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A COMBINED SDLINAR(p) MODEL AND IDENTIFICATION AND
PREDICTION OF ITS LATENT COMPONENTS

Miodrag S. Djordjević

Abstract. The main subject of this paper is a combined integer-valued autoregressive
time series with both positive and negative values, based on a new thinning operator.
Some important properties are analyzed. Estimators of the unknown parameters are
derived and their asymptotic behavior is analyzed. A simulation and an application on
real-data are also shown. In the end, a mechanism for identification and prediction of
the latent dimensions of the model are presented.
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1. Introduction

Since the last quarter of the previous century there has been a permanent en-
largement of application field of integer-valued time series. There is a particular
interest in time series with small integer values, since they cannot be approximated
by continuous time series. Models that showed a great ability to fit a numerous
group of phenomena and processes, in both nature and society are models from the
class of integer-valued auto-regressive (INAR) time series, based on the thinning
operators. They were introduced by McKenzie in [14] and Al-Osh and Alzaid [2].
In these two papers, the binomial thinning operator with the counting series of
Bernoulli distributed random variables was used. To the present day, there is a va-
riety of INAR models with different marginals. McKenzie[15], Du and Li[9] and Al-
Osh and Alzaid[1] analyzed models with negative binomial and geometric marginals.
Freeland and McCabe[11] studied model with Poisson marginals, Ristić et al.[18] in-
troduced a process with geometric marginals based on a negative binomial thinning
operator. Later, integer-valued processes with both positive and negative values
appeared. Freeland[10] introduced a process with symmetric Skellam marginal dis-
tribution. Chesneau and Kachour[7] defined signed INAR process. Then, Nastić et
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al.[17] studied a processes with symmetric discrete Laplace marginals and Barreto-
Souza and Bourguignon[3] processes with skew discrete Laplace marginals. Djord-
jević[8] gave a generalization of series with discrete Laplace marginal distribution
defining SDLINAR(1), a model with all four different parameters.

Side by side with a complexity of real-life problems demanding mathematical
models, new INAR processes were developed. Systems where current states do
not depend only on the previous but on the last p states asked for INAR models
of higher order. Kim and Park[13] defined a integer-valued autoregressive process
of order p with signed binomial thinning, INARS(p). Kachour and Truquet[12]
also considered the INAR process of order p with signed binomial thinning. Zhang
et al.[25] introduced a pth-order integer-valued autoregressive process with signed
generalized power series thinning operator, GINARS(p). Ristić and Nastić[19]
focused on mixtures of geometrically distributed counting series. Also, Zhu and
Joe[26] and Weiss[22] developed a combined INAR model of pth-order, applicable
in situations where the current state depends, with some probability, on one of the
last p states. Model presented in this paper is one of that kind. It relies on the
results given in [16].

In Section 2, the definition of the thinning operator (α, β)⊙ and some of its
important properties are shown. In Section 3 we introduce a new model of order p,
we give its definition and characterization through important properties. Then, in
Section 4, conditional least square and Yule-Walker estimators are derived and their
asymptotic behavior is described. Finally, in Section 5, we demonstrate identifica-
tion and prediction of latent components using realization of the defined process.
Also, the results of simulation and application on real data are shown.

2. The thinning operator (α, β)⊙

First, we will give the definition of the thinning operator (α, β)⊙, introduced
in [8], which represents a generalization of thinning operators presented in [17] and
[3]. Let the random variable Z has skew discrete Laplace distribution, SDL(µ/(1+
µ), ν(1 + ν)), with parameters µ/(1 + µ), µ > 0 and ν/(1 + ν), ν > 0. The thinning
operator (α, β)⊙ is defined in the following way

(2.1) ((α, β) ⊙ Z)|Z
d
=(α ∗X − β ∗ Y )|(X − Y ),

where α∗ and β∗ are the negative binomial thinning operators, defined in [18]

as α∗X =
∑X

i=1 Wi, where {Wi} is a sequence of independent and identically dis-
tributed random variables with geometric, Geom(α/(1+α)), α ∈ (0, 1), distribution,

whereWi andX are independent random variables for all i > 1 and β∗Y =
∑Y

i=1 Vi,
where {Vi} is a sequence of independent and identically distributed random vari-
ables with geometric, Geom(β/(1 + β)), β ∈ (0, 1), and Vi and Y are independent
random variables for all i > 1. Random variables X and Y are independent and
have geometric, Geom(µ/(1+µ)) and Geom(ν/(1+ ν)), distributions, respectively.
Also, the counting series in α∗X and β∗Y, {Wi} and {Vi} are mutually independent
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with geometric, Geom(α/(1+α)) and Geom(β/(1+β)), distributions, respectively.
It should be said that parameters µ, ν, α and β represent the mean value of the
corresponding geometric distributions. Several important properties of the random
variable (α, β)⊙ Z will be mentioned.

Proposition 2.1. The random variable (α, β)⊙Z has the following properties:

1. The characteristic function of the random variable (α, β)⊙Z is

ϕ(α,β)⊙Z(t) =
(1+α−αeit)(1+β−βe−it)

(

1+α(1+µ)−α(1+µ)eit
)(

1+β(1+ν)−β(1+ν)e−it

) ;

2. E((α, β)⊙Z) = αµ− βν;

3. V ar((α, β)⊙Z) = αµ(1 + 2α+ αµ) + βν(1 + 2β + βν);

4. E((α, β)⊙Z|Z) = (α− β) µν
1+µ+ν + αZI{Z≥0}+βZI{Z<0};

5. V ar((α, β)⊙Z|Z) = (α− β)2
µ(1 + µ)ν(1 + ν)

(1 + µ+ ν)2
+ µν

α(1 + α) + β(1 + β)

1 + µ+ ν

+ α(1 + α)ZI{Z≥0}−β(1 + β)ZI{Z<0}.

Using the thinning operator (α, β)⊙, SDLINAR(1) time series model is defined

as Zn
d
= (α, β) ⊙ Zn−1 + en, n ≥ 1, where random variables Zn, n ≥ 0 have a

skew discrete Laplace distribution, SDL(µ/(1 + µ), ν/(1 + ν)). The SDLINAR(1)
time series is based on the NGINAR(1) model, introduced by [18]. Since in the
NGINAR(1) model has the restriction that α ∈ (0, µ/(1 + µ)], the SDLINAR(1)
model must have it too. It means that to have well-defined distribution of {en}, as
discussed in [18] and [8], it is necessary to have α ∈ (0, µ/(1+µ)] and β ∈ (0, ν/(1+
ν)]. Random variables en, n ≥ 1, are independent and identically distributed integer-
valued random variables. Also, en and Zm are independent for all m < n.

3. Construction and properties of the model

Using the operator (α, β)⊙, we define a combined integer-valued autoregressive
time series {Zn, n ≥ 0} as follows

Zn =



















(α, β) ⊙n Zn−1 + en, w.p. φ1,
(α, β) ⊙n Zn−2 + en, w.p. φ2,

...
...

(α, β)⊙n Zn−p + en, w.p. φp,

, n > p(3.1)

where 0 ≤ φ1, φ2, . . . , φp ≤ 1,
∑p

i=1 φi = 1, p ≥ 1, ”w.p.” stands for ”with proba-
bility” and the following conditions are satisfied

1. {en} is a sequence of i.i.d. random variables and each random variable en is
independent of all Zm and (α, β)⊙m+i Zm, where m < n and i = 1, . . . , p,
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2. the counting series of the thinning operators applied at the moment m are
independent of each other and independent of the sequence {en},

3. the counting series of the thinning operator applied on the random variable
Zn and the random variables Zn−1, Zn−2, . . . are independent,

The subscript n in (α, β)⊙n denotes that the thinning operator is applied in
the time moment n, i.e. while the random variable Zn is being generated. Since
the thinning operator could be applied up to p times on the same variable Zk, it is
necessary to label the moment when the operator is applied.

If the time series {Zn} has skew discrete Laplace SDL(µ/(1 + µ), ν/(1 + ν)),
marginal distribution, where α ∈ (0, µ/(1 + µ)] and β ∈ (0, ν/(1 + ν)], we get the
model which will be called the Combined Skew Discrete Laplace INAR process of
order p or CSDLINAR(p).

In the following proposition some of the basic properties of the CSDLINAR(p)
model are shown.

Proposition 3.1. The innovation process {en} has the following properties:

• The distribution of the random variable en is

en
d
=































SDL
(

µ
1+µ ,

ν
1+ν

)

, w.p.
(

1− αµ
µ−α

)(

1− βν
ν−β

)

,

SDL
(

µ
1+µ ,

β
1+β

)

, w.p.
(

1− αµ
µ−α

)

βν
ν−β ,

SDL
(

α
1+α ,

ν
1+ν

)

, w.p. αµ
µ−α

(

1− βν
ν−β

)

,

SDL
(

α
1+α ,

β
1+β

)

, w.p.
αµ
µ−α

βν
ν−β .

• E(en) = µ(1− α)− ν(1 − β) and

• V ar(en) = µ(1 + α) [(1 + µ)(1 − α)− α] + ν(1 + β) [(1 + ν)(1 − β)− β].

Proof. Using the definition (3.1), independence of random variables (α, β)⊙m

Zn−i, i = 1, . . . , p and en and the fact that all Zn−i, i = 1, . . . , p have the same
distribution, we get the characteristic function of the random variable en in the
following way.

ϕZn
(t) =

p
∑

i=1

φiϕ(α,β)⊙nZn−i
(t)ϕen(t) = ϕen(t)

p
∑

i=1

φiϕ(α,β)⊙nZn−i
(t)

= ϕen(t)

p
∑

i=1

φiϕ(α,β)⊙nZ(t) = ϕen(t)ϕ(α,β)⊙nZ(t),

where the random variable Z has SDL(µ/(1 + µ), ν/(1 + ν)) distribution. Hence,
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we get that

ϕen(t) =
ϕZn

(t)

ϕ(α,β)⊙nZ(t)
=

(1+α(1+µ)−α(1+µ)eit)(1+β(1+ν)−β(1+ν)e−it)

(1+µ−µeit)(1+ν−νe−it)(1+α−αeit)(1+β−βe−it)

=

(

1− αµ
µ−α

1+µ−µeit
+

αµ
µ−α

1+α−αeit

)(

1− βν
ν−β

1+ν−νeit
+

βν
ν−β

1+β−βeit

)

After some simple algebraic transformations, ϕen(t) becomes

ϕen(t) =

(

1− αµ
µ−α

)(

1− βν
ν−β

)

(1 + µ− µeit)(1 + ν − νe−it)
+

(

1− αµ
µ−α

)

βν
ν−β

(1 + µ− µeit)(1 + β − βe−it)

+

αµ
µ−α

(

1− βν
ν−β

)

(1 + α− αeit)(1 + ν − νe−it)
+

αµ
µ−α

βν
ν−β

(1 + α− αeit)(1 + β − βe−it)

=

(

1−
αµ

µ− α

)(

1−
βν

ν − β

)

ϕ1(t) +

(

1−
αµ

µ− α

)

βν

ν − β
ϕ2(t)

+
αµ

µ− α

(

1−
βν

ν − β

)

ϕ3(t) +
αµ

µ− α

βν

ν − β
ϕ4(t),

where

ϕ1(t)=
1

(1+µ−µeit)(1+ν−νe−it)
, ϕ2(t)=

1

(1+µ−µeit)(1+β−βe−it)
,

ϕ3(t)=
1

(1+α−αeit)(1+ν−νe−it)
, ϕ4(t)=

1

(1+α−αeit)(1+β−βe−it)
.

Since these functions are characteristic functions of random variables with the skew
discrete Laplace distribution, SDL

(

µ
1+µ ,

ν
1+ν

)

, SDL
(

µ
1+µ ,

β
1+β

)

, SDL
(

α
1+α ,

ν
1+ν

)

and SDL
(

α
1+α ,

β
1+β

)

, respectively, the characteristic function of the random vari-

able en is presented as a probability weighted sum of four characteristic functions.
It follows that the random variable en could be expressed as a mixture of four
mentioned variables.

Remark 3.1. In order for the numbers
(

1− αµ

µ−α

)(

1− βν

ν−β

)

,
(

1− αµ

µ−α

)

βν

ν−β
, αµ

µ−α

βν

ν−β

and αµ

µ−α

(

1− βν

ν−β

)

to be probabilities, it is necessary that α ∈ (0, µ/(1 + µ)] and β ∈

(0, ν/(1 + ν)].

Using the obtained characteristic function, i.e. its first and second derivation,
we get the mean and the variation of the innovation process.

Regarding the form of the distribution of the random variable en and the fact
that difference of two random variables with geometric distribution is a random
variable with discrete Laplace distribution, we can conclude the following.
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Corollary 3.1. If α ∈ (0, µ/(1 + µ)] and β ∈ (0, ν/(1 + ν)], then en
d
= εn − ηn,

where εn and ηn are two independent random variables distributed as

εn
d
=







Geom
(

µ
1+µ

)

, w.p. 1− αµ
µ−α ,

Geom
(

α
1+α

)

, w.p. αµ
µ−α

, ηn
d
=







Geom
(

ν
1+ν

)

, w.p. 1− βν
ν−β ,

Geom
(

β
1+β

)

, w.p. βν
ν−β .

Using representations of the random variable (α, β)⊙n Zn given in the Proposition
2.1(2) and representation of the innovation process {en} from previous corollary, we
can present in distribution the CSDLINAR(p) time series, {Zn}, as a difference
of two independent CGINAR(p) time series, {Xn} and {Yn}, defined in [16] with
geometrical Geom(µ/(1+µ)) and Geom(ν/(1+ν)) marginal distributions and with
previously mentioned {εn} and {ηn} as their innovation processes.

Remark 3.2. Let {Zn} be a CSDLINAR(p) time series defined in expression (3.1) and
{Xn} and {Yn} two independent CGINAR(p) time series defined as

Xn =



















α ∗n Xn−1 + εn, w.p. φ1,
α ∗n Xn−2 + εn, w.p. φ2,

...
...

α ∗n Xn−p + εn, w.p. φp,

Yn =



















β ∗n Yn−1 + ηn, w.p. φ1,
β ∗n Yn−2 + ηn, w.p. φ2,

...
...

β ∗n Yn−p + ηn, w.p. φp,

where {εn} and {ηn} are two mutually independent sequences of identically distributed

random variables. Then Zn
d
= Xn − Yn.

Remark 3.3. The CSDLINAR(p) process is a Markov process of order p. The Marko-
vian property follows from its definition. The transition probabilities of theCSDLINAR(p)
time series {Zn} can be calculated using transition probabilities of SDLINAR(1) model
from [8].

P (Zn = zn|Hn−1) =

p
∑

i=1

φiP (Zn = zn|Zn−i = zn−i) =

p
∑

i=1

φipZ(zn, zn−i),

where

pZ(k, j) =

{

∑

∞

m=0

∑

∞

l=−∞
pDNB(k − l;m+ j, α

1+α
,m, β

1+β
)pe(l) , j ≥ 0

∑

∞

m=0

∑

∞

l=−∞
pDNB(k − l;m, α

1+α
,m− j, β

1+β
)pe(l) , j < 0,

pDNB(k; r, p; l, q) is a probability mass function of the random variable that represents a
difference of two independent random variables with a negative binomial distribution,

pDNB(k;r,p;l,q) =

{

pk(1−p)r(1−q)l
(

k+r−1
k

)

2F1(k+r,l,k+1,pq) , k≥0

(1−p)r(1−q)lq−k
(

−k+l−1
−k

)

2F1(−k+l,r,−k+1,pq) , k<0,
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pe(l) is the probability mass function of the innovation process {en},

pe(l) = P{en = l} =



































(

µ

1+µ

)l (

1− αµ

µ−α

)

1+µ+β(1+ν)
(1+µ+ν)(1+µ+β)

+
(

α
1+α

)l
αµ

µ−α

1+α+β(1+ν)
(1+α+ν)(1+α+β)

, l ≥ 0
(

ν
1+ν

)

−l (

1− βν

ν−β

)

1+ν+α(1+µ)
(1+ν+µ)(1+ν+α)

+
(

β

1+β

)

−l
βν

ν−β

1+β+α(1+µ)
(1+β+µ)(1+β+α)

, l < 0,

and 2F1(k, l,m, p) is the Gaussian hypergeometric function.

Proposition 3.2. The CSDLINAR(p) process is strictly stationary and ergodic.

Proof. Using the obtained transition probabilities, the Markovian property and
the identical distribution of the time series {Zn}, strong stationarity can be proven
as follows.

Let An,k, n, k ∈ N be the event {Zn+k = zk, Zn+k−1 = zk−1, . . . , Zn+1 = z1}.
To prove strong stationarity it will be enough to show that P (A0,k) = P (An,k).

P (A0,k) = P (Zk = zk|Hk−1)P (Zk−1 = zk−1, . . . , Z1 = z1)

= P (Zk = zk|Hk−1)P (Zk−1 = zk−1|Hk−2)P (Zk−2 = zk−2, . . . , Z1 = z1)

= P (Z1 = z1)

k−2
∏

i=0

P (Zk−i = zk−i|Hk−i−1).

Since transition probabilities pZ(k, l) do not depend on the position of the ele-
ments in the series but only on the distance between the elements, we have that
P (Zk−i = zk−i|Hk−i−1) = P (Zn+k−i = zk−i|Hn+k−i−1). Also, all Zi, i ≥ 1 have the
same distribution, hence P (Z1 = z1) = P (Zn+1 = z1). Substituting the mentioned
probabilities and tracing back it follows that

P (A0,k) = P (Zn+1 = z1)

k−2
∏

i=0

P (Zn+k−i = zk−i|Hn+k−i−1) = P (An,k).

Regarding the ergodicity, we can use the definition 6.30 from [5] that the sta-
tionary process {Zn} is ergodic if every invariant (in respect to the process {Zn})
event has probability 0 or 1. According to the Proposition 6.32, also from [5], every
invariant event in respect to a stationary process is, also, a tail event. But, for
every n ≥ 1, σ-algebra F(Zn, Zn−1, . . . ), which is generated by random variables
Zn, Zn−1, . . . , is a subset of σ-algebra F(en,W

(n),V(n), en−1,W
(n−1),V(n−1), . . . ),

where W(k) and V(k) are the counting series {Wi} and {Vi} that generate random
variable Zk. Due to the independence of the random series {en,W(n),V(n)}, ap-
plying the Kolmogorov’s 0 − 1 law, every tail event has probability 0 or 1, which
confirms the ergodicity of time series {Zn}.

In order to simplify some of the following expressions, let Z+
n = ZnI{Zn≥0} and

Z−
n = −ZnI{Zn<0}.
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Proposition 3.3. One-step ahead conditional expectation and variance of the

CSDLINAR(p) time series {Zn} are

E (Zn|Hn−1) = (α− β)
µν

1 + µ+ ν
+ µ(1− α)− ν(1− β)

+ α

p
∑

i=1

φiZ
+
n−i − β

p
∑

i=1

φiZ
−
n−i,

V ar (Zn|Hn−1) = V ar(en) + (α− β)2
µ(1 + µ)ν(1 + ν)

(1 + µ+ ν)2

+ µν
α(1 + α) + β(1 + β)

1 + µ+ ν

+ α

p
∑

i=1

φiZ
+
n−i(1 + α+ αZ+

n−i − α

p
∑

j=1

φjZ
+
n−j+β

p
∑

j=1

φjZ
−
n−j)

+ β

p
∑

i=1

φiZ
−
n−i(1 + β + βZ−

n−i+α

p
∑

j=1

φjZ
+
n−j − β

p
∑

j=1

φjZ
−
n−j).

Proof. Using the property 4. from Proposition 2.1 and Proposition 3.1 it follows
that

E (Zn|Hn−1) =

p
∑

i=1

E ((α, β) ⊙n Zn−i + en|Hn−1)φi

=

p
∑

i=1

E ((α, β) ⊙n Zn−i|Hn−1)φi +

p
∑

i=1

E (en)φi

= (α− β)
µν

1 + µ+ ν
+ α

p
∑

i=1

φiZ
+
n−i − β

p
∑

i=1

φiZ
−
n−i

+ µ(1 − α)− ν(1− β).

V ar (Zn|Hn−1) = E
(

Z2
n|Hn−1

)

− E (Zn|Hn−1)
2

=

p
∑

i=1

E
(

((α, β)⊙nZn−i + en)
2|Hn−1

)

φi

−

(

p
∑

i=1

E
(

((α, β)⊙nZn−i + en)|Hn−1

)

φi

)2

.
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Again, using the results from Proposition 2.1, the conditional variance becomes

V ar(Zn|Hn−1)=V ar(en)+(α−β)2
µ(1+µ)ν(1+ν)

(1+µ+ν)2
+µν

α(1+α)+β(1+β)

1+µ+ν

+α

p
∑

i=1

φiZ
+
n−i(1+α+αZ+

n−i−α

p
∑

j=1

φjZ
+
n−j+β

p
∑

j=1

φjZ
−
n−j)

+β

p
∑

i=1

φiZ
−
n−i(1+β+βZ−

n−i+α

p
∑

j=1

φjZ
+
n−j−β

p
∑

j=1

φjZ
−
n−j).

Regarding the correlation structure, we have the following results

Proposition 3.4. The covariance function of the CSDLINAR(p) time series

{Zn} satisfies the following equation:

γZ(k) =

p
∑

i=1

[αγZZ+(k − i)− βγZZ−(k − i)]φi,

where γZ(k) is the autocorrelation function of the time series {Zn}, γZZ+(k) is the

cross-covariance function of lag k between series {Z+
n } and {Zn} and γZZ−(k) is

the cross-covariance function of lag k between series {Z−
n } and {Zn}, defined in

the following way

γZZ+(k) ≡ E
(

Zn − EZn

)(

Z+
n+k − EZ+

n+k

)

,

γZZ−(k) ≡ E
(

Zn − EZn

)(

Z−
n+k − EZ−

n+k

)

.

Proof. Using the Markovian property, we get that

γZ(k) = Cov(E(Zn+k|Zn), Zn) = Cov(E(E(Zn+k|Hn+k−1)|Zn), Zn)

= Cov(E(Zn+k|Hn+k−1), Zn)

= Cov

(

(α− β)
µν

1 + µ+ ν
+ µ(1 − α)− ν(1− β)

+α

p
∑

i=1

φiZ
+
n+k−i − β

p
∑

i=1

φiZ
−
n+k−i, Zn

)

= Cov

(

α

p
∑

i=1

φiZ
+
n+k−i, Zn

)

−Cov

(

β

p
∑

i=1

φiZ
−
n+k−i, Zn

)

=

p
∑

i=1

[

αφiCov(Z+
n+k−i, Zn)− βφiCov(Z−

n+k−i, Zn)
]

=

p
∑

i=1

(αγZZ+(k − i)− βγZZ−(k − i))φi.
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Proposition 3.5. Since the covariance function γZ(k) could also be presented in

the form γZ(k) = γZZ+(k)− γZZ−(k), the following recurrent relations stand

γZZ+(k) = α

p
∑

i=1

φiγZZ+(k − i) and γZZ−(k) = β

p
∑

i=1

φiγZZ−(k − i).

Proof. First, we should prove the equality

E(Z+
n+1|Hn) = (1 − α)

µ(1 + µ)

1 + µ+ ν
+ α

p
∑

i=1

φiZ
+
n+1−i.

Using the property of the SDLINAR(1) time series, e.g. {Z(1),n},

E(Z+
(1),n+k|Z(1),n) = (1− αk)

µ(1 + µ)

1 + µ+ ν
+ αkZ+

(1),n,

that could easily be proven by mathematical induction, we get the following

E(Z+
n+1|Hn) = E(Zn+1I{Zn+1≥0}|Hn)

=

p
∑

i=1

φiE
(

((α, β) ⊙n+1 Zn+1−i + en+1)

×I{(α,β)⊙n+1Zn+1−i+en+1≥0}|Hn

)

=

p
∑

i=1

φiE
(

((α, β) ⊙n+1 Zn+1−i + en+1)

×I{(α,β)⊙n+1Zn+1−i+en+1≥0}|Zn+1−i

)

= (1 − α)
µ(1 + µ)

1 + µ+ ν
+ α

p
∑

i=1

φiZ
+
n+1−i.

Next, in the similar way as it was done in the proof of the Theorem 8 in [8], it could
be derived that

E(Xn+1|Hn) = (1 − α)
µ(1 + µ)

1 + µ+ ν
+

µν

1 + µ+ ν
+ α

p
∑

i=1

φiZ
+
n+1−i.

Namely, we have

E(Xn+1|Hn) =

p
∑

i=1

φiE(α ∗n+1 Xn+1−i + εn+1|Hn)

=

p
∑

i=1

φiE(α ∗n+1 Xn+1−i + εn+1|Zn+1−i)

= (1 − α)
µ(1 + µ)

1 + µ+ ν
+

µν

1 + µ+ ν
+ α

p
∑

i=1

φiZ
+
n+1−i.
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According to the previous results, it is implied that

E(Xn+1|Hn) =
µν

1 + µ+ ν
+ E(Z+

n+1|Hn).

A more general statement can be proven,

E(Xn+k|Hn) =
µν

1 + µ+ ν
+ E(Z+

n+k|Hn).

Using the properties of conditional mean and the fact that process history of the
moment n is contained in the process history of the moment n+ k − 1, we get

E(Xn+k|Hn) = E(E(Xn+k|Hn+k−1)|Hn)

= E(
µν

1 + µ+ ν
+ E(Z+

n+k|Hn+k−1)|Hn)

=
µν

1 + µ+ ν
+ E(E(Z+

n+k|Hn+k−1)|Hn)

=
µν

1 + µ+ ν
+ E(Z+

n+k|Hn).

It follows that Cov(Xn+k, Zn) = Cov(Z+
n+k, Zn), since

Cov(Xn+k, Zn) = Cov(E(Xn+k|Zn), Zn) = Cov(E(E(Xn+k|Hn)|Zn), Zn)

= Cov(
µν

1 + µ+ ν
+ E(E(Z+

n+k|Hn)|Zn), Zn)

= Cov(E(E(Z+
n+k|Hn)|Zn), Zn) = Cov(Z+

n+k, Zn).

And due to the independence of series {Xn} and {Yn}, we have that Cov(Xn+k, Zn) =
Cov(Xn+k, Xn), which implies that Cov(Z+

n+k, Zn) = Cov(Xn+k, Xn).

Analogous equations could be derived for a ”negative” component {Yn},

E(Yn+1|Hn) =
µν

1 + µ+ ν
+ E(Z−

n+1|Hn) and Cov(Yn+k, Yn) = −Cov(Z−
n+k, Zn).

Regarding the correlation structure of the CGINAR(p) time series, shown in
[16], the auto-covariance functions of the time series {Xn} and {Yn} satisfy consid-
ered recurrent equations, so, the cross-covariance functions γZZ+(k) and γZZ−(k)
do it too.

Since CSDLINAR(p) time series {Zn} is strictly stationary and ergodic, it
could be proven that series {Z+

n } and {Z−
n } are strictly stationary and ergodic as

well.

Proposition 3.6. Series {Z+
n } and {Z−

n }, defined as Z+
n = ZnI{Zn≥0} and Z−

n =
ZnI{Zn<0}, where {Zn} is a CSDLINAR(p) time series, are strictly stationary

and ergodic.
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Proof. Let (Ω,F , P ) be the probability space. The random variable Z+
n =

ZnI{Zn≥0} could be presented as a function of a random variable Zn, Z
+
n = g (Zn) =

|Zn|+Zn

2 . Regarding the fact that function g(·) is a composition of F -measurable
functions, it is F -measurable as well. According to the Theorem 3.35 from [23], it
follows that Z+

n is strictly stationary and ergodic. Analogously, strong stationarity
and ergodicity could be proven for the series {Z−

n }.

Since covariance and cross-covariance functions satisfy shown recurrent relations,
it follows that they exponentially tend to zero as lag size tends to infinity. Namely,
if γp,max = max

0≤i≤p
|γZZ+(i)| , then |γZZ+(k)| ≤ αjγp,max, jp < k ≤ (j + 1)p. This

fact places our series into the class of asymptotically uncorrelated series. Also, from
every state of the time series {Zn}, it is possible, after a finite number of steps, to
arrive to any other state. In other words, for any two positive integers i and j, there
exists a finite positive integer m so that P (Zn+m = j|Zn = i) > 0, i.e. time series
{Zn} is irreducible. The time series {Zn} is aperiodic too, since from each state it
is possible, after a finite, nonnegative number of steps, to come back to the same
state, i.e. for any two integers i and m ≥ 1, P (Zn+m = i|Zn = i) > 0. Regarding
the Markovian property, irreducibility and aperiodicity, according to Theorem 3.2
from [4], the time series {Zn} is a strong mixing.

4. Estimation of the unknown parameters

To obtain the estimators of the unknown parameters of the CSDLINAR(p)
model, we will, first, use the conditional least squares method. Let (Z1, Z2, · · · , ZN )
be a random sample of the CSDLINAR(p) process. The sum of squares that should
be minimized is

QN =

N
∑

n=p+1

(Zn−E(Zn|Hn−1))
2

=

N
∑

n=p+1

(

Zn−(
(1−α)µ(1+µ)

1+µ+ν
−
(1−β)ν(1+ν)

1+µ+ν
+α

p
∑

i=1

φiZ
+
n−i−β

p
∑

i=1

φiZ
−
n−i)

)2

.

If we take θi = αφi, ξi = βφi, M
+ = µ(1+µ)

1+µ+ν and M− = ν(1+ν)
1+µ+ν , we get

QN =

N
∑

n=p+1

(Zn − ((1−

p
∑

i=1

θi)M
+ − (1−

p
∑

i=1

ξi)M
− +

p
∑

i=1

θiZ
+
n−i −

p
∑

i=1

ξiZ
−
n−i))

2.

The equations obtained by partial derivatives ∂Q
∂M+ and ∂Q

∂M−
are equivalent. That

fact leads us to the conclusion that we will not have enough equations to solve the
system. For that reason, let M = (1−

∑p
i=1 θi)M

+−(1−
∑p

i=1 ξi)M
−. In that way,

we will not be able to determine the estimators for M+ and M−, i.e. for µ and ν

but only for the expression M = (1−α)µ(1+µ)
1+µ+ν − (1−β)ν(1+ν)

1+µ+ν . With this change, the
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sum of squares is

QN =

N
∑

n=p+1

(Zn − (M +

p
∑

i=1

θiZ
+
n−i −

p
∑

i=1

ξiZ
−
n−i))

2.

The system consisting of equations ∂Q
∂M = 0, ∂Q

∂θj
= 0, ∂Q

∂ξj
= 0, j = 1, . . . p is

M = Z
(p)

−

p
∑

i=1

θiZ
+(p−i)

+

p
∑

i=1

ξiZ
−(p−i)

γ̂∗
ZZ+(p,p−i) =

p
∑

j=1

θj γ̂
∗
Z+Z+(p−j,p−i)−

p
∑

j=1

ξj γ̂
∗
Z−Z+(p−j,p−i),i=1,2,···,p

γ̂∗
ZZ−(p,p−i) =

p
∑

j=1

θj γ̂
∗
Z+Z−(p−j,p−i)−

p
∑

j=1

ξj γ̂
∗
Z−Z−(p−j,p−i),i=1,2,···,p,

where the superscript (k) refers to the sample mean of N − p elements which are
located after the k-th element of the sample,

Z
(k)

=
1

N − p

N−p
∑

i=1

Zk+i, Z
+(k)

=
1

N − p

N−p
∑

i=1

Z+
k+i, Z

−(k)
=

1

N − p

N−p
∑

i=1

Z−
k+i

and γ̂∗
Z′Z′′(k, l) represents the sample cross-covariance of two subsequences of the

series {Z ′
n} and {Z ′′

n}, having length N−p, located after k-th and after l-th element,
respectively, i.e.

γ̂∗
Z′Z′′(k, l) =

1

N − p

N−p
∑

i=1

(Z ′
k+i − Z ′(k))(Z ′′

l+i − Z ′′(l)).

Solving the system using Cramer’s rule, we obtain that

θ̂clsi =
D∗

i

D∗
, ξ̂clsi =

D∗
p+i

D∗
, i=1,2,···,p, M̂ cls=Z

(p)
−

p
∑

i=1

θ̂clsi Z
+(p−i)

+

p
∑

i=1

ξ̂clsi Z
−(p−i)

,

where D∗
i and D∗ are determinants of the Cramer’s rule for the matrix of the

system. Since
∑p

i=1 θi = α,
∑p

i=1 ξi = β and φi =
θi
α and also, φi =

ξi
β , we get

α̂cls=

∑p
i=1D

∗
i

D∗
, β̂cls=

∑p
i=1D

∗
p+i

D∗
, φ̂′cls

i =
D∗

i
∑p

i=1D
∗
i

, φ̂′′cls
i =

D∗
p+i

∑p
i=1D

∗
p+i

, i=1,2,···,p.

Since we get, for each φi, i = 1, . . . , p, two estimators, as the final estimator we
can use the mean of these two, φ̂cls

i = (φ̂′cls
i + φ̂′′cls

i )/2.

In order to show a strong consistency and an asymptotic normality, first of
estimators M̂ cls, θ̂clsi and ξ̂clsi , and then of α̂cls, β̂cls, φ̂′cls

i and φ̂′′cls
i , we will use
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the results from [21], the Theorems 3.1 and 3.2. Since the partial derivatives of the
first order of E(Zn|Hn−1) are a constant and linear functions of Z+

n−i and Z−
n−i,

the conditions C1 and C3 of the Theorem 3.1 are, obviously, satisfied. Regarding
the condition C2, we have the following

E





∣

∣

∣

∣

∣

p
∑

i=1

(

ai
∂E(Zn|Hn−1)

∂θi
+ai+p

∂E(Zn|Hn−1)

∂ξi

)

+a2p+1
∂E(Zn|Hn−1)

∂M

∣

∣

∣

∣

∣

2


=0

⇒ai=0,i=1,2,...2p+1.

But,

E





∣

∣

∣

∣

∣

p
∑

i=1

(

ai
∂E(Zn|Hn−1)

∂θi
+ ai+p

∂E(Zn|Hn−1)

∂ξi

)

+ a2p+1
∂E(Zn|Hn−1)

∂M

∣

∣

∣

∣

∣

2




= E





∣

∣

∣

∣

∣

p
∑

i=1

(

aiZ
+
n−i − ai+pZ

−
n−i

)

+ a2p+1

∣

∣

∣

∣

∣

2


 .

If we add and subtract the expected value of the variable T ≡
∑p

i=1

(

aiZ
+
n−i − ai+pZ

−
n−i

)

,
we get that

E





∣

∣

∣

∣

∣

p
∑

i=1

(

aiZ
+
n−i − ai+pZ

−
n−i

)

+ a2p+1

∣

∣

∣

∣

∣

2


 = E
(

|T − ET + c|2
)

,

where c = a2p+1 + ET. Next, we get

E
(

|T − ET + c|2
)

= V ar(T ) + 2cE(T − ET ) + c2 = V ar(T ) + c2.

The equality of the last expression to zero implies that V ar(T ) = 0 and c = 0. In
the case of the time series {Zn}, we will show that V ar(T ) = 0 implies that ai = 0,
1 ≤ i ≤ 2p.

The fact that V ar(T ) = 0 means that T = const, almost sure, which implies
that random variables Z+

n−1, . . . , Z
+
n−p, Z

−
n−1, . . . , Z

−
n−p are linearly dependent, ex-

cept in the case when T = 0 and ai = 0, 1 ≤ i ≤ 2p. Now, we will show that the
mentioned exception is the only possible case. Let us focus on the covariance matrix
of the vector of random variables [Z+

n−1,Z
−
n−1,Z

+
n−2,Z

−
n−2,...,Z

+
n−p,Z

−
n−p]

T . On its
diagonal there are variances, which are greater than zero. Secondly, the covari-
ances between the elements of the random vector are γZ+(k),γZ−(k),γZ+Z−(k) and
γZ−Z+(k) which all exponentially tend to zero, when k tends to infinity. According
to the Proposition 5.1.1 from [6], these two facts ensure that covariance matrix is
regular. The regularity of the covariance matrix excludes linear dependence be-
tween variables, so the only possible case is T = 0 and ai = 0, 1 ≤ i ≤ 2p. With
the fact that c = 0, we have that a2p+1 = 0 and we have all three conditions of the

Theorem 3.1 from [21] fulfilled. Hence, the estimators θ̂clsi , ξ̂clsi , i = 1, . . . , p and

M̂ cls are strongly consistent.
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Regarding the asymptotic normality of the estimators, we should consider the
Theorem 3.2 from [21]. Since function fn|n−1 = V ar(Zn|Hn−1), the condition D1
demands all the elements of the matrix

R ≡ E
(

(

Z+
n−1, Z

+
n−2, . . . , Z

+
n−p, Z

−
n−1, Z

−
n−2, . . . , Z

−
n−p, 1

)T
V ar(Zn|Hn−1)

×
(

Z+
n−1, Z

+
n−2, . . . , Z

+
n−p, Z

−
n−1, Z

−
n−2, . . . , Z

−
n−p, 1

)

)

to be finite. To prove that, it would be enough to show that for join moments
stands E(Ak1Bk2Ck3Dk4) < ∞, where random variables A, B, C and D could be
Z+
n−i or Z

−
n−i, 1 ≤ i ≤ p and k1, k2, k3, k4 ∈ {0, 1, 2, 3, 4}. First, we will show that

E(Z+
n−i)

k < ∞, k ≥ 0. Using the definition of the random variable Z+
n−i, we have

E(Z+
n−i)

k =
1

1 + µ+ ν

∞
∑

x=0

xk

(

µ

1 + µ

)x

< ∞.

Analogously, for the random variable Z−
n−i we conclude the same. Next, using the

Cauchy–Schwarz inequality, we have

E(Ak1Bk2Ck3Dk4) ≤
√

E(A2k1B2k2)E(C2k3D2k4)

≤

√

√

E (A4k1 )E (B4k2)
√

E (C4k3)E (D4k4)

= 4

√

E (A4k1)E (B4k2)E (C4k3)E (D4k4) < ∞.

It means, according to the Theorem 3.2 from [21], that the vector of estimates

θ̃clsN ≡
(

θ̂cls1 , . . . , θ̂clsp , ξ̂cls1 , . . . , ξ̂clsp , M̂ cls
)T

is asymptotically normally distributed,

N−1/2(θ̃clsN − θ′)
d
→ N (0, U−1RU−1),

where θ′ = (θ1, . . . , θp, ξ1, . . . , ξp,M)
T
and U is a block matrix

U = E





Z+
n−iZ

+
n−j Z+

n−iZ
−
n−j Z+

n−i

Z−
n−iZ

+
n−j Z−

n−iZ
−
n−j Z−

n−i

Z+
n−i Z−

n−j 1



 , 1 ≤ i, j ≤ p.

Let us, now, define a function

g(x1, x2, . . . , x2p+1) = (g1(x1, x2, . . . , x2p+1), . . . , gp+3(x1, x2, . . . , x2p+1))
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with coordinate functions:

g1(x1, x2, . . . , x2p+1) =

p
∑

i=1

xi,

g2(x1, x2, . . . , x2p+1) =

p
∑

i=1

xp+i,

g2+j(x1, x2, . . . , x2p+1) =
1

2

(

xj
∑p

i=1 xi
+

xp+j
∑p

i=1 xp+i

)

, j = 1, . . . p,

gp+3(x1, x2, . . . , x2p+1) = x2p+1.

Since g(θ̂cls1 , . . . , θ̂clsp , ξ̂cls1 , . . . , ξ̂clsp , M̂ cls) = (α̂cls, β̂cls, φ̂cls
1 , . . . , φ̂cls

p , M̂ cls) and the

function g is continuous, it implies that estimators α̂cls, β̂cls, φ̂cls
i , i = 1, . . . p and

M̂ cls are strongly consistent. Also, the function g satisfies conditions of the Propo-
sition 6.4.3 from [6], hence, estimators α̂cls, β̂cls, φ̂cls

i , i = 1, . . . p and M̂ cls, have an
asymptotic normal distribution too. After all, we have the following theorem.

Theorem 4.1. Statistics obtained by the conditional least squares method, α̂cls,
β̂cls, φ̂cls

i , i = 1, . . . p and M̂ cls are strongly consistent and asymptotically normal

estimators of corresponding parameters of the CSDLINAR(p) model,

N−1/2(θ̂clsN − θ)
d
→ N (0, JU−1RU−1JT ),

where θ̂clsN = (α̂cls, β̂cls, φ̂cls
1 , . . . , φ̂cls

p , M̂ cls)T , θ = (α, β, φ1, . . . , φp,M)T and matrix

J is the Jacobian of mapping g.

Now, as the method of estimation of unknown parameters µ, ν, α, β and φi, i =
1, 2, . . . , p we use the Yule-Walker method. For estimating parameters µ and ν
we use the mean and the variance of the CSDLINAR(p) time series {Zn}. The
equations Zn = µ− ν and γ̂Z(0) = µ(1 + µ) + ν(1 + ν) give the following statistics.

µ̂YW = − 1
2 + 1

2ZN + 1
2

√

1− Z
2

N + 2γ̂Z(0)

ν̂YW = − 1
2 − 1

2ZN + 1
2

√

1− Z
2

N + 2γ̂Z(0).

To obtain estimators of parameters α, β and φi, i = 1, 2, . . . , p, we use the systems
of equations

γ̂Z+(k)=

p
∑

i=1

αφiγ̂Z+(k−i),k=1,2,...,p and γ̂Z−(k)=

p
∑

i=1

βφiγ̂Z−(k−i),k=1,2,...,p.

Replacing αφi with θi and βφi with ξi, using the fact that
∑p

i=1 θi = α and
∑p

i=1 ξi = β and applying Cramer’s rule, we get the solution:

θ̂YW
i =

DAi

D
, ξ̂YW

i =
DBi

D
or(4.1)
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α̂YW =

∑p
i=1 DAi

D
, β̂Y W =

∑p
i=1 DBi

D
and(4.2)

φ̂′Y W
i =

DAi
∑p

i=1 DAi

and φ̂′′Y W
i =

DBi
∑p

i=1 DBi

, i = 1, 2, . . . , p,(4.3)

where D,DAi
, DBi

are appropriate determinants used in Cramer’s rule. Again,

as the final estimation of parameter φi we will use the mean of φ̂′Y W
i and φ̂′′Y W

i ,

φ̂Y W
i = (φ̂′Y W

i + φ̂′′Y W
i )/2.

The obtained determinants are polynomials of covariance and cross-covariance
functions, so, the obtained estimators are rational functions of covariance and cross-
covariance functions. Since the time series {Zn} is ergodic and strictly stationary
and, according to the Theorems 3.34 and 3.35 from [23], sample covariations are
strongly consistent estimators of corresponding covariations. As rational functions
of strongly consistent estimators, statistics θ̂YW

i , ξ̂YW
i and φ̂Y W

i , 1 ≤ i ≤ p, are
strongly consistent too. In the same way, as it is done in [20], it could be shown
that sample autocovariance and cross-covariance functions of time series {Zn}, {Z+

n }
and {Z−

n } have an asymptotically normal distribution. It means that

N−1/2(θ̃Y W
N − θ′′)

d
→ N (0, CV CT ),

where the vector of statistics θ̃YW
N = (θ̂Y W

1 , . . . , θ̂YW
p , ξ̂YW

1 , . . . , ξ̂YW
p , ZN , γ̂Z(0))

T ,

vector of parameters θ′′ = (θ1, . . . , θp, ξ1, . . . , ξp, EZn, γZ(0))
T , V is block matrix

V =











[V11]1×1 [V12]1×1 [V13]1×(p+1) [V14]1×(p+1)

[V12]1×1 [V22]1×1 [V23]1×(p+1) [V24]1×(p+1)

[V13]
T
1×(p+1) [V23]

T
1×(p+1) [V33](p+1)×(p+1) [V34](p+1)×(p+1)

[V14]
T
1×(p+1) [V24]

T
1×(p+1) [V34]

T
(p+1)×(p+1) [V44](p+1)×(p+1)











,

where

[V11]= lim
N→∞

NV ar(ZN ) [V23]1,j= lim
N→∞

NCov(γ̂Z(0),γ̂Z+(j−1))

[V12]= lim
N→∞

NCov(ZN ,γ̂Z(0)) [V24]1,j= lim
N→∞

NCov(γ̂Z(0),γ̂Z−(j−1))

[V13]1,j= lim
N→∞

NCov(ZN ,γ̂Z+(j−1)) [V33]i,j= lim
N→∞

NCov(γ̂Z+(i−1),γ̂Z+(j−1))

[V14]1,j= lim
N→∞

NCov(ZN ,γ̂Z−(j−1)) [V34]i,j= lim
N→∞

NCov(γ̂Z+(i−1),γ̂Z−(j−1))

[V22]= lim
N→∞

NV ar(γ̂Z(0)) [V44]i,j= lim
N→∞

NCov(γ̂Z−(i−1),γ̂Z−(j−1))

where 1 ≤ i, j ≤ p+1 and matrix C is the Jacobian of mapping which transforms
sample covariances, by Cramer’s rule, i.e. equations (4.1), into statistics θ̂Y W

i , ξ̂YW
i ,

1 ≤ i ≤ p.

Then, using the function

g∗(x1, x2, . . . , x2p+2) = (g∗1(x1, x2, . . . , x2p+2), . . . , g
∗
p+4(x1, x2, . . . , x2p+2))
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with coordinate functions:

g∗1(x1, x2, . . . , x2p+2) =

p
∑

i=1

xi,

g∗2(x1, x2, . . . , x2p+2) =

p
∑

i=1

xp+i,

g∗2+j(x1, x2, . . . , x2p+2) =
1

2

(

xj
∑p

i=1 xi
+

xp+j
∑p

i=1 xp+i

)

, j = 1, . . . p,

g∗p+3(x1, x2, . . . , x2p+2) = −
1

2
+

1

2
x2p+1 +

1

2

√

1− x2
2p+1 + 2x2p+2,

g∗p+4(x1, x2, . . . , x2p+2) = −
1

2
−

1

2
x2p+1 +

1

2

√

1− x2
2p+1 + 2x2p+2,

we map the vector of estimators (θ̂Y W
1 , . . . , θ̂YW

p , ξ̂YW
1 , . . . , ξ̂Y W

p , Z, γ̂Z(0)) to the

vector (α̂Y W , β̂Y W , φ̂Y W
1 , . . . , φ̂Y W

p , µ̂YW , ν̂Y W ). According to the Proposition 6.4.3

from [6], estimators µ̂YW , ν̂Y W , α̂Y W , β̂Y W and φ̂Y W
i , i = 1, 2, . . . , p are asymptot-

ically normal too. Speaking in the form of a theorem, we have the following.

Theorem 4.2. Statistics obtained by the Yule-Walker method, µ̂YW , ν̂YW , α̂YW ,
β̂Y W and φ̂Y W

i , i = 1, . . . p are strongly consistent and asymptotically normal esti-

mators of corresponding parameters of the CSDLINAR(p) model,

N−1/2(θ̂Y W
N − θ)

d
→ N (0, GCV CTGT ),

where the vector θ̂YW
N = (µ̂YW , ν̂YW , α̂YW , β̂Y W , φ̂Y W

1 , . . . , φ̂cls
p , M̂ cls)T and the

vector θ = (α, β, φ1, . . . , φp,M)T and matrix G is the Jacobian of mapping g∗.

5. Simulations, real data application, identification and prediction of
latent components

In this section some practical results will be presented. First, in order to illustrate
the influence of the parameters to the form of the time series and asymptotic be-
havior of the obtained estimators, for different true values of the the parameters,
we simulated 1000 samples and then we calculated estimators and some quantifiers
of the estimation quality. Since in the subsection with real data application it
turned out that the model of order three was the most adequate, we chose to sim-
ulate the model of order three. Then, we will present application on real data and
comparison with other models. Last but not least, an interesting application will
be shown. Since skew discrete Laplace distribution can be presented as a difference
of two geometrically distributed components, we try to identify and predict these
two opposite latent factors influencing our process.
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5.1. Simulations

To confirm the conclusions about the asymptotic properties of the obtained esti-
mators, we simulate, for different true values of model parameters, 1000 series of
CSDLINAR(3) time series, each of size N=5000. Simulations were performed us-
ing the Monte Carlo method. For simulations, the fact that the CSDLINAR(p)
process can be presented as a difference of two CGINAR(p) processes was used.
First, for both CGINAR series, three initial values are generated as realizations
of geometrically distributed random variables. Then, using the definition of the
thinning operator (α, β)⊙m, the rest of the sequence was generated. In the end, the
CSDLINAR(3) time series was obtained as the difference of generated CGINAR
series. The values of true parameters were chosen in order to demonstrate their
influence on the process behavior. On the figures 5.1 and 5.2 trajectories and val-
ues of the auto correlation functions of four CSDLINAR(3) models with different
parameters are shown. The conditional least square and Yule-Walker methods
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Fig. 5.1: Trajectories of simulated time series with µ = 0.5, ν = 0.2, α = 0.3,
β = 0.1 (a), µ = 1, ν = 2, α = 0.3, β = 0.5 (b), µ = 4, ν = 10, α = 0.7, β = 0.9 (c)
and µ = 8, ν = 2, α = 0.8, β = 0.4 (d)

are used to obtain parameter estimates. Unfortunately, by the conditional least
square method we couldn’t obtain the estimates for parameters µ and ν but only

for their function M = (1 − α)µ(1+µ)
1+µ+ν + (1 − β) ν(1+ν)

1+µ+ν . To illustrate stationarity of
the estimators, for each model, samples of four different sizes are used, 500, 1000,
3000 and 5000. The results of estimation are shown in Tables 5.1 and 5.2.

Obviously, both methods give estimators that converge to the true values of
parameters. Regarding precision and stability of the estimators, we could say that,
in case of parameters α and β, estimators obtained by the conditional least squares
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Table 5.1: Realizations of estimators for parameters µ and ν and their standard
deviations (in parentheses)

µ = 0.5 ν = 0.2 α = 0.3 β = 0.1 φ1 = 0.2 φ2 = 0.2 φ3 = 0.6

N µ̂Y W ν̂Y W α̂cls α̂Y W β̂cls β̂Y W

500 0.499 0.197 0.288 0.265 0.082 0.079
(0.058) (0.035) (0.100) (0.086) (0.184) (0.088)

1000 0.500 0.199 0.296 0.273 0.091 0.085
(0.041) (0.025) (0.071) (0.062) (0.130) (0.063)

3000 0.500 0.199 0.299 0.278 0.097 0.086
(0.025) (0.015) (0.042) (0.037) (0.075) (0.037)

5000 0.501 0.199 0.300 0.279 0.097 0.087
(0.019) (0.011) (0.033) (0.029) (0.058) (0.028)

µ = 1 ν = 2 α = 0.3 β = 0.5 φ1 = 0.1 φ2 = 0.7 φ3 = 0.2

N µ̂Y W ν̂Y W α̂cls α̂Y W β̂cls β̂Y W

500 0.990 1.984 0.278 0.256 0.486 0.443
(0.131) (0.212) (0.193) (0.088) (0.097) (0.081)

1000 0.997 1.995 0.286 0.263 0.496 0.454
(0.096) (0.150) (0.130) (0.063) (0.068) (0.059)

3000 0.998 1.996 0.293 0.269 0.502 0.459
(0.056) (0.085) (0.078) (0.039) (0.041) (0.034)

5000 0.999 1.997 0.294 0.269 0.502 0.460
(0.043) (0.066) (0.060) (0.030) (0.032) (0.027)

µ = 4 ν = 10 α = 0.7 β = 0.9 φ1 = 0.3 φ2 = 0.4 φ3 = 0.3

N µ̂Y W ν̂Y W α̂cls α̂Y W β̂cls β̂Y W

500 3.463 9.551 0.665 0.641 0.874 0.848
(1.141) (2.477) (0.173) (0.098) (0.058) (0.056)

1000 3.732 9.791 0.681 0.662 0.888 0.865
(0.879) (1.875) (0.107) (0.067) (0.040) (0.038)

3000 3.926 9.925 0.688 0.676 0.900 0.878
(0.548) (1.149) (0.058) (0.038) (0.022) (0.022)

5000 3.949 9.935 0.689 0.679 0.902 0.880
(0.425) (0.889) (0.046) (0.030) (0.017) (0.017)

µ = 6 ν = 2 α = 0.8 β = 0.4 φ1 = 0.5 φ2 = 0.33 φ3 = 0.17

N µ̂Y W ν̂Y W α̂cls α̂Y W β̂cls β̂Y W

500 5.875 1.859 0.786 0.748 0.395 0.402
(1.043) (0.520) (0.069) (0.066) (0.217) (0.088)

1000 5.923 1.915 0.799 0.762 0.384 0.406
(0.735) (0.377) (0.046) (0.045) (0.146) (0.065)

3000 5.963 1.976 0.808 0.772 0.390 0.416
(0.429) (0.218) (0.026) (0.025) (0.083) (0.037)

5000 5.979 1.988 0.810 0.775 0.389 0.418
(0.336) (0.172) (0.021) (0.021) (0.064) (0.029)
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Table 5.2: Realizations of estimators of parameters φ1, φ2, and φ3 and their standard
deviations

µ = 0.5 ν = 0.2 α = 0.3 β = 0.1 φ1 = 0.2 φ2 = 0.2 φ3 = 0.6

N φ̂cls
1 φ̂Y W

1 φ̂cls
2 φ̂Y W

2 φ̂cls
3 φ̂Y W

3

500 0.177 0.193 0.175 0.186 0.648 0.621
(0.287) (0.332) (0.482) (0.494) (0.591) (0.490)

1000 0.196 0.195 0.181 0.184 0.622 0.621
(0.141) (0.125) (0.140) (0.125) (0.157) (0.141)

3000 0.196 0.197 0.196 0.196 0.608 0.607
(0.075) (0.069) (0.077) (0.071) (0.088) (0.081)

5000 0.198 0.199 0.199 0.199 0.603 0.602
(0.056) (0.052) (0.057) (0.053) (0.065) (0.060)

µ = 1 ν = 2 α = 0.3 β = 0.5 φ1 = 0.1 φ2 = 0.7 φ3 = 0.2

N φ̂cls
1 φ̂Y W

1 φ̂cls
2 φ̂Y W

2 φ̂cls
3 φ̂Y W

3

500 0.233 0.091 0.628 0.723 0.140 0.187
(0.652) (0.282) (0.645) (0.335) (0.756) (0.292)

1000 0.352 0.103 0.214 0.699 0.435 0.198
(0.350) (0.083) (0.223) (0.096) (0,119) (0.081)

3000 0.089 0.107 0.719 0.692 0.192 0.201
(0.089) (0.046) (0.101) (0.051) (0.084) (0.046)

5000 0.092 0.106 0.711 0.691 0.197 0.203
(0.061) (0.035) (0.068) (0.038) (0.058) (0.034)

µ = 4 ν = 10 α = 0.7 β = 0.9 φ1 = 0.3 φ2 = 0.4 φ3 = 0.3

N φ̂cls
1 φ̂Y W

1 φ̂cls
2 φ̂Y W

2 φ̂cls
3 φ̂Y W

3

500 0.304 0.300 0.422 0.398 0.274 0.301
(0.223) (0.079) (0.345) (0.078) (0.298) (0.077)

1000 0.303 0.301 0.401 0.397 0.296 0.302
(0.068) (0.055) (0.068) (0.055) (0.070) (0.055)

3000 0.302 0.301 0.400 0.398 0.298 0.302
(0.039) (0.033) (0.040) (0.034) (0.038) (0.032)

5000 0.301 0.300 0.400 0.397 0.299 0.302
(0.029) (0.024) (0.030) (0.026) (0.030) (0.025)

µ = 6 ν = 2 α = 0.8 β = 0.4 φ1 = 0.5 φ2 = 0.33 φ3 = 0.17

N φ̂cls
1 φ̂Y W

1 φ̂cls
2 φ̂Y W

2 φ̂cls
3 φ̂Y W

3

500 0.437 0.498 0.387 0.326 0.176 0.176
(0.097) (0.094) (0.095) (0.093) (0.085) (0.083)

1000 0.552 0.496 0.356 0.329 0.091 0.175
(0.071) (0.069) (0.071) (0.069) (0.063) (0.061)

3000 0.511 0.493 0.329 0.330 0.160 0.177
(0.040) (0.039) (0.042) (0.041) (0.037) (0.035)

5000 0.505 0.492 0.332 0.331 0.163 0.177
(0.032) (0.031) (0.033) (0.032) (0.030) (0.029)
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Fig. 5.2: Auto-correlation functions of simulated time series with µ = 0.5, ν = 0.2,
α = 0.3, β = 0.1 (a), µ = 1, ν = 2, α = 0.3, β = 0.5 (b), µ = 4, ν = 10, α = 0.7,
β = 0.9 (c) and µ = 8, ν = 2, α = 0.8, β = 0.4 (d)

method are a bit more precise, since their values are closer to the true values,
but, on the other hand, estimators obtained by a Yule-Walker method are a bit
more stabile, due to a smaller standard deviation. In the case of the estimation
of parameters φi, i = 1, 2, 3, we could say that the methods are equally successful,
regarding both, precision and stability.

Also, Figures 5.3 and 5.4 illustrate tendency of all estimators toward normal
distribution.

5.2. Real-data application

Time series based on thinning have found their application in many fields of real life
thanks to the ability to model a number of random events or elements of a popula-
tion whose changes could be caused by surviving of existing elements, new incomers
or new elements that could be results of interactions of existing ones. Originally
obtained as a difference of two INAR series, CSDLINAR model could be adequate
for comparing two systems or two phenomena with the mentioned properties. Here,
we focused on the analysis of criminal data. We would like to compare the efficacy of
two police stations in handling different kind of offenses. The data represents the dif-
ference in number of offences reported monthly to two police stations in Rochester,
New York, USA, starting January 1991 to December 2001. The data are available
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on-line at The Forecasting Principles site (http://www.forecastingprinciples.com),
in the Crime data section. First we considered the number of drug offences re-
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Fig. 5.5: Differences in numbers of reported prostitution incidents between police
stations 36055001600 and 36055006000 (a1) and drug offences between police sta-
tions 36055001600 and 36055009500 (a2) and auto-correlation functions (a2, b2),
respectively

ported to the police stations 36055001600 and 36055009500 and then, we consid-
ered the incidence of prostitution reported to the police stations 36055001600 and
36055006000. In order to show advantages and defects of the CSDLINAR(p)
model, we compared it with some existing models, in this case with CINARS(p)
model, introduced in [25], with the SDLINAR model of order one, previously
introduced in [8] and with CSDLINAR(2). Models of order one and two are pre-
sented to demonstrate how fitting performances are rising as the order of model is
getting higher. In the table 5.3, parameter estimates and the RMSE goodness of
fit criterion for each of chosen models were showed. Also, on the Figure 5.5, the
trajectories of the data and the corresponding CSDLINAR(p) model and values
of the auto-correlation functions of the realized samples were showed.

According to the RMSE criterion, we could say that, for chosen data, the
CSDLINAR(3) model is more appropriate then other two models. It could be
seen that CSDLINAR model follows well the pattern of considered data. But,
also, it should be mentioned that, due to a similar form of the conditional ex-
pectation, the CINARS and CSDLINAR models differs slightly and that their
predictions differ in very few points.
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Table 5.3: Estimated parameters and RMSE for the CINARS(3), SDLINAR(1),
CSDLINAR(2) and CSDLINAR(3) models

Drugs Prostitution
Model Parameter estimates RMSE Parameter estimates RMSE

CINARS(3) α̂1 = 0.172 3.265 α̂1 = 0.476 5.822
α̂2 = 0.140 α̂2 = −0.016
α̂3 = 0.298 α̂3 = 0.168
µ̂ε = −0.230 µ̂ε = 1.829

SDLINAR(1) µ̂ = 1.797 3.647 µ̂ = 6.209 5.901
ν̂ = 2.411 ν̂ = 1.293
α̂ = 0.643 α̂ = 0.578

β̂ = 0.638 β̂ = 0.564

CSDLINAR(2) µ̂ = 1.751 3.320 µ̂ = 6.173 5.897
ν̂ = 2.446 ν̂ = 1.431
α̂ = 0.349 α̂ = 0.553

β̂ = 0.376 β̂ = 0.321

φ̂1 = 0.502 φ̂1 = 0.870

φ̂2 = 0.498 φ̂2 = 0.130

CSDLINAR(3) µ̂ = 1.751 3.255 µ̂ = 6.173 5.771
ν̂ = 2.446 ν̂ = 1.431
α̂ = 0.502 α̂ = 0.625

β̂ = 0.522 β̂ = 0.492

φ̂1 = 0.280 φ̂1 = 0.718

φ̂2 = 0.252 φ̂2 = 0.100

φ̂3 = 0.468 φ̂3 = 0.182

5.3. Identification and prediction of latent components

The fact that that the auto-correlation functions of CGINAR processes {Xn} and
{Yn} can be expressed through the terms of Zn and the expression for expectation
of random variables Xn+k and Yn+k conditioned on the random variable Zn, given
in the proof of the Proposition 3.5, open the possibility to identify and reconstruct
or, even, predict the latent components {Xn} and {Yn} of the CSDLINAR process
{Zn} only on the basis of realization of the time series {Zn}. Namely, the expecta-
tions of random variables Xn+k and Yn+k conditioned on the random variable Zn

are

E(Xn+k|Hn) = (1− αk)µ+ αk µν

1 + µ+ ν
+ αk

p
∑

i=1

φiZ
+
n+1−i,

E(Yn+k|Hn) = (1− βk)ν + βk µν

1 + µ+ ν
+ βk

p
∑

i=1

φiZ
−
n+1−i.

For k = 0, we can get the formula that allowed us to reconstruct the latent com-
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Fig. 5.6: Number of drug offenses reported to police station 36055001600 and
reconstruction (a) and one step ahead prediction (b) models

ponents using only the realizations of time series {Zn}

X̂n = α̂
µ̂ν̂

1 + µ̂+ ν̂
+

p
∑

i=1

φ̂iZ
+
n−i,

Ŷn = β̂
µ̂ν̂

1 + µ̂+ ν̂
+

p
∑

i=1

φ̂iZ
−
n−i.

For k = 1, we get the formula that predicts the values of the latent components,

X̂n = (1− α̂)µ̂+ α̂
µ̂ν̂

1 + µ̂+ ν̂
+ α̂

p
∑

i=1

φ̂iZ
+
n−i,

Ŷn = (1− β̂)ν̂ + β̂
µ̂ν̂

1 + µ̂+ ν̂
+ β̂

p
∑

i=1

φ̂iZ
−
n−i.

In the case of our real data, the numbers of drug offences and prostitution incidents,
we were able to check these formulas, since we already had the data from individual
police stations. On the Figure 5.6, the number of drug offences reported to the
police station 36055001600 and its reconstruction based on the realization of time
series {Zn} (a) and its one step ahead prediction (b) are shown. The obtained
RMSE values are 2.854 and 2.545, respectively.

6. Summary

In this paper we have presented the construction and most important properties of
the combined SDLINAR model of order p. Its marginal distribution is, in general,
the skew discrete Laplace distribution. We have shown the Markovian property,
strict stationarity and ergodicity of the presented model and, also, its conditional
and correlation structure. The conditional least squares and Yule-Walker estima-
tions have been derived and their strong consistency and asymptotic normality have
been shown. In order to illustrate the asymptotic behavior, we have generated 1000
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samples of size 500, 1000, 3000 and 5000. On real-life data we have shown that
this model has good fitting ability as well as the ability to reconstruct and predict
latent components affecting it.

This model, by appropriate choice of its parameters, could be transformed to
some other existing models. With φ1 = 1 it becomes the SDLINAR model of
the first order presented in [8]. With α and β that are equal, it transform to the
STINAR model, proposed in [3]. If we equal α and β and then µ and ν too, we get
the symmetric DLINAR model introduced in [17]. With one of these parameters
equal to zero, this model is reduced to the NGINAR model presented in [18].

A direction of following research could be increasing the dimension of the process
and analyzing the model that represents s difference of two dependent NGINAR
processes.
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integer-valued autoregressive (NGINAR(1)) process. J. Stat. Plan. Inference. 139
(2009), 2218–2226.
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