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(ψ, γ, 2)-CHEREDNIK-OPDAM LIPSCHITZ FUNCTIONS IN THE

SPACE L2
α,β(R)
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Abstract. In this paper, using a generalized translation operator, we obtain an analog
of Younis Theorem 5.2 in [3] for the Cherednik-Opdam transform for functions satisfying
the (ψ, γ, 2)-Cherednik-Opdam Lipschitz condition in the space L2

α,β(R).
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1. Introduction and Preliminaries

Various investigators such as V.N. Mishra and L.N. Mishra [7], Mishra and al. [5, 6]
have determined the degree of approximation of 2π-periodic signals (functions) be-
longing to various classes Lipα, Lip(α, r), Lip(ξ(t), r) and W (Lr, ξ(t)), (r ≥ 1), of
functions through trigonometric Fourier approximation using different summability
matrices with monotone rows. In this direction, Younis Theorem 5.2 [3] charac-
terized the set of functions in L2(R) satisfying the Cauchy Lipschitz condition by
means of an asymptotic estimate growth of the norm of their Fourier transforms,
namely we have

Theorem 1.1. [3] Let f ∈ L2(R). Then the following are equivalents

(i) ‖f(x+ h)− f(x)‖ = O
(

hδ

(log 1
h
)γ

)
, as h→ 0, 0 < δ < 1, γ ≥ 0,

(ii)

∫

|λ|≥r

|f̂(λ)|2dλ = O

(
r−2δ

(log r)2γ

)
, as r → ∞,

where f̂ stands for the Fourier transform of f .

In this paper, we prove the generalization of Theorem 1.1 for the Cherednik-Opdam
transform for functions satisfying the (ψ, γ, 2)-Cherednik-Opdam Lipschitz condi-
tion in the space L2

α,β(R). For this purpose, we use the generalized translation
operator. We point out that similar results have been established in the Jacobi
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transform [8].

In this section, we develop some results from harmonic analysis related to the
differential-difference operator T (α,β). Further details can be found in [1] and [2].
In the following we fix parameters α, β subject to the constraints α ≥ β ≥ − 1

2 and
α > −1

2 .

Let ρ = α+β+1 and λ ∈ C. The Opdam hypergeometric functions G
(α,β)
λ on R are

eigenfunctions T (α,β)G
(α,β)
λ (x) = iλG

(α,β)
λ (x) of the differential-difference operator

T (α,β)f(x) = f ′(x) + [(2α+ 1) cothx+ (2β + 1) tanhx]
f(x)− f(−x)

2
− ρf(−x),

that are normalized such that G
(α,β)
λ (0) = 1. In the notation of Cherednik one

would write T (α,β) as

T (k1+ k2)f(x) = f ′(x)+

{
2k1

1 + e−2x
+

4k2
1− e−4x

}
(f(x)− f(−x))− (k1 +2k2)f(x),

with α = k1+k2−
1
2 and β = k2−

1
2 . Here k1 is the multiplicity of a simply positive

root and k2 the (possibly vanishing) multiplicity of a multiple of this root. By [1]

or [2], the eigenfunction G
(α,β)
λ is given by

G
(α,β)
λ (x)=ϕα,βλ (x)−

1

ρ− iλ

∂

∂x
ϕ
α,β
λ (x)=ϕα,βλ (x) +

ρ

4(α+ 1)
sinh(2x)ϕα+1,β+1

λ (x),

where ϕα,βλ (x) =2 F1(
ρ+iλ
2 ; ρ−iλ2 ;α+ 1;− sinh2 x) is the classical Jacobi function.

Lemma 1.1. [4] The following inequalities are valids for Jacobi functions ϕα,βλ (x)

(i) |ϕα,βλ (x)| ≤ 1.

(ii) 1− ϕ
α,β
λ (x) ≤ x2(λ2 + ρ2).

(iii) there is a constant c > 0 such that

1− ϕ
α,β
λ (x) ≥ c,

for λx ≥ 1.

Denote L2
α,β(R), the space of measurable functions f on R such that

‖f‖2,α,β =

(∫

R

|f(x)|2Aα,β(x)dx

)1/2

< +∞,

where
Aα,β(x) = (sinh |x|)2α+1(cosh |x|)2β+1.

The Cherednik-Opdam transform of f ∈ Cc(R) is defined by

Hf(λ) =

∫

R

f(x)G
(α,β)
λ (−x)Aα,β(x)dx for all λ ∈ C.
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The inverse transform is given as

H−1g(x) =

∫

R

g(λ)G
(α,β)
λ (x)

(
1−

ρ

iλ

) dλ

8π|cα,β(λ)|2
,

here

cα,β(λ) =
2ρ−iλΓ(α+ 1)Γ(iλ)

Γ(12 (ρ+ iλ))Γ(12 (α− β + 1 + iλ))
.

The corresponding Plancherel formula was established in [1], to the effect that

∫

R

|f(x)|2Aα,β(x)dx =

∫ +∞

0

(
|Hf(λ)|2 + |Hf̌(λ)|2

)
dσ(λ),

where f̌(x) := f(−x) and dσ is the measure given by

dσ(λ) =
dλ

16π|cα,β(λ)|2
.

According to [2] there exists a family of signed measures µ
(α,β)
x,y such that the product

formula

G
(α,β)
λ (x)G

(α,β)
λ (y) =

∫

R

G
(α,β)
λ (z)dµ(α,β)

x,y (z)

holds for all x, y ∈ R and λ ∈ C, where

dµ(α,β)
x,y (z) =





Kα,β(x, y, z)Aα,β(z)dz, if xy 6= 0

dδx(z), if y = 0
dδy(z), if x = 0

and

Kα,β(x, y, z) =Mα,β | sinhx. sinh y. sinh z|
−2α

∫ π

0

g(x, y, z, χ)α−β−1
+

× [1− σχx,y,z + σχx,z,y + σχz,y,x +
ρ

β + 1
2

cothx. coth y. coth z(sinχ)2]× (sinχ)2βdχ

if x, y, z ∈ R\{0} satisfy the triangular inequality ||x| − |y|| < |z| < |x| + |y|, and
Kα,β(x, y, z) = 0 otherwise. Here

∀x, y, z ∈ R, χ ∈ [0, 1], σχx,y,z =





cosh x+cosh y−cosh z cosχ
sinhx sinh y , if xy 6= 0

0, if xy = 0

and g(x, y, z, χ) = 1− cosh2 x− cosh2 y. cosh2 z + 2 coshx. cosh y. cosh z. cosχ.

Lemma 1.2. [2] For all x, y ∈ R, we have
(i) Kα,β(x, y, z) = Kα,β(y, x, z).
(ii) Kα,β(x, y, z) = Kα,β(−x, z, y).
(iii) Kα,β(x, y, z) = Kα,β(−z, y,−x).
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The product formula is used to obtain explicit estimates for the generalized trans-
lation operators

τ (α,β)x f(y) =

∫

R

f(z)dµ(α,β)
x,y (z).

It is known from [2] that

Hτ (α,β)x f(λ) = G
(α,β)
λ (x)Hf(λ),(1.1)

for f ∈ Cc(R).

2. Main Result

In this section we give the main result of this paper. We need first to define (ψ, γ, 2)-
Cherednik-Opdam Lipschitz class.
Denote Nh by

Nh = τ
(α,β)
h + τ

(α,β)
−h − 2I,

where I is the unit operator in the space L2
α,β(R).

Definition 2.1. Let γ ≥ 0. A function f ∈ L2
α,β(R) is said to be in the (ψ, γ, 2)-

Cherednik-Opdam Lipschitz class, denoted by Lip(ψ, γ, 2), if

‖Nhf(x)‖2,α,β = O

(
ψ(h)

(log 1
h )
γ

)
as h→ 0,

where
(a) ψ is a continuous increasing function on [0,∞),
(b) ψ(0) = 0 , ψ(ts) = ψ(t)ψ(s) for all t, s ∈ [0,∞),
(c) and

∫ 1/h

0

sψ(s−2)(log s)−2γds = O

(
h−2ψ(h2)

(
log

1

h

)−2γ
)
, h→ 0.

Lemma 2.1. If f ∈ Cc(R), then

Hτ̌ (α,β)x f(λ) = G
(α,β)
λ (−x)Hf̌ (λ).(2.1)

Proof. For f ∈ Cc(R), we have

Hτ̌ (α,β)x f(λ) =

∫

R

τ (α,β)x f(−y)G
(α,β)
λ (−y)Aα,β(y)dy

=

∫

R

τ (α,β)x f(y)G
(α,β)
λ (y)Aα,β(y)dy

=

∫

R

[∫

R

f(z)Kα,β(x, y, z)Aα,β(z)dz

]
G

(α,β)
λ (y)Aα,β(y)dy

=

∫

R

f(z)

[∫

R

G
(α,β)
λ (y)Kα,β(x, y, z)Aα,β(y)dy

]
Aα,β(z)dz.
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Since Kα,β(x, y, z) = Kα,β(−x, z, y), it follows from the product formula that

Hτ̌ (α,β)x f(λ) = G
(α,β)
λ (−x)

∫

R

f(z)G
(α,β)
λ (z)Aα,β(z)dz

= G
(α,β)
λ (−x)

∫

R

f(−z)G
(α,β)
λ (−z)Aα,β(z)dz

= G
(α,β)
λ (−x)Hf̌(λ).

Lemma 2.2. For f ∈ L2
α,β(R), then

‖Nhf(x)‖
2
2,α,β = 4

∫ +∞

0

|ϕα,βλ (h)− 1|2
(
|Hf(λ)|2 + |Hf̌(λ)|2

)
dσ(λ).

Proof. From formulas (1.1) and (2.1), we have

H(Nhf)(λ) = (G
(α,β)
λ (h) +G

(α,β)
λ (−h)− 2)H(f)(λ),

and
H(Ňhf)(λ) = (G

(α,β)
λ (−h) +G

(α,β)
λ (h)− 2)H(f̌)(λ).

Since
G

(α,β)
λ (h) = ϕ

α,β
λ (h) +

ρ

4(α+ 1)
sinh(2h)ϕα+1,β+1

λ (h),

and ϕα,βλ is even, then

H(Nhf)(λ) = 2(ϕα,βλ (h)− 1)H(f)(λ)

and
H(Ňhf)(λ) = 2(ϕα,βλ (h)− 1)H(f̌)(λ).

Now by Plancherel Theorem, we have the result.

Theorem 2.1. Let f ∈ L2
α,β(R). Then the following are equivalents

(a) f ∈ Lip(ψ, γ, 2),

(b)

∫ +∞

r

(
|Hf(λ)|2 + |Hf̌(λ)|2

)
dσ(λ) = O

(
ψ(r−2)

(log r)2γ

)
, as r → ∞.

Proof. (a) ⇒ (b) Let f ∈ Lip(ψ, γ, 2). Then we have

‖Nhf(x)‖2,α,β = O

(
ψ(h)

(log 1
h )
γ

)
as h→ 0.

From Lemma 2.2, we have

‖Nhf(x)‖
2
2,α,β = 4

∫ +∞

0

|1− ϕ
α,β
λ (h)|2

(
|Hf(λ)|2 + |Hf̌(λ)|2

)
dσλ.
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If λ ∈ [ 1h ,
2
h ], then λh ≥ 1 and (iii) of Lemma 1.1 implies that

1 ≤
1

c2
|1− ϕ

α,β
λ (h)|2.

Then

∫ 2
h

1
h

(
|Hf(λ)|2 + |Hf̌(λ)|2

)
dσ(λ) ≤

1

c2

∫ 2
h

1
h

|1− ϕ
α,β
λ (h)|2

(
|Hf(λ)|2 + |Hf̌(λ)|2

)
dσ(λ)

≤
1

c2

∫ +∞

0

|1− ϕ
α,β
λ (h)|2

(
|Hf(λ)|2 + |Hf̌(λ)|2

)
dσ(λ)

≤
1

4c2
‖Nhf(x)‖

2
2,α,β

= O

(
ψ(h2)

(log 1
h)

2γ

)
.

We obtain
∫ 2r

r

(
|Hf(λ)|2 + |Hf̌(λ)|2

)
dσ(λ) ≤ C

ψ(r−2)

(log r)2γ
, r → ∞,

where C is a positive constant. Now,

∫ +∞

r

(
|Hf(λ)|2 + |Hf̌(λ)|2

)
dσ(λ) =

∞∑

i=0

∫ 2i+1r

2ir

(
|Hf(λ)|2 + |Hf̌(λ)|2

)
dσ(λ)

≤ C

(
ψ(r−2)

(log r)2γ
+
ψ((2r)−2)

(log 2r)2γ
+
ψ((4r)−2)

(log 4r)2γ
+ · · ·

)

≤ C
ψ(r−2)

(log r)2γ
(
1 + ψ(2−2) + (ψ(2−2))2 + (ψ(2−2))3 + · · ·

)

≤ Kψ
ψ(r−2)

(log r)2γ
,

where Kψ = C(1 − ψ(2−2))−1 since ψ(2−2) < 1.
Consequently

∫ +∞

r

(
|Hf(λ)|2 + |Hf̌(λ)|2

)
dσ(λ) = O

(
ψ(r−2)

(log r)2γ

)
, as r → ∞.

(b) ⇒ (a). Suppose now that

∫ +∞

r

(
|Hf(λ)|2 + |Hf̌(λ)|2

)
dσ(λ) = O

(
ψ(r−2)

(log r)2γ

)
, as r → ∞,

and write

‖Nhf(x)‖
2
2,α,β = 4(I1 + I2),
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where

I1 =

∫ 1
h

0

|1− ϕ
α,β
λ (h)|2

(
|Hf(λ)|2 + |Hf̌(λ)|2

)
dσλ,

and

I2 =

∫ +∞

1
h

|1− ϕ
α,β
λ (h)|2

(
|Hf(λ)|2 + |Hf̌(λ)|2

)
dσλ.

Firstly, we use the formula |ϕα,βλ (h)| ≤ 1 and

I2 ≤ 4

∫ +∞

1
h

(
|Hf(λ)|2 + |Hf̌(λ)|2

)
dσ(λ) = O

(
ψ(h2)

(log 1
h)

2γ

)
, as h→ 0.

To estimate I1, we use the inequalities (i) and (ii) of Lemma 1.1

I1 =

∫ 1
h

0

|1− ϕ
α,β
λ (h)|2

(
|Hf(λ)|2 + |Hf̌(λ)|2

)
dσλ

≤ 2

∫ 1
h

0

|1− ϕ
α,β
λ (h)|

(
|Hf(λ)|2 + |Hf̌(λ)|2

)
dσλ

≤ 2h2
∫ 1

h

0

(λ2 + ρ2)
(
|Hf(λ)|2 + |Hf̌(λ)|2

)
dσλ.

Now, we apply integration by parts for a function

φ(s) =

∫ +∞

s

(
|Hf(λ)|2 + |Hf̌(λ)|2

)
dσ(λ)

to get

I1 ≤ −2h2
∫ 1/h

0

(s2 + ρ2)φ′(s)ds

≤ −2h2
∫ 1/h

0

s2φ′(s)ds

≤ h2

(
−

1

h2
φ(

1

h
) + 2

∫ 1/h

0

sφ(s)ds

)

≤ −φ(
1

h
) + 2h2

∫ 1/h

0

sφ(s)ds

≤ 2h2
∫ 1/h

0

sφ(s)ds.

Since φ(s) = O
(
ψ(s−2)
(log s)2γ

)
, we have sφ(s) = O

(
sψ(s−2)
(log s)2γ

)
and

∫ 1/h

0

sφ(s)ds = O

(∫ 1/h

0

sψ(s−2)

(log s)2γ
ds

)
= O

(
h−2ψ(h2)

(log 1
h )

2γ

)
,
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so that

I1 = O

(
ψ(h2)

(log 1
h )

2γ

)
.

Consequently,

‖Nhf(x)‖2,α,β = O

(
ψ(h)

(log 1
h )
γ

)
as h→ 0,

and this ends the proof of the theorem.

3. Conclusion

In this work we have succeded to generalise the theorem in [3] for the Cherednik-
Opdam transform in the space L2

α,β(R). We proved that f(x) belong to Lip(ψ, γ, 2).
Then

∫ +∞

r

(
|Hf(λ)|2 + |Hf̌(λ)|2

)
dσ(λ) = O

(
ψ(r−2)

(log r)2γ

)
, as r → ∞.
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