)|
1 —1m—1%it+1 Yj+1 %m
SZZZ\/\/U) VoV @
i=0 j=0 =z; y; zi Yi
1 - +I1+1 yﬁryj“ n—1m—1%i41 Yj+1
< - max \/ \/ \/ \/ (f)
4 i=0n—1
P =0 j=0 x; y;
) x; +z1+1 yj+yj+1 b od
4 i=0,n—1 a c¢
7=0,m—1

This completes the proof. O
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