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BLOW UP OF POSITIVE INITIAL-ENERGY SOLUTIONS FOR
THE EXTENSIBLE BEAM EQUATION WITH NONLINEAR

DAMPING AND SOURCE TERMS ∗

Erhan Pişkin and Nazlı Irkıl

Abstract. In this paper, we study the following extensible beam equation

utt +42u−M
(
‖∇u‖2

)
4 u + |ut|p−1 ut = |u|q−1 u

with initial and boundary conditions. Under suitable conditions on the initial datum,
we prove that the solution blows up in finite time with positive initial-energy.
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1. Introduction

In this paper, we study the following extensible beam equation
(1.1)

utt +42u−M
(
‖∇u‖2

)
4 u+ |ut|p−1

ut = |u|q−1
u, (x, t) ∈ Ω× (0, T ) ,

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,
u (x, t) = ∂

∂νu (x, t) = 0, x ∈ ∂Ω,

where p, q ≥ 1 are real numbers, Ω is a bounded domain with smooth boundary ∂Ω
in Rn, ν is the outer normal, and M (s) = α+ βsγ , α, β ≥ 0, γ ≥ 1.

This kind of wave equation is obtained from the extensible beam equation of
Woinowsky-Krieger [19]. This type of problem have been considered by many au-
thors such as [16, 20, 21, 2, 4, 10, 3].

In the case of M (s) = 1 and without fourth order term 42u, the equation (1.1)
can be written in the following form

(1.2) utt −4u+ |ut|p−1
ut = |u|q−1

u.

The existence and blow up in finite time of solutions for (1.2) were established
in [7, 8, 9, 11, 12, 18]. Recently, the problem (1.1) was studied by Esquivel-Avila
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[5, 6], he proved blow up, unboundedness, convergence and global attractor. Very
recently, Pişkin [17] studied the local and global existence, asymptotic behavior and
blow up.

In this paper, we prove the blow up of solutions for the problem (1.1), with
positive initial energy.

This paper is organized as follows. In section 2, we present some lemmas and
notations needed later of this article. In section 3, blow up of the solution is
discussed.

2. Preliminaries

In this section, we shall give some assumptions and lemmas which will be used
throughout this paper. Let ‖.‖ and ‖.‖p denote the usual L2 (Ω) norm and Lp (Ω)
norm, respectively.

Now, we state the general hypotheses

(H) For the nonlinearity, we suppose that

(2.1) 1 < p <∞ if n ≤ 2, and 1 < p ≤ n+ 2

n− 2
if n > 2,

(2.2) 1 < q <∞ if n ≤ 2, and 1 < q ≤ n

n− 2
if n > 2.

Lemma 2.1. (Sobolev-Poincare inequality) [1]. Let p be a number with 2 ≤ p <∞
(n = 1, 2) or 2 ≤ p ≤ 2n

n−2 (n ≥ 3) , then there is a constant C such that

‖u‖p ≤ C ‖∇u‖ for u ∈ H1
0 (Ω) .

Lemma 2.2. [11]. Suppose that

p ≤ 2
n− 1

n− 2
, n ≥ 3

holds. Then there exists a positive constant C > 1 depending on Ω only such that

‖u‖sp ≤ C
(
‖∇u‖2 + ‖u‖pp

)
for any u ∈ H1

0 (Ω) , 2 ≤ s ≤ p.

Next, we state the local existence theorem of problem (1.1), whose proof can be
found in [17].
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Theorem 2.1. (Local existence). Assume that (H) holds, and that (u0, u1) ∈
H2

0 (Ω)× L2 (Ω) , then there exists a unique solution u of (1.1) satisfying

u ∈ C
(
[0, T ) ;H2

0 (Ω)
)
, ut ∈ C

(
[0, T ) ;L2 (Ω)

)
∩ Lp+1 (Ω× (0, T )) .

Moreover, at least one of the following statements holds:

(i) T =∞,

(ii) ‖ut‖2 + ‖4u‖2 −→∞ as t −→ T−.

3. Blow up of solutions

In this section, we are going to consider the blow up of the solution for problem
(1.1).

In our proof, without loss of generality and sake of simplicity we can take α =
β = 1. We set

(3.1) α1 = B−
q+1
q , B = β

1
q+1 , E1 =

(
1

2
+

1

q + 1

)
α2

1

and
(3.2)

E (t) =
1

2
‖ut‖2 +

1

2

(
‖∇u‖2 + ‖∆u‖2

)
+

1

2 (γ + 1)
‖∇u‖2(γ+1) − 1

q + 1
‖u‖q+1

q+1 .

Lemma 3.1. Let u be the solution of (1.1). Suppose that (H) holds. Assume
further that E (0) < E1 and

(3.3)

(
‖∇u0‖2 + ‖∆u0‖2 +

1

γ + 1
‖∇u0‖2(γ+1)

) 1
2

≥ α1

Then there exists a constant α2 > α1 such that

(3.4)

(
‖∇u‖2 + ‖∆u‖2 +

1

γ + 1
‖∇u‖2(γ+1)

) 1
2

≥ α2,

and

(3.5) ‖u‖q+1 ≥ Bα2

for ∀t ∈ [0, t) .
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Proof. By E (t) , Sobolev embedding theorem and the definition of B, we have

E (t) ≥ 1

2

(
‖∇u‖2 + ‖∆u‖2

)
+

1

2 (γ + 1)
‖∇u‖2(γ+1) − 1

q + 1
‖u‖q+1

q+1

≥ 1

2

(
‖∇u‖2 + ‖∆u‖2

)
+

1

2 (γ + 1)
‖∇u‖2(γ+1) − 1

q + 1
β ‖∇u‖q+1

=
1

2

(
‖∇u‖2 + ‖∆u‖2

)
+

1

2 (γ + 1)
‖∇u‖2(γ+1) − β

q + 1

(
‖∇u‖2

) q+1
2

≥ 1

2

(
‖∇u‖2 + ‖∆u‖2

)
+

1

2 (γ + 1)
‖∇u‖2(γ+1)

−B
q+1

q + 1

(
‖∇u‖2 + ‖∆u‖2 +

1

(γ + 1)
‖∇u‖2(γ+1)

) q+1
2

=
1

2

(
‖∇u‖2 + ‖∆u‖2 +

1

(γ + 1)
‖∇u‖2(γ+1)

)
−B

q+1

q + 1

(
‖∇u‖2 + ‖∆u‖2 +

1

(γ + 1)
‖∇u‖2(γ+1)

) q+1
2

=
1

2
α2 − Bq+1

q + 1
αq+1

= G (α) ,(3.6)

where(
‖∇u‖2 + ‖∆u‖2 +

1

γ + 1
‖∇u‖2(γ+1)

) 1
2

= α.

It is easy to verify that G, is increasing for 0 < α < α1, and decreasing for
α > α1. That is

G (α1) > G (α) , 0 < α < α1

G (α) < G (α1) , α > α1

For α→∞, G (α)→ −∞ and

(3.7) G (α1) =
1

2
α2

1 −
Bq+1

q + 1
αq+1

1 = E1

where α1 is given in (3.1). Since E (0) < E1, there exists α2 > α1 such that
E (0) = G (α2) .

If we set
(
‖∇u0‖2 + ‖∆u0‖2 + 1

γ+1 ‖∇u0‖2(γ+1)
) 1

2

= α0. Then, because of

E (t) > G (α) , we can write G (α0) ≤ E (0) = G (α2) , which implies that α0 ≥ α2.

To establish (3.4), we suppose by contradiction that(
‖∇u0‖2 + ‖∆u0‖2 +

1

γ + 1
‖∇u0‖2(γ+1)

) 1
2

< α2
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for some t0 > 0 and by the continuity of
(
‖∇u‖2 + ‖∆u‖2 + 1

γ+1 ‖∇u‖
2(γ+1)

)
we

can choose t0 such that(
‖∇u0‖2 + ‖∆u0‖2 +

1

γ + 1
‖∇u0‖2(γ+1)

) 1
2

> α1.

Again, the use of (3.6) leads to

E (t0) ≥ G

(
‖∇u0‖2 + ‖∆u0‖2 +

1

γ + 1
‖∇u0‖2(γ+1)

)
> G (α2) = E (0) .

This is impossible since E (t) ≤ E (0) , for all t ∈ [0, T ) . Thus, (3.4) is established.

Now, to prove (3.5) we can use of

1

2

(
‖∇u‖2 + ‖∆u‖2 +

1

γ + 1
‖∇u‖2(γ+1)

)
≤ E (t) +

1

q + 1
‖u‖q+1

q+1

≤ E (0) +
1

q + 1
‖u‖q+1

q+1 ,

since E (t) ≤ E (0) .

Consequently, (3.4) yields

1

q + 1
‖u‖q+1

q+1 ≥ 1

2

(
‖∇u‖2 + ‖∆u‖2 +

1

γ + 1
‖∇u‖2(γ+1)

)
− E (0)

≥ 1

2
α2

2 − E (0)

≥ 1

2
α2

2 −G (α2)

=
1

2
α2

2 −
(

1

2
α2

2 −
Bq+1

q + 1
αq+1

2

)
=

Bq+1

q + 1
αq+1

2 .

Theorem 3.1. Suppose that (H) holds. Assume further that q > max {2γ + 1, p} . Then
any the solution of (1.1) with initial data satisfying

(
‖∇u0‖2 + ‖∆u0‖2 +

1

γ + 1
‖∇u0‖2(γ+1)

) 1
2

≥ α1 and E (0) < E1,

blow up in finite time.
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Proof. We suppose that the solution exists for all time and we reach to a contra-
diction. For this purpose, we set

(3.8) H (t) = E1 − E (t) .

By using (3.2), (3.8), we have

(3.9) H ′ (t) = −E′ (t) = −‖ut‖p+1
p+1 .

0 < H (0) ≤ H (t) = E1 −
[

1

2
‖ut‖2 +

1

2

(
‖∇u‖2 + ‖∆u‖2

)
+

1

2 (γ + 1)
‖∇u‖2(γ+1) − 1

q + 1
‖u‖q+1

q+1

]
(3.10)

From α2 > α1, we obtain

H (t) ≤ E1 −
1

2

(
‖∇u‖2 + ‖∆u‖2 +

1

(γ + 1)
‖∇u‖2(γ+1)

)
+

1

q + 1
‖u‖q+1

q+1

≤ E1 −
1

2
α2

2 +
1

q + 1
‖u‖q+1

q+1

≤ − 1

q + 1
αq+1

1 +
1

q + 1
‖u‖q+1

q+1

≤ 1

q + 1
‖u‖q+1

q+1 , ∀t ≥ 0.(3.11)

We then define

(3.12) Ψ (t) = H1−σ (t) + ε

∫
Ω

uutdx,

where ε small to be chosen later and

(3.13) 0 < σ ≤ min

{
q − p

p (q + 1)
,
q − 1

2 (q + 1)

}
.

Our goal is to show that Ψ (t) satisfies a differential inequality of the form

Ψ′ (t) ≥ ξΨζ (t) , ζ > 1.

This, of course, will lead to a blow up in finite time.

By taking a derivative of (3.12) and using Eq. (1.1) we obtain

Ψ′ (t) = (1− σ)H−σ (t)H ′ (t) + ε ‖ut‖2 − ε ‖4u‖2 − ε ‖∇u‖2

−ε ‖∇u‖2(γ+1)
+ ε ‖u‖q+1

q+1 − ε
∫

Ω

uut |ut|p−1
dx.(3.14)
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By using the definition of the H (t) , it follows that

−‖∇u‖2(γ+1)
= 2 (γ + 1)H (t) + (γ + 1)

(
‖ut‖2 + ‖4u‖2 + ‖∇u‖2

)
−2 (γ + 1)

q + 1
‖u‖q+1

q+1 .(3.15)

Inserting (3.15) into (3.14), we obtain

Ψ′ (t) = (1− σ)H−σ (t)H ′ (t) + ε (γ + 2) ‖ut‖2 + εγ
(
‖4u‖2 + ‖∇u‖2

)
+2ε (γ + 1)H (t) + ε

(
q − 2γ − 1

q + 1

)
‖u‖q+1

q+1 − ε
∫

Ω

uut |ut|p−1
dx.(3.16)

In order to estimate the last term in (3.16), we make use of the following Young’s
inequality

XY ≤ δkXk

k
+
δ−lY l

l
,

where X,Y ≥ 0, δ > 0, k, l ∈ R+ such that 1
k + 1

l = 1. Consequently, applying the
previous we have∫

Ω

uut |ut|p−1
dx ≤ δp+1

p+ 1
‖u‖p+1

p+1 +
pδ−

p+1
p

p+ 1
‖ut‖p+1

p+1

≤ δp+1

p+ 1
‖u‖p+1

p+1 +
pδ−

p+1
p

p+ 1
H ′ (t) ,

where δ is constant depending on the time t and specified later. Therefore, (3.16)
becomes

Ψ′ (t) ≥ (1− σ)H−σ (t)H ′ (t) + ε (γ + 2) ‖ut‖2 + εγ
(
‖4u‖2 + ‖∇u‖2

)
+2ε (γ + 1)H (t) + ε

(
q − 2γ − 1

q + 1

)
‖u‖q+1

q+1

−εpδ
− p+1

p

p+ 1
H ′ (t)− ε δ

p+1

p+ 1
‖u‖p+1

p+1 .(3.17)

At this point we choose δ so that δ−
p+1
p = kH−σ (t) , where k > 0 is specified

later, we obtain

Ψ′ (t) ≥
(

(1− σ)− ε pk

p+ 1

)
H−σ (t)H ′ (t) + ε (γ + 2) ‖ut‖2 + εγ

(
‖4u‖2 + ‖∇u‖2

)
+2ε (γ + 1)H (t) + ε

(
q − 2γ − 1

q + 1

)
‖u‖q+1

q+1 − ε
k−p

p+ 1
Hσp (t) ‖u‖p+1

p+1 .(3.18)

Since q > p and H (t) ≤ 1
q+1 ‖u‖

q+1
q+1 , we obtain

Hσp (t) ‖u‖p+1
p+1 ≤ C

′
(

1

q + 1

)σp
‖u‖p+1+σp(q+1)

q+1 .
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Thus, (3.18) yields

Ψ′ (t) ≥
(

(1− σ)− ε pk

p+ 1

)
H−σ (t)H ′ (t) + ε (γ + 2) ‖ut‖2 + εγ

(
‖4u‖2 + ‖∇u‖2

)
+2ε (γ + 1)H (t) + ε

(
q − 2γ − 1

q + 1

)
‖u‖q+1

q+1 − ε
k−p

p+ 1
C ′
(

1

q + 1

)σp
‖u‖p+1+σp(q+1)

q+1 .(3.19)

From (3.13), we have 2 ≤ p + 1 + σp (q + 1) ≤ q + 1. By using Lemma 2.2, we
have

‖u‖p+1+σp(q+1)
q+1 ≤ C

(
‖∇u‖2 + ‖u‖q+1

q+1

)
≤ C

(
‖4u‖2 + ‖∇u‖2 + ‖u‖q+1

q+1

)
.

Thus,
(3.20)

Ψ′ (t) ≥
(

(1− σ)− ε pk

p+ 1

)
H−σ (t)H ′ (t)+η

(
‖ut‖2 + ‖4u‖2 + ‖∇u‖2 +H (t) + ‖u‖q+1

q+1

)
where η = min

{
ε (γ + 2) , ε

(
γ − k−p

p+1C
′C
(

1
q+1

)σp)
, 2ε (γ + 1) , ε

(
q−2γ−1
q+1 − k−p

p+1C
′C
(

1
q+1

)σp)}
>

0, we pick ε small enough so that (1− σ)− ε pk
p+1 ≥ 0 and

(3.21) Ψ (t) ≥ Ψ (0) = H1−σ (0) + ε

∫
Ω

u0u1dx > 0, ∀t ≥ 0.

On the other hand, applying Hölder inequality, we obtain∣∣∣∣∫
Ω

uutdx

∣∣∣∣ 1
1−σ

≤ ‖u‖
1

1−σ ‖ut‖
1

1−σ

≤ C

(
‖u‖

1
1−σ
q+1 ‖ut‖

1
1−σ

)
.

Young’s inequality gives

(3.22)

∣∣∣∣∫
Ω

uutdx

∣∣∣∣ 1
1−σ

≤ C
(
‖u‖

µ
1−σ
q+1 + ‖ut‖

θ
1−σ
)
,

for 1
µ + 1

θ = 1. We take θ = 2 (1− σ) , to obtain µ = 2(1−σ)
1−2σ ≤ q + 1 by (3.13).

Therefore, (3.22) becomes∣∣∣∣∫
Ω

uutdx

∣∣∣∣ 1
1−σ

≤ C
(
‖ut‖2 + ‖u‖

2
1−2σ

q+1

)
.

By using Lemma 2.2, we obtain∣∣∣∣∫
Ω

uutdx

∣∣∣∣ 1
1−σ

≤ C
(
‖ut‖2 + ‖u‖q+1

q+1 + ‖∇u‖2
)
.
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Thus,

Ψ
1

1−σ (t) =

[
H1−σ (t) + ε

∫
Ω

uutdx

] 1
1−σ

≤ 2
σ

1−σ

(
H (t) + ε

1
1−σ

∣∣∣∣∫
Ω

uutdx

∣∣∣∣ 1
1−σ
)

≤ C
(
‖ut‖2 +H (t) + ‖u‖q+1

q+1 + ‖∇u‖2
)

≤ C
(
‖ut‖2 +H (t) + ‖u‖q+1

q+1 + ‖4u‖2 + ‖∇u‖2
)
.(3.23)

By combining of (3.20) and (3.23), we find that

(3.24) Ψ′ (t) ≥ ξΨ
1

1−σ (t) ,

where ξ is a positive constant.

Integrating both sides of (3.24) over (0, t) yields Ψ
σ

1−σ (t) ≥ 1

Ψ
− σ

1−σ (0)− ξσt
1−σ

,

which implies that the solution blows up in a finite time T ∗, with

T ∗ ≤ 1− σ
ξσΨ

σ
1−σ (0)

.
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