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ASYMPTOTIC STABILITY PROPERTIES OF SOLUTIONS TO A
BRESSE SYSTEM WITH A WEAK VISCOELASTIC TERM *

Mohamed Ferhat and Ali Hakem

Abstract. We consider the Bresse system in bounded domain with a weak viscoelastic
terms acting in the one equation of the system under some conditions imposed into
the relaxation functions. We study the asymptotic behavior of solutions using suitable
energy and Lyapunov functionals.
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1. Introduction

In this paper, we investigate the decay properties of solutions for the initial bound-
ary value problem of the linear Bresse system of the type

prow — k1(pzs + ¥ +lw)y — lks(we — L) =0,

¢
(1.1) p2thie — koo + k1(e + 0 + lw) + a(t)/ 9(8)ze(s)ds = 0,
0

P1Wit — k3(ww - l@)w + 1k (901 +9+ lw) =0,

where (z,t) € (0,L) x (0,400). This system is subject to the Dirichlet boundary
conditions

©0(0,t) = o(L,t) = ¥(0,t) = (L, t) =w(0,t) =w(L,t) =0, t>0

and to the initial conditions

{ <P(x70) = <P0(I)a @t(IaO) = <P1(I)a 7/1(3570) = 1/)0(17), S (OaL)
Ye(2,0) = 1(x), w(z,0) =wo(x), wi(z,0)=wi(z), =z€(0,L)

where the initial data (o, p1, %0, ¥1,wo, w1 ) belong to a suitable Sobolev space. By
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w, 1 and ¢ we are denoting the longitudinal, vertical and shear angle displacements.
The original Bresse system is given by the following equations (see [1]) :

proe = Qu +IN + Fi,
P2 = My — Q + Fy,

piwy = Ny —1Q + F3,

where we use N, Q@ and M to denote the axial force, the shear force and the bending
moment respectively. These forces are stress-strain relations for elastic behavior and
given by

N = Eh(wz —lp), Q=Gh(ps +9+Iw), and M = El,,

where G, F/, I and h are positive constants. Finally, by the terms F; we are denoting
external forces.

The Bresse system is more general than the well-known Timoshenko system where
the longitudinal displacement w is not considered (I = 0). There are a number of
publications concerning the stabilization of Timoshenko system with different kinds
of damping (see [2], [3], [4] and [5]). Raposo et al. [6] proved the exponential decay
of the solution for the following linear system of Timoshenko-type beam equations
with linear frictional dissipative terms:

p1on — Gh(py + 9 + lw), — IER(wy — 1) + p1pr =0
P2ty — Elthey + Gh(py + 9 + lw) 4+ p1¢yy = 0.

Messaoudi and Mustafa [3] (see also [5]) considered the stabilization for the follow-
ing Timoshenko system with nonlinear internal feedbacks:

p1ou — Gh(ps + 9 + lw)y — IER(we — lp) + g1(¢) =0

pQUJtt - Ejdjzz + Gh(@z + 1/} + lw) + 92(1/}75) =0.

Recently, Park and Kang [5] considered the stabilization of the Timoshenko system
with weakly nonlinear internal feedbacks.

For the Timoshenko system, along with the new theory og Green and Naghdi [14],
Messaoudi and Said-Houari [15] considered a Timoshenko system of thermoelastic-
ity of type III of the form

p1oee — k(pz + 1), =0, 10, L[xIR,
P2t — Wbgg + k(0z + ) + B0, =0, 10, L[xRy,

p39tt - 59mx + 'Ydjttz - kotxx - 07 ]Oa L[XRJM
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where @, ¥ and 6 are function of (x,t), which model the transverse displacement of
the beam, the rotation angle of the filament and the difference temperature, respec-

b1 p2
This result was later established by Messaoudi and Said-Houari [20] for above sys-
tem in the presence of a viscoelastic damping of the form

tively. They proved an exponential decay in the case of equal speeds (L = b )

/OO 9(8)Uge (2, t — 8)ds
0

acting in the second equation. Moreover, the case of nonequal speeds (pﬁl #+ p%) was

studied and a polynomial decay result was proved for solutions with smooth initial
data. A more general decay result, from which the exponential and polynomial
rates of decay are only special cases, was also established by Kafini [21]. Raposo et
al. [6] proved the exponential decay of the solution for the following linear system
of Timoshenko-type beam equations with linear frictional dissipative terms:

p1ott — Gh(py + ¢ + lw)y — IEh(w, — lp) + p1p: =0
P2ty — Elthey + Gh(py + 9 + lw) 4+ p1¢y = 0.

Recently F. A Boussouira and J. Munoz Rivera [22] studied the following problem:

prpee — k1(pe + 1)z =0,
P2t — kathes + k1(pz + ) + 0tpy =0,
prw — kawee =0,

and proved that this dissipative mechanism is enough to stabilize the whole system
provided the velocities of waves propagations are the same.

Motivated by the previous works, in this paper it is interesting to give a more
general decay estimates of the solutions to the problem (1.1) for a weak viscoelastic
term. To the best of our knowledge there is no result of decay estimate of the Bresse
system in the presence of a weak viscoelastic term. Under suitable assumptions on
both functions g(t) and o(¢) that will be specified later, the initial data and the
parameters in the equations, we establish general decay estimates by using suitable
energy and Lyapunov functionals.

2. Preliminary Results

In this section, we present some material for the proof of our result. For the relax-
ation function g and o we assume
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(Ap) g,0 : Ry — IR are nonincreasing differentiable functions satisfying

g(0) >0, lp = /00 g(8)ds < o0,

(2.1) o,

o(t) >0, 1— o(t)/ g(s)ds >1>0 fort >0,
0

there exists a nonincreasing differentiable function n: Ry — IRy with

(2.2) n(t) >0, g'(t) < —n(t)g(t) fort >0, tli>r£o n_(tt;a((ti?) =0

The following inequality will be proved in Lemma 3.1 by contradiction arguments.
It is easy to see that there exists a positive constant kg such that, for (v, ¥,w) €
(H(]0, L]))3, we have

L
ko/ (9% + 97 +w}) do <
0
(2.3)
L
/ (k:y/)i + k1 (pz + 0 + 1w)? + kz(wy — l<p)2) dx.
0

On the other hand, thanks to Poincare’s inequality, there exists a positive constant
ko such that, for (p,1,w) € (H(]0, L]))3, we get

L
/ (ko2 + k1 (02 + ¥ + lw)? + ks (wy — lp)?) dz <
0

(2.4)

L

m/(d+ﬁ+@mﬁ

0

We first state some Lemmas which will be needed later.

Lemma 2.1. (Sobolev-Poincaré’s inequality). Let q be a number with 2 < q <
+oo. Then there is a constant ¢, = ¢.((0,1),q) such that

[0llg < cellallz for ¥ € Hg((0,1)).

Now we give some estimates related to the convolution operator. By direct calcu-

lations, as in [16-17] we find
2| 0w - 2 ([ gtsias) lwioe]

(2.5) + 20 0 9)t) + T (g 0 (1)

o(t)(g =¥, Pr) =

_ ( / wg(s)ds) O1Z - gl
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where
(g% 0)(t) = /0 gt — syb(s)ds,
(2.6)
(g 0 0)(t) = / ot — sy6(s)[[0(t) — (s)|2ds,
and
t ) 1
(2.7) (g1, 0) < 2 ( / g(s)ds) 101 + 39 0 9)(0).

The above system subjected to the following initial and boundary conditions
©(0,t) = (L, t) = ¥(0,t) = (L, t) = w(0,t) = w(L,t), t >0
(2.8) @(,0) = @0, i (7,0) = p1,9(x,0) = o, Pu(x,0) = 91,
w(z,0) = wo,wi(x,0) =wy, z€(0,L).

We define the energy associated to the solution of the problem (1.1) by the following
formula:

P1 P2 P1
Elt) = Tledd+ Z ez + S lleells
2 2 2
k1 k3
(2.9) + Sllew 0wl + 5 llws — Lol

+ a0 0 w0+ 5 (1 = o) [ ao)as) 1es(ol

Now we give an explicit upper bound for the derivative of the energy.

Lemma 2.2. Let (¢,%,w) be a solution of the problem (1.1). Then, the energy
functional defined by (2.9) satisfies

(2.10) E'(t) < —@(9’0 Ve)(t) —

e O

Proof. Multiplying the first equation in (1.1) by ¢, the second by w; and the third
equation by v, integrating the result over (0, L) and using integration by parts, we
get

1 d L L
L o Lol = / (o + 1 + l)aprd — ks / (s — lp)pedz = 0,
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ol 2l [ Gorrvrtgndero) [ [ soantopisiz =0,

lPl d Hth2 ks /OL(wm — @) pwidx + Uk /OL(%c + ¢+ lw)widr = 0.
Then
ol + 2l + 5 ol + S0 12)
Rllow + 0+ 1ol + 2o~ 1613
(2.11)

+ ot <g’o w0 a0 ([ a(6)as) (013
= XD ) 03 + o ()9 0 $a)(®) = 0.

Integrating the above system over [0, L] x (0, 1), we get

t ! t
’ o (t
@12 B0+ [ o 6)goa)sds - T [ o))l = E0)
0 0
After deriving the last equality, we deduce the desired result. [
3. Asymptotic Stability

In this section, we prove the asymptotic stability result by constructing a suitable
Lyapunov functional. Now, let us introduce the following functional

(3.1) L(t) = ME(t) + o(t)14(t),

such that .

(3.2) I(t) = —/ (propr + p2tbihy + prwwy) de.
0

Then the following result holds.

Lemma 3.1. There exists a positive constant C' such that the following inequality
holds for every (p,,w) € (HL(0,L))3

L L
s / (gal? + [oal? + [wa?)dz < C / (kalthal? + Falios + 9+ lw]?)do
3.3

L
+ /k3|wm—lg0|2dx.
0



Asymptotic Stability Properties to a Bresse System 831

Proof. We will argue by contradiction. Indeed, let us suppose that is not true. So,
we can find a sequence {(p,, ¥y, w,)}ven in (Hg(0,L))? satisfying

L

1

(34) / (k2|¢um|2+k1|90m +w+lwu|2+k3lwum _ZQOU|2) dx S ;7

0
and
L
(35) | el + el + ey =1
0

From (3.5), the sequence {(¢,,%,,w,)}ven is bounded in (Hg(0,L))3. Since the
embedding H{(0,L) < IL*(0, L) is compact, then the sequence {(¢,, %, w,)}ven
converge strongly in (IL?(0, L))?. From (3.5), we get

(3.6) ¥ye — 0 strongly in IL?(0, L).

Using Poincaré’s inequality, we can conclude that

(3.7) ¥, — 0 strongly in IL?(0, L).

Now, setting ¢, — ¢ and w, — w strongly in IL?(0, L). From (3.6), we have
(3.8) Yuw + Uy, + lw, — 0 strongly in IL*(0, L).

Then

(3.9) Yoo+ Yy +lwy, = pue + Uy + 1(w, — w) + lw — 0 strongly in IL2(0, L).

which implies that
(3.10) Ove — —lw strongly in IL2(0, L).

Then, {p,}, is a Cauchy sequence in H*(0,L). Therefore {,}, converge to a
function ¢y in H'(0,L). Consequently {,}, converge to ¢; in IL?(0,L). Thus
by the uniqueness of the limit ¢1 = ¢. Moreover p € H}(0,L). From (3.10), we
deduce that

(3.11) vz +lw=0aexze(0,L).
Similarly, we have
(3.12) wy —lp=0aexe(0,L),

and w € H}(0,L). The equations (3.9) and (3.11) provides us ¢ = w = 0, contra-
dicting (3.4). The proof is hence complete. [J

Lemma 3.2. The functional defined in (3.2) satisfies for any ¢; > 0
L

GO <~ [ {4+ ot e+ (o + Ot} da
0
L

(313) = o [ et 4 W) (0~ 1)) o
0

w<m(Amwam+%%owm.
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Proof. By taking the derivative of (3.2) and using the system (1.1), we get

L

L
LW = - / (12 + a0 + pred)de + by / (o + 0 + lw)de
0

(3.14) 0

L L
ok / (ws — 1p)2d + o(£)(g % Yar a) — / da.

Using Poincare and Holder inequalities, we find

L
Ii(t) < —/ {(p1 + €)@} + (p2 + )7 + (p1 + €)w; } da
(3.15) 0 .
- (ko—2e>/0 (62 + 92 + w2)dz + 0 (1) (g * e, Y.

Inserting (2.7) into (3.15), we get
L) < - /OL {(p1 + )97 + (p2+ )7 + (p1 + €)wi } da
(3.16) - (k=20 | C( 02 e+ (1) (g s )
+ 2000) ([ s ) 13 + 2200 0 )0

Finally using (2.7) in the last inequality, we get the desired result. [

Lemma 3.3. Let L(t) the functional defined in (3.1), then L(t) satisfies

(3.17) %E(t} < —Cio(t)E(t) + Cao(t)(g 0 ¥g)(t), Vt > 0.

Proof. We take the derivative of (3.1), we get

d d d /
making use of the inequalities
’ L ’ C2 2 ’ 2
(3.19) 70| [ eoda| <& O Zleul + o (on el
’ L ’ C2 2 ’ 2
(3.20) o (t) /0 Yihrdn) <o () > llvallz + o (Eaa flvellz,
’ L ’ 62 ’
(3.21) o (t) /0 wwdz| < o (t)a—SlemHg + o (t)aq ||lw|3-
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Combining (2.10), (3.13) and (3.19)-(3.21), we have

£w < —o®{2An+a+ Uétfalm} il
= o) {202+ ) + ZGaupa b I3
- {2p1+e 2Waipa b el
(3.22) a'(t) 2py
- - o —2/ g(s)ds + (ko — 2¢) + =252 Ly
0 (t a1
- a(t){% 224 a3 = o(t) { 28 222 | a3
— o) {e1 — (ko — 20} [lpw + ¥ + Lw|3
— o(t){er — WHlws — Lol3 + T2 (g 0 9 (1)
(¢
Since lim 0—() = 0, we can choose ty > 0 sufficiently large so that
t—00 U(t)

{c1 - 2/0tg(s)ds + (ko — 26) + 20 cg”} >0, {U/(to) cgpl} > 0.

O'(to) (0%]
Using (2.7), we get
LW < —o) {20+ + i,(—&?alpl} el
— o) {2002+ ) + ZHaup } w3
(3.23) = o) {2001 + ) + ZGarpa} w3
er—1— B o, - Lpll3 + 24 (g o))
ko 2
— o) {er = (ho—20) = B} lpa + ¥ + Lol
We finally obtain
d
ZL() < ~Cro(DE() + Cao(t)(g 0 ¥a)(1), Vi 0.
This completes the proof. O

Lemma 3.4. There exists two positive constants A1, A2 such that
(3.24) ME() < L(t) < AE(t), t>0,

for M sufficiently large.

833
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Proof. By making use of the inequalities

L 2
CS

(3.25) | el < Z gl + ol
0 o

L c? 2 2

(3.26) / | < 2+ el
L 02

(3.27) / wwrde| < 2 wgll2 + o flwr 2.
0 ai

Combining (3.25)-(3.27), we have

[L(t) = ME@®)] < o)onledl3 + ot)anllvul3 + o(t)aa w3

(3:28) (t)e? (t)c? (t)e?
+ T lealld + T a3 + s lwa 3,
using the fact that % < 1 and the inequality (2.3), to get
0 2
(3.29) IL(t) — ME(t)] < 0(0)ay E(t) + "(a>cs E(t),
1
finally
(3.30) |L(t) — ME(t)] < cgE(t),
where ¢g = max {O’(O)Oq, %ﬁci} Thus, from the definition of E(t) and selecting
M sufficiently large, we can easily find
(3.31) ME(t) < L(t) < ME().

Where A\; = (M —¢g), A2 = (M + ¢g). This ends the proof. O
Theorem 3.1. We suppose that the following equalities are satisfied

1 ks

Then, there exist positive constants Cy, 0 and t1 such that

79/ o(s)n(s)ds
(3.32) E@) <Cpe t
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Proof. Multiplying (3.17) by n(t) and using the Lemma 2.2, we get

—Cro(t)n(t)E(t) + Cao(t)n(t) (9ot )(t)

3
—
~
~—
&l
D
—~
~
=
AN

(3.33) < —Cio(tn(t)E(t) — Coo(t)n(t)(g ov)(1)

IN

Cro(On(E() + Cy (—%E(w o [ g(s)dsnmn%> |

Since 7 is nonincreasing, from the definition of E(t) and assumption (2.2), we have

202 loO', (t)

% (n(t)L(t) +2C2E(t)) < —a(t)n(t) (Cl USVEIOLO)

) E(t) fort>to,

as we have lim 22k (#)

Jm W = 0, we can choose t; > ty such that

202 loUI (t)

@ = O e

>0 for t¢>t;.

Now let
x(t) =n(t)L(t) + 2C2E(t).

Then we can verify that

(3.34) 01 E(t) < x(t) < 62E(t).

Where 6, 65 are two positive constants, thus we arrive at

G X() < =Cao(O)n(t)x(t)  for t > tr.

Integrating the previous differential inequality between ¢; and ¢ gives the following
estimate for the function y

Y1) < x(t)e i aemds gy sy

)
Consequently, by using (3.33), we conclude

E(t) < 06_04 f:l U(S)W(S)d57 Vi > 1.

This completes the proof. O

Remark 3.1. We illustrate the energy decay rate given by Theorem 3.1 through the
following examples.
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I g(t) = ae PO o) = X for a,b > 0 and 0 < v < 1, then n(t) =

T+
bu(1+t)” ! satisfies the conditions (2.1) and (2.2). Thus (3.32) gives the estimate

E(t) < Coe 00"

LI g(t) = ae PO (1) = m for a,b > 0 and 1 < v, then n(t) =

%ﬁtalﬂ) satisfies the conditions (2.1) and (2.2). Thus (3.32) gives the estimate
E(t) < 006791n"(1+t).

CIfgt) =, o) = (l—jbrt) for a,b > 0 then n(t) = a satisfies the conditions

o
(2.1) and (2.2). Thus (3.32) gives the estimate

E(t) < Co(1+1)~%".

. If g(t) = e, o(t) = b. Note that in this case (3.32) reduces to one of [23].
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