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SCREEN SLANT RADICAL TRANSVERSAL NULL

SUBMANIFOLDS OF PARA-SASAKIAN MANIFOLDS

Bilal Eftal Acet, Selcen Yüksel Perktaş

Abstract. In our paper we introduce totally paracontact umbilical radical transver-
sal null submanifolds and screen slant radical transversal null submanifolds of para-
Sasakian manifolds. On a screen slant radical transversal null submanifold of a para-
Sasakian manifold, we find integrability conditions of distributions.
Keywords: Null submanifold, Para-Sasakian manifold

1. Introduction

Differential geometry of null (lightlike) submanifolds is different from non-degenerate
submanifolds because of the fact that the normal vector bundle has non-trivial inter-
section with the tangent vector bundle. So, one cannot use the classical submanifold
theory for null submanifolds. For this problem K. L. Duggal and A. Bejancu in-
troduced a new method and presented a book about null submanifolds [13] (see
also [14]). The term of totally contact umbilical null submanifolds was consid-
ered by several geometers ([9, 12, 17]). In 2009, B. Şahin studied screen slant null
submanifolds [5]. Radical transversal null submanifolds were defined and studied
by C. Yıldırım and B. Şahin in 2010. Since then many authors have studied null
submanifolds ([3, 6, 7, 8, 15, 16, 20]).

In 1985, on a semi-Riemannian manifold M2n+1, S. Kaneyuki and M. Konzai
[19] introduced a structure which is called almost paracontact structure and then
they characterized the almost paracomplex structure on M2n+1 × R. Recently, S.
Zamkovoy [21] studied paracontact metric manifolds and some subclasses which are
known para-Sasakian manifolds. The study of paracontact geometry was continued
by several papers ([10, 11, 18, 22, 23]) which include role of paracontact geometry
about semi-Riemannian geometry, mathematical physics and relationships with the
para-Kähler manifolds.

The goal of the present article is to examine some null submanifolds of a para-
Sasakian manifold. There are some basic definitions for almost paracontact metric
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manifolds and null submanifolds in section 2. Totally paracontact umbilical radical
transversal null submanifolds of a para-Sasakian manifold are introduced in Section
3. Finally, Section 4 is devoted to screen slant radical transversal null submanifolds
of a para-Sasakian manifold and integrability conditions of distributions on screen
slant radical transversal null submanifolds.

2. Preliminaries

2.1. Null Submanifolds

Let (M̄n+m, ḡ) be a semi-Riemannian manifold with index q, such that m,n >

1, 1 ≤ q ≤ m+ n− 1 and (Mm, g) be a submanifold of M̄ , where g induced metric
from ḡ on M . In this case M is called a null (lightlike) submanifold of M̄ if g
is degenerate on M. Now consider a degenerate metric g on M. Thus TM⊥ is a
degenerate n−dimensional subspace of TxM̄ and orthogonal subspaces TxM and
TxM

⊥ are degenerate but no longer complementary. So, there exists a subspace
RadTxM = TxM ∩ TxM

⊥ which is called radical space. If the mapping RadTM :
x ∈ M → RadTxM , defines a smooth distribution, named Radical distribution, on
M of rank r > 0 then the submanifold M is called an r−null submanifold [13].

Let S(TM) be a screen distribution which is a semi-Riemannian complementary
distribution of RadTM in TM. So we can state

(2.1) TM = S(TM)⊥RadTM,

and S(TM⊥) is a complementary vector subbundle to RadTM in TM
⊥

. Let
tr(TM) and ltr(TM) be complementary (but not orthogonal) vector bundles to
TM in TM̄ |M and RadTM in S(TM⊥)⊥, respectively. In this case, we arrive at

(2.2) tr(TM) = ltr(TM)⊥S(TM⊥),

(2.3) TM̄ |M= TM ⊕ tr(TM) = {RadTM ⊕ ltr(TM)}⊥S(TM)⊥S(TM⊥).

Theorem 2.1. [13] Let (M, g, S(TM), S(TM⊥)) be a null submanifold of a semi-
Riemannian manifold (M̄, ḡ). Then there exist a complementary vector subbun-
dle ltr(TM) of RadTM in S(TM⊥)⊥ and a basis of Γ(ltr(TM)) |U consisting of
smooth section {Ni} of S(TM⊥)⊥ |U , where U is a coordinate neighborhood of M,
such that

(2.4) ḡ(Ni, Ei) = 1, ḡ(Ni, Nj) = 0,

where {E1, E2, ..., En} is a null basis of Γ(RadTM).

For a null submanifold (M, g, S(TM), S(TM⊥)),

* If r < min{m,n} then M is a r−null submanifold,
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* If r = n < m, S(TM⊥) = {0} then M is a coisotropic null submanifold,

* If r = m < n, S(TM) = {0} then M is a isotropic null submanifold,

* If r = m = n, S(TM) = {0} = S(TM⊥) then M is a totally null submanifold.

In view of (2.3), the Gauss and Weingarten formulas are given by

(2.5) ∇̄XY = ∇XY + h(X,Y ), ∀X,Y ∈ Γ(TM),

(2.6) ∇̄XU = −AUX +∇t
XU, ∀X ∈ Γ(TM), U ∈ Γ(tr(TM)),

where {∇XY,AUX} belong to Γ(TM) and {h(X,Y ),∇t
XU} belong to Γ(tr(TM)).

∇̄ and ∇t are linear connections on M and on the vector bundle tr(TM), respec-
tively. In view of (2.2), we consider the projection morphisms L and S of tr(TM)
on ltr(TM) and S(TM⊥). Therefore (2.5) and (2.6) become

(2.7) ∇̄XY = ∇XY + hl(X,Y ) + hs(X,Y ), X, Y ∈ Γ(TM),

(2.8) ∇̄XN = −ANX +∇l
XN +Ds(X,N), X ∈ Γ(TM), N ∈ Γ(ltr(TM)),

(2.9) ∇̄XW = −AWX +∇s
XW +Dl(X,W ), X ∈ Γ(TM),W ∈ Γ(S(TM⊥)),

where hl(X,Y ) = L(h(X,Y )), hs(X,Y ) = S(h(X,Y )), ∇l
XN, Dl(X,W ) ∈ Γ(ltr(TM)),

∇s
XW, Ds(X,N) ∈ Γ(S(TM⊥)) and ∇XY,ANX, AWX ∈ Γ(TM).

Let P be a projection of TM on S(TM), from (2.1), we have

(2.10) ∇XPY = ∇∗

XPY + h∗(X,PY ), X, Y ∈ Γ(TM),

(2.11) ∇XE = −A∗

EX +∇∗t
XE, X ∈ Γ(TM), E ∈ Γ(RadTM),

where {∇∗

XPY,A∗

EX} belong to Γ(S(TM)) and {h∗(X,PY ),∇∗t
XE} belong to Γ(RadTM).

Using (2.10) and (2.11), we have

(2.12) ḡ(h∗(X,PY ), N) = ḡ(ANX,PY ),

(2.13) ḡ(hl(X,PY ), E) = ḡ(A∗

EX,PY ),

(2.14) A∗

EE = 0, ḡ(hl(X,E), E) = 0.

In genereal, the induced connection ∇ on M is not metric connection. Since ∇̄ is a
metric connection, by using (2.7), we have

(2.15) (∇Xg)(Y, Z) = ḡ(hl(X,Y ), Z) + ḡ(hl(X,Z), Y ).

However, it is important to note that ∇∗ is a metric connection on S(TM).
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2.2. Almost paracontact metric manifolds

A paracontact manifold M̄2n+1 is a smooth manifold equipped with a 1−form η, a
characteristic vector field ξ and a tensor field φ̄ of type (1, 1) such that [19]:

(2.16) η(ξ) = 1,

(2.17) φ̄2 = I − η ⊗ ξ,

(2.18) φ̄ξ = 0,

(2.19) η ◦ φ̄ = 0,

If we set D = ker η = {X ∈ Γ(TM̄) : η(X) = 0}, then φ̄ induces an almost
paracomplex structure on the codimension 1 distribution defined by D [19].

Moreover, if the manifold M̄ is equipped with a semi-Riemannian metric ḡ of
signature (n+ 1, n) which is called compatible metric satisfying [21]

(2.20) ḡ(φ̄X, φ̄Y ) = −ḡ(X,Y ) + η(X)η(Y ), X, Y ∈ Γ(TM̄),

then we say that M̄ is an almost paracontact metric manifold with an almost para-
contact metric structure (φ̄, ξ, η, ḡ).

From the definition, one can see that [21],

(2.21) ḡ(φ̄X, Y ) = −ḡ(X, φ̄Y ),

(2.22) ḡ(X, ξ) = η(X).

If ḡ(X, φ̄Y ) = dη(X,Y ) the almost paracontact metric manifold is said to be a
paracontact metric manifold.

For an almost paracontact metric manifold (M̄, φ̄, ξ, η, ḡ), one can always find a
local orthonormal basis which is called φ̄−basis (Xi, φ̄Xi, ξ) (i = 1, 2, ..., n) [21].

An almost paracontact metric manifold (M̄, φ̄, ξ, η, ḡ) is a para-Sasakian mani-
fold if and only if [21]

(2.23) (∇̄X φ̄)Y = −ḡ(X,Y )ξ + η(Y )X, X, Y ∈ Γ(TM̄),

where ∇̄ is Levi-Civita connection of M̄ .

From (2.23), we also have

(2.24) ∇̄Xξ = −φ̄X.
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Example 2.1. [1] Let M̄ = R
2n+1 be (2n + 1)−dimensional real number space with

(x1, y1, x2, y2, ..., xn, yn, z) standard coordinate system. Defining

φ
∂

∂xα

=
∂

∂yα
, φ

∂

∂yα
=

∂

∂xα

, φ
∂

∂z
= 0,

ξ =
∂

∂z
, η = dz,(2.25)

g = η ⊗ η +
n
∑

α=1

(dxα ⊗ dxα − dyα ⊗ dyα),

where α = 1, 2, ..., n, then the set (M̄, φ̄, ξ, η, ḡ) is an almost paracontact metric manifold.

3. Totally paracontact umbilical radical transversal null submanifold

The aim of this section is to examine totally paracontact umbilical radical transver-
sal null submanifolds of a para-Sasakian manifold. We state the following definition
given [9] for a radical transversal null submanifold of a para-Sasakian manifold.

Definition 3.1. Let (M, g, S(TM), S(TM⊥)) be a null submanifold of a para-
Sasakian manifold (M̄, ḡ) such that ξ ∈ Γ(TM). If the following conditions given
by

(3.1) φ̄(RadTM) = ltr(TM),

(3.2) φ̄(D) = D,

are provided on M then M is called radical transversal null submanifold,where
S(TM) = D⊥{ξ} and D is complementary non-degenerate distribution to {ξ} in
S(TM).

Example 3.1. Let (M̄, φ̄, ξ, η, ḡ) be a 9−dimensional almost paracontact metric mani-
fold given in Example 2.1. Assume that M is a submanifold defined by

x1 = −y3, x2 = y4,

x3 = −y1, x4 = y2.

In this case TM of M is spanned by

{

Ψ1 = − ∂
∂x3

+ ∂
∂y1

, Ψ2 = ∂
∂x4

+ ∂
∂y2

, Ψ3 = − ∂
∂x1

+ ∂
∂y3

,

Ψ4 = ∂
∂x2

+ ∂
∂y4

, Ψ5 = ∂
∂z

}

.

Hence the radical distribution RadTM = Sp{Ψ1,Ψ3} and ltr(TM) is spanned by

Ω1 =
∂

∂x3

−
∂

∂y1
, Ω2 =

∂

∂x1

−
∂

∂y3
.
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It follows that φ̄Ψ1 = −Ω1, φ̄Ψ3 = −Ω2, φ̄Ψ2 = Ψ4, φ̄Ψ4 = Ψ2. Thus

φ̄(RadTM) = ltr(TM)

and
φ̄(D) = D,

which implies that M is a radical transversal 2-null submanifold.

Proposition 3.1. [2] There does not exist an isotropic or totally null radical
transversal null submanifold of a para-Sasakian manifold.

Proposition 3.2. [2] There exists no 1-null radical transversal null submanifold
of a para-Sasakian manifold.

For a radical transversal null submanifold M of a para-Sasakian manifold M̄ ,
assume that ω1 and ω2 are the projection morphisms on S(TM) and RadTM ,
respectively. Then, for X ∈ Γ(TM), one can write

(3.3) X = ω1X + ω2X,

where ω1X ∈ Γ(S(TM)) and ω2X ∈ Γ(RadTM).

If we apply φ̄ to (3.3), we get

(3.4) φ̄X = φ̄ω1X + φ̄ω2X.

Taking φ̄ω1X = TX and φ̄ω2X = QX in (3.4), we have

(3.5) φ̄X = TX +QX,

where TX ∈ Γ(S(TM)) and QX ∈ Γ(ltr(TM)).

From (2.23), for a radical transversal null submanifold M, we get

(∇̄X φ̄)Y = ∇̄X φ̄Y − φ̄∇̄XY

= −ḡ(X,Y )ξ + η(Y )X.

By use of (2.7), (2.8) with (3.5), we obtain

−g(X,Y )ξ + η(Y )X = ∇XTY + hl(X,TY ) + hs(X,TY )
−AQY X +∇l

XQY +Ds(X,QY )
−T∇XY −Q∇XY − φ̄hl(X,Y )
−φ̄hs(X,Y ).

Considering the tangential, lightlike transversal and screen transversal components
of above equation, we get

(3.6) (∇XT )Y = φ̄hl(X,Y ) +AQY X − g(X,Y )ξ + η(Y )X,

(3.7) hl(X,TY ) +∇l
XQY −Q∇XY = 0,
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(3.8) hs(X,TY ) +Ds(X,QY )− φ̄hs(X,Y ) = 0.

It is well known that the induced connection of a null submanifold is not a metric
connection. The following theorem shows the necessary and sufficient condition for
the induced connection to be a metric connection.

Theorem 3.1. [2] Let M be a radical transversal null submanifold of a para-
Sasakian manifold M̄ . Then ∇ is a metric connection on M if and only if Aφ̄Y X

has no component in S(TM), for X ∈ Γ(TM) and Y ∈ Γ(RadTM).

Lemma 3.1. Let M be a radical transversal null submanifold of a para-Sasakian
manifold M̄ . Then for all X,Y ∈ (Γ(TM)− {ξ}), we have

(3.9) g(∇XY, ξ) = ḡ(Y, φ̄X).

Proof. From (2.7), we obtain

(3.10) g(∇XY, ξ) = g(∇̄XY, ξ).

Since ∇̄ is a metric connection, by use of (3.10), we get

g(∇XY, ξ) = Xg(Y, ξ)− ḡ(Y, ∇̄Xξ),

which implies

(3.11) g(∇XY, ξ) = −ḡ(Y, ∇̄Xξ).

In view of (2.24) and (3.11), we complete the proof.

Definition 3.2. For a null submanifold M of a para-Sasakian manifold M̄ such
that ξ ∈ Γ(TM), if the second fundamental form h of M satisfies;

(3.12) hl(X,Y ) = (g(X,Y )− η(X)η(Y ))αQ + η(X)hl(Y, ξ) + η(Y )hl(X, ξ),

(3.13) hs(X,Y ) = (g(X,Y )− η(X)η(Y ))αT + η(X)hs(Y, ξ) + η(Y )hs(X, ξ),

then M is said to be totally paracontact umbilical radical transversal null subman-
ifold, where αQ ∈ Γ(ltr(TM)), αT ∈ Γ(S(TM⊥)) and X,Y ∈ Γ(TM).

Theorem 3.2. Let M be a totally paracontact umbilical radical transversal null
submanifold of a para-Sasakian manifold M̄ . Then αQ = 0 if and only if

(3.14) h∗(X, φ̄Y ) = 0,

for any X,Y ∈ Γ(D).
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Proof. Assume that M is totally paracontact umbilical radical transversal null sub-
manifold of a para-Sasakian manifold M̄ . From (3.6), we get

(3.15)
−ḡ(X,Y )ξ + η(Y )X = ∇̄X φ̄Y − φ̄∇̄XY

= ∇X φ̄Y + hl(X, φ̄Y ) + hs(X, φ̄Y )
−T∇XY −Q∇XY − φ̄hl(X,Y )− φ̄hs(X,Y ),

for any X,Y ∈ Γ(D).
Now, using (3.15) for X,Y ∈ Γ(D) and Z ∈ Γ(RadTM), we have

(3.16) ḡ(∇X φ̄Y, φ̄Z)− ḡ(φ̄hl(X,Y ), φ̄Z) = 0.

In view of (2.20), (2.10) in (3.16), we obtain

(3.17) ḡ(h∗(X, φ̄Y ), φ̄Z) + ḡ(hl(X,Y ), Z) = 0.

From the definition of totally paracontact umbilical radical transversal null sub-
manifold, we find

(3.18) ḡ(h∗(X, φ̄Y ), φ̄Z) + ḡ(g(X,Y )αQ, Z) = 0,

completes the proof.

Theorem 3.3. Let M be a totally paracontact umbilical radical transversal null
submanifold of a para-Sasakian manifold M̄ . Then ∇ is a metric connection if and
only if

Aφ̄Y X = η(X)Y,

for any X ∈ Γ(TM) and Y ∈ Γ(RadTM).

Proof. It is known that the induced connection is a metric connection if and only
if [2]

(3.19) ∇XY ∈ Γ(RadTM), X ∈ Γ(TM), Y ∈ Γ(RadTM).

By use of (3.6), (3.7) and (3.8) we have

(3.20)
T∇XY +Q∇XY

+φ̄hl(X,Y ) + φ̄hs(X,Y ) = ∇l
XQY −AQY X +Ds(X,QY ).

Now, using (3.12) and (3.13) in (3.20), we obtain
(3.21)

T∇XY +Q∇XY

+η(X)φ̄hl(Y, ξ) + η(X)φ̄hs(Y, ξ) = −ALY X +∇l
XQY +Ds(X,QY ).

Taking the tangential part of (3.21), we get

(3.22) T∇XY + η(X)φ̄hl(Y, ξ) = −Aφ̄Y X.
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Also, from (2.7) and (2.24), we have

(3.23) −φ̄Y = hl(Y, ξ), Y ∈ Γ(RadTM).

Using (3.23) in (3.22), we find

T∇XY = −Aφ̄Y X + η(X).

The proof follows from the previous equation.

4. Screen slant radical transversal null submanifold

Now, we investigate screen slant radical transversal null submanifolds of a para-
Sasakian manifold.

Definition 4.1. Let M be a 2q−lightlike submanifold of a para-Sasakian manifold
M̄ of index 2q such that 2q ≤ dim(M). We say that M is a screen slant radical
transversal null submanifold of M̄ if the following conditions are provided:

i) φ̄(RadTM) = ltr(TM),

ii) For each non-zero vector field X tangent to D at x ∈ U ⊂ M , the angle
θ(X) between, φ̄X and the vector space Dx is constant, i.e. it is independent of
the choice of x ∈ U ⊂ M and X ∈ Dx, where D is complementary non-degenerate
distribution to {ξ} in S(TM) such that S(TM) = D⊥{ξ}.

This constant angle θ(X) is called slant angle of distribution D. From the
definition, we have the following decomposition:

(4.1) TM = RadTM⊥D⊥{ξ}.

Now, we denote the projection on RadTM and D in TM by f1 and f2, respectively.
Thus, we get

(4.2) X = f1X + f2X + η(X)ξ, ∀X ∈ Γ(TM).

Applying φ̄ to the both sides of equation (4.2), we get

(4.3) φ̄X = φ̄f1X + φ̄f2X,

which implies

(4.4) φ̄X = φ̄f1X + TX + LX, ∀X ∈ Γ(TM),

where TX and LX denote the tangential and transversal component of φ̄f2X,,
respectively. Therefore we have φ̄f1X ∈ Γ(ltr(TM)), TX ∈ Γ(D) and LX ∈
Γ(S(TM⊥)). Similarly, we denote the projections on ltr(TM) and S(TM⊥) in
tr(TM) by t1 and t2, respectively. Then, we get

(4.5) U = t1U + t2U, ∀U ∈ Γ(tr(TM)).
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On applying φ̄ to (4.5), we have

(4.6) φ̄U = φ̄t1U + φ̄t2U,

which gives

(4.7) φ̄U = φ̄t1U + P1U + P2U,

where P1U and P2U denote tangential and transversal component of φ̄t2U , respec-
tively. Hence, we have φ̄t1U ∈ Γ(RadTM), P1U ∈ Γ(D) and P2U ∈ Γ(S(TM⊥)).

By use of (2.7), (2.8), (2.9), (2.23), (4.4) and (4.7), and comparing tangential,
lightlike transversal and screen transversal components, we have

−ḡ(X,Y )ξ + η(Y )X = ∇XTY −ALY X −Aφ̄f1Y
X(4.8)

−T∇XY + P1h
s(X,Y ) + φ̄hl(X,Y ),

(4.9) hl(X,TY ) +Dl(X,LY ) +∇l
X φ̄f1Y = φ̄f1∇

l
XY,

(4.10) Ds(X, φ̄f1Y ) + hs(X,TY ) = P2h
s(X,Y )−∇s

XLY + L∇XY.

Theorem 4.1. Let M be a 2q−null submanifold of a para-Sasakian manifold M̄

with ξ ∈ Γ(TM) such that φ̄(RadTM) = ltr(TM). Then M is a screen slant radical
transversal null submanifold if and only if there exists a constant λ ∈ [0, 1] such that

P 2X = λ(X − η(X)ξ), ∀X ∈ Γ(D).

Proof. Assume that there exists a constant λ such that for all X ∈ Γ(D), P 2X =
λ(X − η(X)ξ) = λφ̄2X. Then we have

cos θ(X) =
g(φ̄X, PX)

‖PX‖‖φ̄X‖

= −
g(X, φ̄PX)

‖PX‖‖φ̄X‖

= −
g(X,P 2X)

‖PX‖‖φ̄X‖

= −
g(X, φ̄2X)

‖PX‖‖φ̄X‖

= λ
g(φ̄X, φ̄X)

‖PX‖‖φ̄X‖
.

From above equation, we find

(4.11) cos θ(X) = λ
‖φ̄X‖

‖PX‖
.
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On the other hand, ‖PX‖ = ‖φ̄X‖ cosθ(X), implies

(4.12) cos θ(X) =
‖PX‖

‖φ̄X‖
.

From (4.11) and (4.12), we get

cos2 θ(X) = λ (constant).

Thus M is a screen slant radical transversal null submanifold.

On the other hand, suppose that M is a screen slant radical transversal null
submanifold. Then cos2 θ(X) = λ (constant). From (4.12), we have

‖PX‖2

‖φ̄X‖2
= λ.

Now g(PX,PX) = λg(φ̄X, φ̄X), which gives g(X,P 2X) = λg(X, φ̄2X). Therefore
g(X, (P 2 − λφ̄2)X) = 0. Since X is a non-null vector, we obtain

P 2 − λφ̄2X = 0,

P 2 = λφ̄2X = λ(X − η(X)ξ).

This completes the proof.

Theorem 4.2. Let M be a screen slant radical transversal null submanifold of a
para-Sasakian manifold M̄ . Then RadTM is integrable if and only if

Ds(Y, φ̄X) = Ds(X, φ̄Y ) and Aφ̄XY = Aφ̄Y X,

for all X,Y ∈ Γ(RadTM).

Proof. Suppose that M is a screen slant radical transversal null submanifold of a
para-Sasakian manifold M̄ . From (4.10), we get

(4.13) Ds(X, φ̄Y ) = P2h
s(X,Y ) + L∇XY, X, Y ∈ Γ(RadTM).

Interchanging the roles of X and Y in (4.13), we obtain

(4.14) Ds(Y, φ̄X) = P2h
s(Y,X) + L∇Y X.

From (4.13) with (4.14), we have

(4.15) Ds(X, φ̄Y )−Ds(Y, φ̄X) = L(∇XY −∇Y X) = L[X,Y ].

By using (4.8), we get

(4.16) Aφ̄Y X + T∇Y X = P1h
s(X,Y ) + φ̄hl(X,Y ).
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Again interchanging roles of X and Y in (4.16), we get

(4.17) Aφ̄XY + T∇XY = P1h
s(Y,X) + φ̄hl(Y,X).

From (4.16) and (4.17), we obtain

(4.18) Aφ̄XY −Aφ̄Y X = T [X,Y ].

In view of (4.15) and (4.18), the proof completes.

Theorem 4.3. Let M be a screen slant radical transversal null submanifold of a
para-Sasakian manifold M̄ . Then the distribution D is integrable if and only if

hl(X,TY ) +Dl(X,LY ) = hl(Y, TX) +Dl(Y, LX),

for all X,Y ∈ Γ(D).

Proof. From (4.9), we get

(4.19) hl(X,TY ) +Dl(X,LY ) = φ̄f1∇XY, X, Y ∈ Γ(D).

If we change the roles of X and Y in (4.19), we find

(4.20) hl(Y, TX) +Dl(Y, LX) = φ̄f1∇Y X.

From (4.19) and (4.20), we have

(4.21) hl(X,TY )− hl(Y, TX) +Dl(X,LY )−Dl(Y, LX) = φ̄f1[X,Y ].

The proof follows from (4.21).

Theorem 4.4. Let M be a screen slant radical transversal null submanifold of a
para-Sasakian manifold M̄ . Then S(TM) defines a totally geodesic foliation if and
only if

ḡ(A∗

φ̄N
X,TY ) = −ḡ(Dl(X,LY ), φ̄N),

for all X,Y ∈ Γ(S(TM)) and N ∈ Γ(ltr(TM)).

Proof. We know that, S(TM) defines a totally geodesic foliation if and only if

ḡ(∇XY,N) = 0, X, Y ∈ Γ(S(TM)), N ∈ Γ(ltr(TM)).

From (2.7), it can be easily seen that

(4.22) ḡ(∇XY,N) = ḡ(∇̄XY,N).

From (2.20), (2.23) and (4.22), we obtain

(4.23) ḡ(∇XY,N) = −ḡ(∇̄X φ̄Y, φ̄N).
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By use of (2.7), (2.8), (4.4) and (4.23), we get

ḡ(∇XY,N) = −ḡ(hl(X,TY ) +Dl(X,LY ), φ̄N).

From (2.13), we have

ḡ(∇XY,N) = −ḡ(A∗

φ̄N
X,TY )− ḡ(Dl(X,LY ), φ̄N).

Thus the proof completes.

Theorem 4.5. Let M be a screen slant radical transversal null submanifold of
a para-Sasakian manifold M̄ . Then the distribution D̊ = RadTM⊥{ξ} defines a
totally geodesic foliation on M if and only if

ALZ = h∗(X,TV ) + η(V )X,

for all X ∈ Γ(D̊) and V ∈ Γ(D).

Proof. By using the definition of radical transversal null submanifold, D̊ is a totally
geodesic foliation if and only if

ḡ(∇XY, V ) = 0, X, Y ∈ Γ(D̊), V ∈ Γ(S(TM)).

From (2.7), we obtain

(4.24) ḡ(∇XY, V ) = −ḡ(Y, ∇̄XV ).

In view of equations (2.7), (2.20), (2.23) and (4.24), we get

ḡ(∇XY, V ) = ḡ(φ̄Y,X)η(V ) + ḡ(φ̄Y,∇X φ̄V ).

By using (2.7),(2.8), (2.10), (4.4) and (4.23), we can write

ḡ(∇XY, V ) = η(V )ḡ(φ̄Y,X) + ḡ(φ̄Y, h∗(X,TV ))− ḡ(φ̄Y, ALV ),

which implies

(4.25) ḡ(∇XY, Z) = ḡ(φ̄Y,−ALZ + h∗(X,TZ) + η(Z)X).

The proof follows from (4.25).
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