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A NEW COMPUTATIONAL METHOD FOR FINDING THE
CHEAPEST HEDGE

Vasilios N. Katsikis™

Abstract. In this article, we investigate the computational efficiency of an order the-
oretic approach applied to the problem of finding the cheapest hedge under portfolio
constraints. In particular, we design a new computational method for computing the
cheapest hedge and we discuss advantages of this method compared to the standard
linear programming techniques. Numerical results as well as a new Matlab function for
computing the cheapest hedge are provided.
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1. Introduction and notation

When markets are complete, there are as many states in the world as the non-
redundant available securities. Therefore, if we form a matrix of non-redundant
securities, then by taking the inverse value of the payoff matrix at the desired
insured-payoff we can calculate the replicating portfolio. On the other hand, when
markets are incomplete the desired insured payoff may not be marketed since there
are more states in the world than available securities. In such a case we are interested
in tradable portfolios which can pay at least as much at every state of the world
as the desired payoff. That is, an investor is interested to purchase a portfolio that
combines available securities and whose payoff dominates the desired insured payoff
and has the lowest insurance premium.

The problem of finding the least costly portfolio, usually termed as the cheap-
est hedge or the minimum-premium insurance portfolio, whose payoff dominates
the insured payoff is a finite minimization problem. This problem is extensively
studied by many researchers and many different techniques have been developed
for its solution (see, for example, [4, 5, 6, 7, 16, 18, 19]). Also, recent literature on
optimization techniques provides a large number of important papers in this area
under different perspectives, such as [20, 21].
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An alternative method for computing the cheapest hedge was presented in [1].
The innovation of this method focuses on the use of Riesz spaces and in partic-
ular on the existence of pseudo-complete markets in an incomplete market. Here
we present a new computational tool (see the mpiportfolio function in the Ap-
pendix) that implements this method and we discuss its computational efficiency
versus the standard linear programming procedure. To the best of our knowledge,
a computational analogue of this very interesting approach to the cheapest hedge
problem has not yet been presented or studied in the literature. The idea of find-
ing the cheapest hedge is based on the notion of the portfolio dominance ordering
i.e., a portfolio  dominates a portfolio y if Ax > Ay, where A denotes the pay-
off matrix. In incomplete markets portfolio dominance has no lattice structure (see
[1,2,8,9,10,11, 12, 13, 14, 15]), but it is possible to define pseudo-complete markets
by considering proper invertible submatrices of the payoff matrix. Then, for each
pseudo-complete market, its positive portfolio dominance cone is a lattice cone and
we are in position to define a potentially insuring portfolio. The remarkable result
of [1] states that one of the potentially insuring portfolios is a minimum-premium
insurance portfolio.

Throughout the paper, we will understand R™ as the coordinate-wise ordered
vector lattice @."; R. The point-wise order relation in R™ is defined by

x <y if and only if x(i) < y(i), for eachi=1,...,m.

The positive cone of R™ is defined by R} = {z € R™|x(i) > 0, for each i} and
if we suppose that X is a vector subspace of R™ then X ordered by the point-
wise ordering is an ordered subspace of R™, with positive cone X = X NR". By
{e1, €2, ..., em } we shall denote the standard basis of R™. Tt is easy to see that the
portfolio dominance order i.e.,

x =y if Ax > Ay

makes R" a partially ordered vector space.

For z,y € R™, z Vy (resp.  Ay) is the component-wise maximum (resp. mini-
mum) of z and y defined by

(xVy) (i) = max{x(i),y(i)} (resp. (x Ay)(i) = min{z(i),y(i)}), foralli=1,..,m.

In our economy there are two time periods, ¢ = 0,1, where t = 0 denotes the
present and ¢ = 1 denotes the future. We consider that at ¢ = 1 we have a finite
number of states indexed by s = 1,2, ..., m, while at t = 0 the state is known to be
s=0.

Let us denote by A, the payoff matrix i.e., the matrix whose columns are the
non-redundant security vectors x1, zo, ..., Ty, that is A = [,Ti (j)}z;lj;n e R™xn,
Since the vectors x;, i = 1,...n are non-redundant, it is clear that the matrix
A is of full rank. We shall denote the asset span by X = Span(A), so X is the
vector subspace of R™ generated by the vectors x;. Economically speaking, that
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is, X consists of those income streams that can be generated by trading on the
financial market. If m = n, then markets are said to be complete and the asset
span coincides with the space R™. On the other hand, if n < m, the markets are
incomplete, meaning that some state contingent claim cannot be replicated by a
portfolio. As usual, a portfolio is a column vector 6 = (61,60s,...,0,)" of R™ and
the payoff of a portfolio 6 is the vector x = A0 € R™, which offers payoff x(i) in
state i, where i = 1,...,m. We shall denote by 1 the risk-less (or risk-free) bond
i.e., the vector 1 = (1,1,...,1). For notation not defined here the interested reader
may refer to [1, 2, 8, 9, 10, 11, 12, 13, 14, 15, 17] and the references therein.

2. Computation of the cheapest hedge

The point-wise ordering in R™, induces the partial ordering >4 in the portfolio
space R™ and is defined as follows: for each 0, ¢ € R™ we have

0 >4 ¢, if and only if A9 > A¢.

This ordering is known as the portfolio dominance ordering. An insurance portfolio
is a portfolio u such that for a given portfolio # and a floor k, then the payoff Au
dominates, in each state, the quantity max{A6,k} (where k = k-1, k € R). The
space R™ endowed with the portfolio dominance ordering relation >4 becomes a
partial ordered vector space. Let us denote by C' the pointed convex cone generated
by the relation >4, i.e.,

C={0eR":0>,0},

then for any two portfolios 0, n we can write § Vo 1 to mean the supremum (i.e.,
the least upper bound) of the two-point set {6, n} with respect to the ordering > 4.
Note that this supremum does not necessarily exists.

Any vector ¢ = (q1,¢2, - --,qn) € R™, where ¢; is the price of security i, is called
a security price. In our study we assume that the risk-less bond, 1 = (1,1, ..., 1), is
marketed and that any security price vector ¢ is positive in the portfolio dominance
ordering, i.e., ¢ - # > 0 whenever the portfolio 0 satisfies A0 > 0. This type of
prices is known as arbitrage-free prices. The minimum-premium insurance portfolio
minimization problem or else the problem of finding the cheapest hedge is

ming - n

(2.1) st.: neR™ An > Af and An > k

Under the above considerations, the solution set of this problem is non-empty
and also it is a compact and convex subset of R™ (see [1]). Also, it is well known that
there are several techniques to solve such problems, ranging from classical linear
programming methods to more sophisticated methods as in [22]. Our approach
here provides an alternative method, based on portfolio dominance ordering and
the existence of pseudo-complete markets.

If A is the m x n payoff matrix, i.e., the matrix whose columns are the non-
redundant security vectors x1,xs, ..., , then a pseudo-complete market is defined
as follows.
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Definition 2.1. Let I = {i1,i2,...,0,} C {1,2,...,m}, with i1 < is < ... < iy,
we say that the matrix

.Il(ll) .IQ(Z:l) xn(ll)
a x1(i2) 1'2('22) Ty (i2)
21lin) Talin) ... wlin)

defines a pseudo-complete market if Ay is invertible.

The existence of pseudo-complete markets is obvious since rank(A) = n. For every
pseudo-complete market defined by the matrix A; we may also define the corre-
sponding portfolio ordering, denoted by >; such that

0 >4, ¢, if and only if A10 > Ar.

This ordering is a lattice ordering i.e., the cone Cr = {6 € R™ : 0 >4, 0} is a lattice
cone and then if 1, 6 are two portfolios the supremum 7 V4, 6 exists and is given
by the relation

nVa, 0= A7 max{Am, A;0}.

Let 6 be any portfolio and & is a floor price, then a potentially insuring portfolio is
a portfolio 4, such that
Anga, > max{A0,k}.

The set of all potentially insuring portfolios shall be denoted by Py, .

Theorem 2.1. Aliprantis et al. [1] For any portfolio 0, any arbitrage-free price q,
and any floor k we have the following:

1. There exists at least one potentially insuring portfolio 0 V4, k which is a
minimum-premium insurance portfolio for 0 at floor k.

2. A minimum-premium insurance portfolio OV 4, k is the i.e. potentially insuring
portfolio. That is, q(0V a, k) < qn for alln € Py .

3. The portfolio n* = OV c k exists if and only if Py i, consists of only one portfolio
n*, which is automatically a minimum-premium insurance portfolio for any

arbitrage-free price.

3. The computational approach

In this section we shall present a computational method to find the minimum-
premium insurance portfolio 6 for any arbitrage-free price ¢ and any floor k. Ex-
istence of such a portfolio is evident from Theorem 2.1. Also, we shall present
the basic advantages against the standard linear programming procedure. It is
important to notice that the proposed algorithmic procedure may result to multi-
ple minimum-premium insurance portfolios corresponding to a single arbitrage-free
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price. So, besides other advantages that we will analyze in the sequel, one of the
the main advantages of our method relies on the fact that, in such cases, there
is a clear perspective on choosing between different solutions of the minimization
problem according to prior knowledge or experience.

The following proposition is of great importance since it characterizes all the
solutions of the minimization problem (2.1). The basic part of its proof is an easy
consequence of the proof of Theorem 2.1, so it is omitted.

Proposition 3.1. By 6, g and k we shall denote any portfolio, arbitrage-free price
and floor, respectively. Also, we shall assume that the risk-less bond is marketed.
Then,

1. The minimization problem (2.1) has at least one solution.
2. Convex combination of different solutions of problem (2.1) is also a solution.
3. If a portfolio n* is a solution of (2.1), then n* € Py .

In view of Proposition 3.1 and the preceding discussion of section 2., we are in
position to present the following algorithm.

Require: The matrix A, i.e., the payoff matrix with the non-redundant security
vectors x1, T2, ..., T, specified as columns, the portfolio vector 6, the floor k and
the price vector q.

1: Compute the insured payoff.

2: Compute the pseudo-complete markets A;.

3: Compute the set Py, = {n; € R™ : n; = A,  max{A;0,k}}, of all potentially
insuring portfolios.

4: If Py ), consists of only one portfolio, say 7, stop the procedure. Then 7 is the
minimum-premium insurance portfolio. Or else, continue to the next step.

5: Find the least costly portfolios with respect to the price vector gq.

6: Compute the output, that is the minimum-premium insurance portfolio, from
the previous step, for any arbitrage-free price.

Algorithm 3. corresponds to the Matlab function mpiportfolio presented in
the Appendix. The mpiportfolio function is our basic tool in order to find the
potentially insuring portfolios and then the minimum-premium insurance portfolio.

4. Numerical experiments

In this section, we highlight the kind of analysis that can be efficiently performed
with the presented approach. Also, we test the proposed algorithmic procedure
(Algorithm 3.) against the standard Matlab function linprog, for linear program-
ming problems. In what follows, it is important to keep in mind that the validity of
Theorem 2.1 requires that we are working with arbitrage-free prices. In addition,
note that the arbitrage-free prices are exactly the C-strictly positive vectors, that
is, the arbitrage-free prices are elements of the cone generated by the rows of the
payoff matrix A.
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4.1. Basic examples
We are now ready to present and discuss two examples of particular interest for
our analysis. The low dimensionality of these examples have been chosen for better
representation purposes. The first one is an example of an incomplete market with
only one potentially insuring portfolio.

Example 4.1. Suppose that there are ten states of the world and our market is described
by the following non-redundant securities:
e A corporate bond with payoff z1 = (2,2,4,3,0,0,0,0,1,1).

e Two shares with payoffs x2 = (0,0,1,1,2,3,1,3,4,4) and
zs3 = (3,3,0,0,0,0,4,0,0,0).
e Two treasury bonds with payoffs x4« = (1,1,0,1,0,1,0,1,0,0) and x5 = (0,0,1,0,1,0,1,0,1,1).
e A municipal bond with payoff z¢ = (0,0,0,0,0,0,6,0,0,0).
e A call option written on the share xo with strike price of 3. That s, the security

27 = (v2 — 3)" = max{(z2 — 3),0} = (0,0,0,0,0,0,0,0,1,1).

Thus, the market is described by the returns matriz

2 031000
2 031000
4100 100
3101000

A_|0 200100
0301000
01 40160
0301000
1 400101
|1 400 1 0 1|

Note that the risk-less bond 1 is marketed. Consider the portfolio
6 =(0,3,0,0,0,0,0)

of three shares of security 2 at floor k = 10. By using the SUBlatSUB function presented in
[9] one can easily see that the asset span X = [x1,x2, X3, %4, X5, T5, Te, T7| forms a vector
sublattice of R, At this point we may follow two different ways in order to calculate
the “best” insurance portfolio. One way is to use Theorem 3.2 from [3] alongside with
the computational methods presented in [8, 9, 12]. In particular, the Matlab function
mcpinsurance, from [12], generates the minimum-cost insured portfolio by using the code

>> eta=mcpinsurance (A,floorvector,theta)

where floorvector = floor x 1.

Then, the solution is the portfolio
n=1(0,0,0,10, 10,0, 2).

On the other hand if we use the proposed method i.e., the mpiportfolio Matlab function
from the Appendix we have,
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>> eta=mpiportfolio(A,floor,theta,price)

and the results are exactly the same as with the mcpinsurance function. Note that in the
case where the market has a lattice structure (i.e., it is a vector sublattice or a lattice-
subspace) then the solution is price-independent. So, in the present example the choice of
the arbitrage-free price vector, for the correct performance of mpiportfolio, is free. On
the other hand, notice that by using the Matlab function linprog and for different arbitrage
free prices the corresponding minimization problem must be solved repeatedly each time to
find the minimum-premium insurance portfolios. So, the knowledge that our market has
a vector lattice structure in conjunction with the proposed method can reduce significantly
the computation time. A graphical illustration of this example is provided in Figure 4.1.

Payoff

—6— Payoff of portiolio
—*— Floor

Payoft of minimum-premium insurance portfolio
T T T T

L L L
1 2 3 4

5 6 7 8 9 10
States

Fi1G. 4.1: The unique minimum-premium insurance portfolio contains 10 treasury
bonds z4 and 10 treasury bonds x5 as well as 2 call options written on the share x»
with strike price of 3

We continue with an example of an incomplete market with price-dependent
insurance. It is easy to see, by using the SUBlatSUB function from [9], that this
market is not a lattice-subspace, so our solution is price dependent. Furthermore,
we shall see that for certain choices of price vectors we may have multiple solutions,
i.e., more than one minimum-premium insurance portfolios for the same price. The
interesting thing, regarding our approach, is that one can easily compute several
minimum-premium insurance portfolios. This is an advantage against the classi-
cal optimization techniques since the interested user can choose between different
minimum-premium insurance portfolios according to his/her prior knowledge or
experience.

Example 4.2. Suppose that there are seven states of the world and our market is de-
scribed by the following non-redundant securities:

e A corporate bond with payoff x1 = (0.25,0.25,0.25,0.25, 0,0, 0).

e Two shares with payoffs x2 = (0,0,0,0,1,1,1) and =3 = (2,1,0,0,0,0,0).

e A treasury bond with payoff x4 = (1,5,3,0,0,0,0).
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—S— Payoff of portfolio
—#— Floor
351 Payoff of minimum-premium insurance portfolio

0 L L 1 < < Q
0 1 2 3 4 5

o
~

States

F1G. 4.2: Payoff of minimum-premium insurance portfolio n; = (40, 10, —g 16,

)
that is A - = (10,18,48,10,10, 10, 10)

Thus, the market is described by the returns matriz

[1/4 0 2 1
1/4 0 1 5
1/4 0 0 3
A=1|1/4 0 0 0
0 100
0 100
L 0 1 0 0]

Consider the portfolio @ = (4,1,2,3) at floor k = 10. Again, by using the code presented
in [9], we get that the asset span X = [x1, x2, 23, x4] does not have a vector lattice structure.
So, Theorem 3.2 from [3] is not valid anymore and we have price-dependent insurance. The
proposed method, mpiportfolio function, by using the code

>> eta=mpiportfolio(A,floor,theta,price)

for the arbitrage-free price vector p = (44,11,5,25), provides two alternatives. In par-
ticular, we have the solutions m = (40, 10, —87 %) and n2 = (40, 10,8,0) and it holds
p-m = p-n2 = 1910. This example confirms the already mentioned advantage of this
method. That is, we may compute more than one available minimum-premium insurance

portfolios. In particular we may compute s different minimum-premium insurance portfo-

lios with 1 < s < ( 7 = 35, while in the contrary the classical optimization techniques

4
provide only one for the given price vector p.

In Figure 4.2 and Figure 4.3 we can see the two choices for portfolio insurance
for the same price p = (44, 11,5, 25). Also, we tested the linprog Matlab function
which provides one minimum-premium insurance portfolio.
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401

—6— Payoff of portfolio
—— Floor
Payoff of minimum-premium insurance portfolio

States

F1a. 4.3: Payoff of minimum-premium insurance portfolio 72 = (40, 10, 8,0), that
is A-n2 = (26,18,10,10, 10,10, 10)

4.2. Numerical experiments with large data sets

In this subsection we analyze numerical data arising during the computation of
minimum-premium insurance portfolio by applying a Matlab implementation of
Algorithm 3. (see the appendix). In order to test the time efficiency as well as
the accuracy of our method we compare our results with those obtained using the
Matlab function linprog. Our series of test examples exploit payoff matrices, A,
randomly generated under the restrictions that a) the risk-less bond is marketed
and b) the matrices A are of full rank. Let us denote by minvaly the minimum
value computed by Algorithm 3. and by minwvals the minimal value computed by
the linprog Matlab function. Then the number

MINV E = minval; — minvals,

is a measure for comparison of the minimal values achieved by applying both meth-
ods. The more negative the number MINVE is, the larger the overestimation of
the minimal value by the linprog is. Also, we shall denote by NN, the number
of different minimum-premium insured portfolios that can be found by using the
two methods. Note that the linprog can give us only N, = 1. All the numerical
tasks have been performed by using the Matlab R2015a environment on an Intel(R)
Core(TM) i7-3770 CPU @ 3.40 GHz 64-bit system with 16 GB of RAM running
on Windows 7 Professional SP1 Operating System. So, we shall present results for
large data sets, i.e for incomplete markets generated by a large number of securities
and states. The cumulative results are included in Table 4.1. As we can see in Table
4.1, the negative values of MINVE, in each tested case, suggests that the linprog
function overestimates the minimal value of the minimization problem. Also, ac-
cording to the numerical results we observe that the proposed method, Algorithm
3., performs quite well both in terms of accuracy as well as in CPU time response.
Finally, in most of the cases we found more than one minimum-premium insurance
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Table 4.1: Results for large data sets.

Method Size m,n | CPU Time MINVE | N,
Algorithm 3. 50, 49 0.0228 4
Algorithm 3. and linprog -04.0009e-06
linprog 50, 49 0.0819 1
Algorithm 3. 100, 99 0.2026
Algorithm 3. and linprog -08.0007e-07
linprog 100, 99 0.8608 1
Algorithm 3. 150, 149 0.4651 1
Algorithm 3. and linprog -4.0001e-06
linprog 150, 149 0.4331 1
Algorithm 3. 200, 199 1.1638
Algorithm 3. and linprog -0.0369
linprog 200, 199 0.5242 1
Algorithm 3. 250, 249 2.3667
Algorithm 3. and linprog -0.2092
linprog 200, 199 0.5091 1
Algorithm 3. 300, 299 3.9350
Algorithm 3. and linprog -0.0843
linprog 300, 299 0.6234 1
Algorithm 3. 350, 349 6.2079 1
Algorithm 3. and linprog -0.2080
linprog 350, 349 0.7464 1

portfolios.

4.3. Advantages and comments

According to the analysis of the previous sections we conclude to the following
advantages and comments regarding the proposed method:

i)

ii)

iii)

If Py 1 consists of only one portfolio then automatically this portfolio is the
minimum-premium insurance portfolio and no further investigation is needed.

An important advantage of this method is that we are able to calculate, for
the same arbitrage-free price, different minimum-premium insurance portfolios
(see Example 4.2). This fact, gives us the opportunity to choose between
optimum insurance portfolios that best fits our needs and experience. Note
that, the linear programming method provides us only one optimum insurance
portfolio.

Our method is based upon the existence of pseudo-complete markets in an
incomplete market which is always guaranteed by Theorem 2.1, case (1).
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iv) If the lattice property holds then the solution we get, from the proposed
method, is price-independent and this is an important advantage over the
traditional linear programming methods (see Example 4.1). Also, recall that,
when the market has a lattice structure! then the solution is price-independent

v) According to Proposition 3.1, convex combination of different solutions of
problem (2.1) is also a solution.

Finally, the computation of the set Py j, is not always an easy task. In fact, for
an m x n payoff matrix A, with n < m the set Py, has ( 7:; ) elements. This

issue, in some cases, may cause a difficulty in calculations but, on the other hand,
according to Proposition 3.1 we are able to find all the minimum-premium insured
portfolios.

5. Conclusion

In this work we discuss the minimization problem of finding the minimum-premium
insurance portfolio as a minimization problem over a finite set, Py ;. Moreover, we
propose Algorithm 3. as the basic tool for solving the minimization problem (2.1).
According to the proposed method, we are able to calculate, for the same arbitrage-
free price, different minimum-premium insurance portfolios and then choose prop-
erly the minimum-premium insurance portfolio according to our knowledge or ex-
perience.

6. Appendix
The Matlab implementation of Algorithm 3. is given below.

function[insuredpayoff, mpiportfol, minvalue] = mpiportfolio(A,theta,floor,price)

Yh kKKK KKK KKK Kok K Y

%  General Information. %

Yk sk sk sk ok ok ok koK ok ok Kk ok K Y

% Synopsis:

% mpiportfolio = mpiportfolio(A,theta,floor,price)

% Input:
% A = an mxn payoff matrix, i.e., the matrix whose columns
% are the non-redundant security vectors x1 ,x2 ,...,xn.

%  theta = a given portfolio (dimension = nx1).

%  floor = the real number that acts as a floor.

% price = an arbitrage-free price vector, i.e., an element of the cone

% generated by the rows of the payoff matrix A (dimension = nx1).

IThe basic computational tools for testing the vector lattice property of a market (i.e., the
market is a vector sublattice or lattice-subspace) are provided in [9].
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%
% Output:
%  mpiportfolio = minimum-premium insurance portfolio. Also, we may ask
%  for the insured payoff and minimum value of the problem.
%
YKok ko ok o ko sk ok ok ok K ok ok sk ok ok ok K ok ok ok ok ok ok oK ok ok ok ok oK ok Kok ok K ok ok ok Kok % Y
% Computation of minimum-premium insurance portfolio by %
% using Algorithm 1 %
%)k ok sk ok ok sk o sk ok sk ok ok ok o ok ok ok ok ok ok ok ok oK ok sk ok ok oK ook ok ok ok ok ok Kok ok sk ok ok ok Kok kY
[m,n]=size(A);
YKok sk ok ok ok o ko ok ok ok ok K ok ook ok ok ok Kok ok ok ok ok ok Kok Kok Y]
% Compute the insured payoff. %
%)k ok sk ok ok ok o sk ok ok sk ok ok ok ok ok ook ok ok ok o ok oK ok ok ok ok ok Kok %)
insuredpayoff= max ([A*theta floor*ones(m,1)],[],2);
Y kok ko ok o ok ok sk ok ok ok K sk ok sk ok ok ok Kok ok ok ok ok ok ok ok ok ok ok % Y
% Compute the pseudo-complete markets. %
Y kok ko ok o ok ok sk ok ok ok K sk ok sk ok ok ok Kok ok ok ok ok ok ok ok ok ok ok % Y
combos = nchoosek(1l:m,n);
t = length(combos(:,1));
YKok sk ok ok o sk ok sk ok ok ok K ok ok sk ok ok ok ok ok ok ok sk ok Kok ok ok ok ok ok ok ok Kok ok
% Compute the potentially insuring portfolios. %
YKok sk ok ok o sk ok sk ok ok ok K ok ok sk ok ok ok ok ok ok ok sk ok ok ok ok ok ok Kok ok ok Kok ok
min_prem_ins_port_matrix = zeros(n,t);
for i = 1:t
Ai = A(combos(i,:),:);
ranki = rank(Ai);
if ranki == n
portfolio = Ai\max([Ai*theta floor*ones(ranki,1)],[],2);
min(A*portfolio-insuredpayoff)
minimum = le-7+min(A*portfolio-insuredpayoff);
if minimum >=0
min_prem_ins_port_matrix(:,i) = portfolio;
end
end
end
%)k ok sk ok ok ok o sk ok o sk ok ok ok ok ok ook ok ok ok oK ok oK ok ok ok ok ok Kok %)
% Find the least costly portfolio. %
YKok sk ok ok ok ok ok o sk ok ok ok Kok ook ok ok ok Kok ok ok ok ok ok Kok Kok Y]
[7,j] = find(min_prem_ins_port_matrix);
indices = unique(j)’;
cost = price’*min_prem_ins_port_matrix(:,indices);
minvalue = min(cost);
ind1l eq(cost,minvalue) ;
ind2 = indl.*indices;
[*,jj] = find(ind2);
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ind3 = ind2(jj);
mpiportfol = min_prem_ins_port_matrix(:,ind3);
minvalue = price’*mpiportfol;

1.

10.

11.

12.

13.

14.

15.

16.
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