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FIXED POINTS AND STABILITY OF A CLASS OF NONLINEAR
DELAY INTEGRO-DIFFERENTIAL EQUATIONS WITH

VARIABLE DELAYS

Hocine Gabsi, Abdelouaheb Ardjouni and Ahcene Djoudi

Abstract. In this work we study a class of second order nonlinear delay integro-
differential equations

ẍ (t) + f (t, x (t) , ẋ (t)) ẋ (t) +

N∑
j=1

∫ t

t−τj(t)

aj(t, s)gj (s, x (s)) ds

+
N∑

j=1

bj(t)x
′ (t− τj (t)) = 0,

with variable delays and give some new conditions ensuring that the zero solution
is asymptotically stable by means of the fixed point theory. Our work extends and
improves previous results in the literature such as, D. Pi [17, 18] and T. A. Burton [10].
An example is given to illustrate our claim.

Keywords: Fixed points, Stability, Delay integro-differential equations, Variable de-
lays.

1. Introduction

Time-delay systems constitute basic mathematical models of real phenomena such
as nuclear reactors, chemical engineering systems, biological systems, and popula-
tion dynamics models. Such systems are often sources of instability and degradation
in control performance in many control problems. For more than 100 years, the Lya-
punov direct method has been the ultimate key tool to study stability problems.
The direct method was widely used to study the stability of solutions of ordinary
differential equations and functional differential equations. Nevertheless, the point-
wise nature of this method and the construction of the Lyapunov functionals have
been, and still are, an arduous task (see [7]). Recently, many authors have realized
that the fixed points theory can be used to study the stability of the solution (see
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[1]-[11], [14], [16]-[18]). Levin and Nohel [15] studied the global asymptotic stability
of a class of nonlinear systems

(1.1) ẍ+ h (t, x, ẋ) ẋ+ f (x) = a(t).

They obtained asymptotic stability by constructing a proper Lyapunov function.
Burton [10] considered the following delay equation

(1.2) ẍ+ f (t, x, ẋ) ẋ+ b(t)g (x (t− L)) = 0,

where L is a positive constant. By using the fixed point theory, he gave sufficient
conditions for each solution x (t) to satisfy (x (t) , ẋ (t)) −→ 0. D. Pi [16, 18] studied
the asymptotic stability of two following equations with delays

(1.3) ẍ+ f (t, x, ẋ) ẋ+ b(t)g (x (t− r (t))) = 0,

(1.4) ẍ+ f (t, x, ẋ) ẋ+
N
∑

j=1

∫ t

t−τj(t)

aj(t, s)gj (s, x (s)) ds = 0.

Many other interesting results on fixed points and stability properties can be found
in the references therein. In this paper, we consider the equation

ẍ+ f (t, x, ẋ) ẋ+

N
∑

j=1

∫ t

t−τj(t)

aj(t, s)gj (s, x (s)) ds

+

N
∑

j=1

bj(t)x
′ (t− τj (t)) = 0,(1.5)

for t ≥ 0, where functions τj : R+ −→ R
+, aj(·, ·) : R+ × [−τj (0) ,∞) −→ R,

f : R+ × R × R −→ R
+, bj : R

+ −→ R and gj (·, ·) : [−τj (0) ,∞) × R
+ −→ R are

all continuous functions.

The use of ordinary and partial differential equations to model physical or bi-
ological systems and processes has a long history, dating to Lotka and Volterra.
The main motivation of time delay is due to the fact that all processes take time
delays to complete. The delays can represent gestation times, incubation periods,
or transport delays. In many cases time delays can be substantial such as gestation
and maturation or can represent little lags such as acceleration and deceleration in
physical processes. A simple example in nature is reforestation. A cut of forest,
after replanting, will take at least 20 years before reaching any kind of maturity. For
certain species of trees (redwoods for example) it would be much longer. Hence,
any mathematical model of forest harvesting and regeneration clearly must have
time delays built into it. Therefore, it become natural to include time delay terms
into the differential equations that model population dynamics. The models that
incorporate such delay times are referred as delay differential equation models.
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Equation (1.5) is obviously nonlinear. This is due to the presence of the terms
f (t, x, ẋ) ẋ and gj (s, x (s)) and the fact that the functions f and gj are arbitraries
non necessarily linears. Further, (1.5) is of time delay type. That is, notice that in
(1.5) if we let t = 0 one can obtain

ẍ (0) + f (0, x (0) , ẋ (0)) ẋ (0) +

N
∑

j=1

∫ 0

−τj(0)

aj(0, s)gj (s, x (s)) ds

+

N
∑

j=1

bj(0)x
′ (τj (0)) = 0.

Thus, (1.5) requires an initial function condition defined on at least on [−τj (0) , 0] .
Then we must ask that the solution x (t) of (1.5) depends on a delay function and
is such that x (t) = ψ (t), t ∈ [−τj (0) , 0] . If we do not stipulate that t − τj (t)
is bounded below, then we must ask that ψ : (−∞, 0] → R so that x (t) = ψ (t),
t ∈ (−∞, 0] . Then we solve (1.5) for t ≥ 0 with a the infinite delay function τj (·)
which is arbitrary continuous function non necessarily constant.

We assume that

(1.6) τ ′j (t) 6= 1 for all t ≥ 0,

and

(1.7) t− τj (t) −→ ∞ as t −→ ∞, j = 1, N.

For each t0 ≥ 0, define mj (t0) =: inf {s− τj (s) : s ≥ t0}, j = 1, N and let m (t0) =
min{mj (t0) , j = 1, N}. Let C (t0) := C ([m (t0) , t0] ,R) be the space of continuous
functions endowed with function supremum norm ‖·‖, that is, for ψ ∈ C (t0) , ‖ψ‖ :=
sup {|ψ (s)| : m (t0) ≤ s ≤ t0}. We will also use ‖ϕ‖ := sup {|ϕ (s)| : s ∈ [m (t0) ,∞)}
to express the supremum of continuous bounded functions on [m (t0) ,∞) later. It
is well known (see [13]) that, for a given continuous function ψ and a number y0,
there exists a solution for equation (1.5) on an interval [m (t0) , T ), and if the so-
lution remains bounded, then T = ∞. We denote by (x (t) , y (t)) the solution
(x (t, t0, ψ) , y (t, t0, y0)).

Denote by A(t) := f ((t, x(t), y(t)). We can rewrite equation (1.5) as

(1.8)























ẋ (t) = y (t) ,

ẏ (t) = −A (t) y(t)−
N
∑

j=1

∫ t

t−τj(t)
aj(t, s)gj (s, x (s)) ds

−
N
∑

j=1

ωj (t)
d
dtx (t− τj (t)) ,

with

(1.9) ωj (t) =
bj(t)

1− τ ′j (t)
.
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Our purpose is to give a necessary and sufficient condition ensuring that the zero
solution of this equation is asymptotically stable. To our knowledge, there are few
results about its stability and the studied equation has not been yet considered.

2. Preliminaries

Suppose that f is a real or complex-valued function of the variable t > 0 and p is a
real or a complex parameter such that Re(p) > 0. We define the Laplace transform
(see [19], [12]) of f as

(2.1) F (p) = L (f (t))(p) =

∫ ∞

0

e−ptf (t) dt.

We also indicate the Laplace transform (2.1) of power function tγ is given by

(2.2) L (tγ)(p) =

∫ ∞

0

e−pttγdt =
Γ (γ + 1)

pγ+1
, γ > −1, p > 0,

with Gamma function Γ (z) is defined by the integral

(2.3) Γ (z) =

∫ ∞

0

e−ttz−1dt = L
(

tz−1
)

(1)
,

which converges in the right half of the complex plane Re(z) > 0. Now, let −∞ ≤
α < β ≤ +∞, ϕ : [α, β] → R and define for λ ∈ R the integral

(2.4) F (λ) =

∫ β

α

e−λϕ(t)f (t) dt.

We assume that there exists a constant λ0 > 0 such that for every λ ≥ λ0 we have,

(2.5)

∫ β

α

e−λϕ(t) |f (t)| dt <∞.

The following theorem is crucial to reach our goal.

Theorem 2.1. Let ϕ : [α, β[ −→ R be a function such that ϕ is of class C1, ϕ′ > 0
on [α, β[. Assume that f is function continuous at α and f (α) 6= 0. Then,

(2.6) F (λ) ∼
f (α)

ϕ′ (α)

1

λ
e−λϕ(α) (λ −→ +∞) .

Proof. (a) To begin with, ϕ (t) = t, α = 0;

(2.7) F (λ) =

∫ β

0

e−λtf (t) dt.

We check that F (λ) satisfies the property (2.6). Indeed, since f is continuous at
α = 0, then for any given ε > 0, one can choose η sufficiently small, such that

(2.8) |f (t)− f (0)| ≤ ε, for 0 ≤ t ≤ η.
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Next, we decompose F (λ) in the following manner

(2.9) F (λ) = f (0)

∫ η

0

e−λtdt+

∫ η

0

e−λt (f (t)− f (0)) dt+

∫ β

η

e−λtf (t) dt.

From (2.9) we can establish the following estimates

∫ η

0

e−λtdt =
1

λ

(

1− e−λη
)

,(2.10)

∫ η

0

e−λt (f (t)− f (0)) dt ≤ ε

∫ ∞

0

e−λtdt =
ε

λ
.(2.11)

For t ≥ η we have (λ− λ0) (t− η) ≥ 0. Consequently,

(2.12)

∫ β

η

e−λtf (t) dt ≤ e−η(λ−λ0)

∫ β

η

e−λ0tf (t) dt.

(b) Let us return to the general case. For this purpose, consider the function

(2.13) g : [α, β[ −→ [0, β0[ , t 7−→ g (t) := ϕ (t)− ϕ (α) ,

where β0 = ϕ (β) − ϕ (α). We observe that g is bijective on [α, β[. Denote the
reciprocal function of g by

(2.14) ψ : [0, β0[ −→ [α, β[ , u 7−→ ψ (u) .

The change of variables t = ψ (u) yields the integral formula

(2.15) F (λ) = e−λϕ(α)
∫ β0

0

e−λuf (ψ (u))ψ′ (u)du.

We see that

(2.16)
dψ (u)

dt
= ψ′ (ϕ (t)− ϕ (α))ϕ′ (t) = 1 and ψ′ (0) =

1

ϕ′ (α)
.

Define

(2.17) f̃ (u) := f (ψ (u))ψ′ (u) .

Clearly, the function f̃ is continuous at 0. Moreover,

(2.18) f̃ (0) = f (ψ (0))ψ′ (0) =
f (α)

ϕ′ (α)
.
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Repeated application of (a) yields

F (λ) = e−λϕ(α)f̃ (0)

∫ η

0

e−λudu+ e−λϕ(α)
∫ η

0

e−λu
(

f̃ (u)− f̃ (0)
)

du

+e−λϕ(α)
∫ β

η

e−λuf̃ (u) du

≤ e−λϕ(α)
f (α)

ϕ′ (α)

1

λ

(

1− e−λη
)

+
ε

λ
e−λϕ(α)

+e−λϕ(α)e−η(λ−λ0)

∫ β0

η

e−λ0uf̃ (u)du.(2.19)

Stability definitions, fixed point technique and more details on delay differential
equations can be found in ([13, 7]).

Definition 2.1. The zero solution of (1.8) is stable if for each ε > 0 there ex-
ists δ = δ (ε, t0) > 0 such that [ψ ∈ C (t0) , y0 ∈ R, ‖ψ‖+ |y0| < δ] implies that
|x (t, t0, ψ)|+ |y (t, t0, y0)| < ε for t ≥ t0.

Definition 2.2. The zero solution of (1.8) is asymptotically stable if it is stable
and there is a δ1 = δ1 (t0) > 0 such that [ψ ∈ C (t0) , y0 ∈ R, ‖ψ‖+ |y0| < δ1] implies
that |x (t, t0, ψ)|+ |y (t, t0, y0)| −→ 0 as t −→ ∞.

3. Main Results

In this section, we will prove Theorem 3.1 and Theorem 3.2 on stability and asymp-
totic stability respectively, for equation (1.5) by using the fixed point theory. But
our equation is nonlinear and has no non trivial edo term so the inversion of that
equation needs some preparations. Lemma 3.1 and Lemma 3.2 are the subject of
these preparations. We use the variation of parameter and then transform the given
equation and in Lemma3.3 we invert it and give the expression of the solutions. The
proof of these theorems depends on Theorem 2.1.

Lemma 3.1. Applying the variation of parameters formula to the second equation
of (1.8), we get

ẋ(t) = B(t)−

N
∑

j=1

∫ t

t0

e−
∫

t

s
A(u)du

∫ s

s−τj(s)

aj(s, v)gj (v, x (v)) dvds

−

N
∑

j=1

∫ t

t0

e−
∫

t

s
A(u)duωj(s)

d

ds
x (s− τj (s)) ds,(3.1)

where

(3.2) B(t) := ẋ(t0)e
−

∫
t

t0
A(u)du

.
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Proof. Indeed, multiplying both sides of the second equation of (1.5) by the factor

e
∫

t

t0
A(u)du

and integrating from t0 to any t ∈ [t0, T ], we obtain

y(t) = y(t0)e
−

∫
t

t0
A(v)dv

−

N
∑

j=1

∫ t

t0

e−
∫

t

s
A(v)dv

∫ s

s−τj(s)

aj(s, v)gj (v, x (v)) dvds

−

N
∑

j=1

∫ t

t0

e−
∫

t

s
A(v)dvωj(s)

d

ds
x (s− τj (s)) ds.(3.3)

Substituting ẋ(·) into (3.3), we get

ẋ(t) = ẋ(t0)e
−

∫
t

t0
A(v)dv

−

∫ t

t0

e−
∫

t

s
A(v)dv

N
∑

j=1

∫ s

s−τj(s)

aj(s, v)gj (v, x (v)) dvds

−

∫ t

t0

e−
∫

t

s
A(v)dv

N
∑

j=1

ωj(s)
d

ds
x (s− τj (s)) ds.(3.4)

Making use of (3.2), we see that this last equation gives (3.1).

Lemma 3.2. The equation

(3.5) σ(t) = −

N
∑

j=1

∫ t

t−τj(t)

aj(t, s)gj (s, x (s)) ds,

is equivalent to

σ (t) =

N
∑

j=1

d

dt

∫ t

t−τj(t)

Cj(t, s)gj (s, x(s)) ds

+

N
∑

j=1

Cj(t, t− τj(t))(1 − τ ′j(t))gj (t− τj(t), x(t− τj(t))) ,(3.6)

where

(3.7) Cj(t, s) =

∫ s

t

aj(u, s)du and Cj(t, t− τj(t)) =

∫ t−τj(t)

t

aj(u, t− τj(t))du.

Proof. Differentiating the integral term in (3.5), we have

d

dt

∫ t

t−τj(t)

Cj(t, s)gj (s, x(s)) ds

=

∫ t

t−τj(t)

∂

∂t
Cj(t, s)gj (s, x(s)) ds+ Cj(t, t)gj (t, x(t))

−Cj(t, t− τj(t))(1 − τ ′j(t))gj (t− τj(t), x(t− τj(t))) .
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It follows that if Cj(t, t) = 0,
∂Cj(t, s)

∂t
= −aj(t, s), then (3.5) is equivalent to (3.6).

The calculation shows that the previous conditions on Cj yields

(3.8) Cj(t, s) =

∫ s

t

aj(u, s)du and Cj(t, t− τj(t)) =

∫ t−τj(t)

t

aj(u, t− τj(t))du.

Lemma 3.3. Let hj : [mj(t0), ∞) −→ R, j = 1, ..., N be arbitrary continuous
functions. Suppose that condition (1.6) is fulfilled and τj (·) is twice differentiable
for all j = 1, ..., N . If x (t) is a solution of equation (1.8) and hence solution of
(1.5) on an interval [t0, T ) satisfying the initial condition x(t) = ψ(t) on [m(t0), t0]
and y(t0) = ẋ(t0), then x (t) is the solution of the following integral equation

x (t)

=



x (t0)−

N
∑

j=1

∫ t0

t0−τj(t0)

hj (v) x (v) dv



 e
−

∫
t

t0
H(v)dv

+



ẋ (t0) +

N
∑

j=1

(

ωj(t0)x (t0 − τj (t0))−

∫ t0

t0−τj(t0)

Cj(t0, v)gj (v, x (v)) dv

)





×

∫ t

t0

e−
∫

t

u
H(v)dve

−
∫

u

t0
A(v)dv

du+

N
∑

j=1

∫ t

t−τj(t)

hj (v)x (v) dv

−

N
∑

j=1

∫ t

t0

e−
∫

t

u
H(v)dvH(u)

∫ u

u−τj(u)

hj (v)x (v) dvdu

+

N
∑

j=1

∫ t

t0

e−
∫

t

u
H(v)dv

[(

1− τ ′j (u)
)

hj (u− τj (u))

−
bj (u)

1− τ ′j (u)

]

x (u− τj (u)) du

+

N
∑

j=1

∫ t

t0

e−
∫

t

u
H(v)dv

∫ u

u−τj(u)

Cj(u, v)gj (v, x (v)) dvdu

−

N
∑

j=1

∫ t

t0

e−
∫

t

u
H(v)dv

∫ u

t0

A(s)e−
∫

u

s
A(v)dv

∫ s

s−τj(s)

Cj(s, v)gj (v, x (v)) dvdsdu

+

N
∑

j=1

∫ t

t0

e−
∫

t

u
H(v)dv

∫ u

t0

e−
∫

u

s
A(v)dvCj(s, s− τj(s))(1 − τ ′j(s))

×gj (s− τj(s), x(s− τj(s))) dsdu

+

N
∑

j=1

∫ t

t0

e−
∫

t

u
H(v)dv

∫ u

t0

e−
∫

u

s
A(v)dvrj (s)x (s− τj (s)) dsdu,(3.9)
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on [t0, T ), where rj (·) and H are respectively given by

(3.10) rj (t) =
[(

bj(t)A(t) + b′j(t)
) (

1− τ ′j (t)
)

+ bj(t)τ
′′
j (t)

]

/
(

1− τ ′j (t)
)2
,

(3.11) H (t) :=

N
∑

j=1

hj(t),

for t ∈ [m(t0),∞) and m(t0) := inf
1≤j≤N

mj(t0).

Conversely, if a continuous function x (·) is equal to ψ (·) for t ∈ [m(t0), t0]
and is the solution of above integral equation on an interval [t0, T1], then x (·) is a
solution of (1.8) on [t0, T1].

Proof. By Lemma (3.2), equation (3.1) can be written as

ẋ(t)

= B(t) +

N
∑

j=1

∫ t

t0

e−
∫

t

s
A(v)dv d

ds

∫ s

s−τj(s)

Cj(s, v)gj (v, x (v)) dvds

+

N
∑

j=1

∫ t

t0

e−
∫

t

s
A(v)dv

[

Cj(s, s− τj(s))(1−τ
′
j(s))gj (s−τj(s), x(s − τj(s)))

]

ds

−

N
∑

j=1

∫ t

t0

e−
∫

t

s
A(v)dvωj(s)

d

ds
x (s− τj (s)) ds.(3.12)

Multiplying both sides of the above equation by e
∫

t

t0
H(v)dv

and integrating with
respect to u from t0 to t, we obtain

x (t) = x (t0) e
−

∫
t

t0
H(v)dv

+

∫ t

t0

B(u)e−
∫

t

u
H(v)dvdu

+

N
∑

j=1

∫ t

t0

e−
∫

t

u
H(v)dv d

du

∫ u

u−τj(u)

hj (v)x (v) dvdu

+

N
∑

j=1

∫ t

t0

e−
∫

t

u
H(v)dv(1− τ ′j(u))hj(u− τj (u))x (u− τj (u)) du

+

N
∑

j=1

∫ t

t0

e−
∫

t

u
H(v)dv

∫ u

t0

e−
∫

u

s
A(v)dv d

ds

∫ s

s−τj(s)

Cj(s, v)gj (v, x (v)) dvdsdu

+

N
∑

j=1

∫ t

t0

e−
∫

t

u
H(v)dv

∫ u

t0

e−
∫

u

s
A(v)dvCj(s, s− τj(s))(1 − τ ′j(s))

×gj (s− τj(s), x(s − τj(s))) dsdu

−

N
∑

j=1

∫ t

t0

e−
∫

t

u
H(v)dv

∫ u

t0

e−
∫

u

s
A(v)dvωj(s)

d

ds
x (s− τj (s)) dsdu.
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Performing an integration by parts and using definitions (1.9) and (3.2), we obtain

x (t)

=



x (t0)−

N
∑

j=1

∫ t0

t0−τj(t0)

hj (v)x (v) dv



 e
−

∫
t

t0
H(v)dv

+



ẋ (t0) +

N
∑

j=1

(

ωj(t0)x (t0 − τj (t0))−

∫ t0

t0−τj(t0)

Cj(t0, v)gj (v, x (v)) dv

)





×

∫ t

t0

e−
∫

t

u
H(v)dve

−
∫

u

t0
A(v)dv

du

+

N
∑

j=1

∫ t

t−τj(t)

hj (v) x (v) dv −

N
∑

j=1

∫ t

t0

e−
∫

t

u
H(v)dvH(u)

∫ u

u−τj(u)

hj (v)x (v) dvdu

+

N
∑

j=1

∫ t

t0

e−
∫

t

u
H(v)dv

[

(1− τ ′j(u))hj (u− τj (u))−
b (u)

1− τ ′j (u)

]

x (u− τj (u)) du

+
N
∑

j=1

∫ t

t0

e−
∫

t

u
H(v)dv

∫ u

u−τj(u)

Cj(u, v)gj (v, x (v)) dvdu

−

N
∑

j=1

∫ t

t0

e−
∫

t

u
H(v)dv

∫ u

t0

A(s)e−
∫

u

s
A(v)dv

∫ s

s−τj(s)

Cj(s, v)gj (v, x (v)) dvdsdu

+
N
∑

j=1

∫ t

t0

e−
∫

t

u
H(v)dv

∫ u

t0

e−
∫

u

s
A(v)dvCj(s, s− τj(s))(1 − τ ′j(s))

×gj (s− τj(s), x(s− τj(s))) dsdu

+

N
∑

j=1

∫ t

t0

e−
∫

t

u
H(v)dv

∫ u

t0

e−
∫

u

s
A(v)dvrj (t)x (s− τj (s)) dsdu,

where rj (t) is defined in (3.10). This leads exactly to (3.9).

Conversely, suppose that a continuous function x (·) is equal to ψ (·) on [m (t0) , t0]
and satisfies (3.9) on an interval [t0, T1). Then it is twice differentiable on [t0, T1).
Differentiating (3.9) with the aid of Leibniz’s rule, we obtain (1.5).

Next, we will define a mapping directly from (3.9). Remember that, by Lemma
3.3 a fixed point of that map will be a solution of equation (1.5). To obtain stability
of the zero solution of (1.5), we need the mapping defined by (3.9) to map bounded
functions into bounded functions. For that, we let (C, ‖·‖) to be the Banach space of
real-valued bounded continuous functions on [m(t0),∞) with the supremum norm
‖·‖, that is for ϕ ∈ C

‖ϕ‖ := sup {|ϕ (t)| , t ∈ [m (t0) ,∞)} .
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Our investigations will be carried out on the complete metric space (C, ρ), where ρ
is the uniform metric. That is, for ϕ, φ ∈ C we set ρ (ϕ, φ) = ‖ϕ− φ‖ .

Let ψ ∈ C([m(t0), t0],R) be fixed and define

Sψ := {ϕ : [m(t0),∞) → R | ϕ ∈ C, ϕ(t) = ψ(t) for t ∈ [m(t0), t0]}.

Being closed in C, (Sψ, ρ) is itself complete. There is no confusion if we use the
norm ‖·‖ on [m(t0), t0] or on [m(t0),∞).

Below we want to force the mapping suggested by (3.9) and explicitly defined in
the next lemma to map Sψ into itself. For that reason we assume that the followings
conditions hold.

i.

(3.13) lim inf
t−→∞

∫ t

t0

H(s)ds > −∞.

ii. There exists some functions Rj (·) ∈ C (R,R+) such that, for x1, x2 ∈ R

|gj (t, x1)− gj (t, x2)| ≤ Rj (t) |x1 − x2| , j = 1, ..., N for all t ∈ R,(3.14)

gj (t, 0) = 0, j = 1, ..., N for t ∈ R
+.(3.15)

ii. For t ≥ t0, there is a constant α > 0 satisfying

N
∑

j=1

∫ t

t−τj(t)

|hj (v)| dv +

N
∑

j=1

∫ t

t0

e−
∫

t

u
H(v)dv |H(u)|

∫ u

u−τj(u)

|hj (v)| dvdu

+

N
∑

j=1

∫ t

t0

e−
∫

t

u
H(v)dv

∣

∣

∣

∣

∣

(1− τ ′j(u))hj (u− τj (u))−
bj(u)

1− τ ′j (u)

∣

∣

∣

∣

∣

du

+

N
∑

j=1

∫ t

t0

e−
∫

t

u
H(v)dv

∫ u

u−τj(u)

|Cj(u, v)|Rj (v) dvdu

+

N
∑

j=1

∫ t

t0

e−
∫

t

u
H(v)dv

∫ u

t0

A(s)e−
∫

u

s
A(v)dv

∫ s

s−τj(s)

|Cj(s, v)|Rj (v) dvdsdu

+
N
∑

j=1

∫ t

t0

e−
∫

t

u
H(v)dv

∫ u

t0

e−
∫

u

s
A(v)dv

∣

∣Cj(s, s− τj(s))(1 − τ ′j(s))
∣

∣

×Rj (s− τj(s)) dsdu

+

N
∑

j=1

∫ t

t0

e−
∫

t

u
H(v)dv

∫ u

t0

e−
∫

u

s
A(v)dv |rj (s)| dsdu

≤ α.(3.16)

iii. There exist constants a0 > 0, γ > 0, Q0 > 0 and a continuous function
A1 ∈ C (R+,R+) such that, for t ≥ t0

(3.17) f (t, x, y) ≥ A1 (t) ≥ 0 for all x, y ∈ R,
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and for each t ≥ u ≥ Q0 we have

(3.18)

∫ t

u

H (υ) dυ +

∫ u

t0

A1 (υ) dυ ≥ a0u
γ + b, b ∈ R.

ii. There exists a constant β > 0 that satisfies the following inequality for t ≥ t0
(3.19)
N
∑

j=1

|bj(t)|
∣

∣1− τ ′j (t)
∣

∣

+
N
∑

j=1

∫ t

t0

e−
∫

t

s
A(u)du

(

∫ s

s−τj(s)

|aj(s, v)|Rj (v) dv + |rj(s)|

)

ds ≤ β.

Lemma 3.4. Define the mapping P on Sψ as follows, for ϕ ∈ Sψ ,

(Pϕ)(t) = ψ(t) if t ∈ [m(t0), t0],

while for t > t0

(Pϕ) (t) =



ψ (t0)−

N
∑

j=1

∫ t0

t0−τj(t0)

hj (v)ψ (v) dv



 e
−

∫
t

t0
H(v)dv

+



ẋ (t0) +

N
∑

j=1

(

bj(t0)

1− τ ′j (t0)
ψ (t0 − τj (t0))

−

∫ t0

t0−τj(t0)

Cj(t0, v)gj (v, ψ (v)) dv

)]

×

∫ t

t0

e−
∫

t

u
H(v)dve

−
∫

u

t0
A(v)dv

du+

N
∑

j=1

∫ t

t−τj(t)

hj (v)ϕ (v) dv

−

N
∑

j=1

∫ t

t0

e−
∫

t

u
H(v)dvH(u)

∫ u

u−τj(u)

hj (v)ϕ (v) dvdu

+

N
∑

j=1

∫ t

t0

e−
∫

t

u
H(v)dv

[

(1−τ ′j(u))hj (u−τj (u))−
bj(u)

1−τ ′j (u)

]

ϕ (u− τj (u)) du

+

N
∑

j=1

∫ t

t0

e−
∫

t

u
H(v)dv

∫ u

u−τj(u)

Cj(u, v)gj (v, ϕ (v)) dvdu

−

N
∑

j=1

∫ t

t0

e−
∫

t

u
H(v)dv

∫ u

t0

A(s)e−
∫

u

s
A(v)dv

∫ s

s−τj(s)

Cj(s, v)gj (v, ϕ (v)) dvdsdu

+

N
∑

j=1

∫ t

t0

e−
∫

t

u
H(v)dv

∫ u

t0

e−
∫

u

s
A(v)dvCj(s, s− τj(s))(1 − τ ′j(s))

×gj (s− τj(s), x(s − τj(s))) dsdu

+

N
∑

j=1

∫ t

t0

e−
∫

t

u
H(v)dv

∫ u

t0

e−
∫

u

s
A(v)dvrj (s)ϕ (s− τj (s)) dsdu,(3.20)
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where rj (·) is the expression (3.10). Suppose that the conditions (3.13), (3.14),
(3.15)), (3.16), (3.17) and (3.18) hold true. Then P : Sψ → Sψ.

Proof. First, due to condition (3.13) one can define

(3.21) M = sup
t≥t0

{

e
−

∫
t

t0
H(v)dv

}

.

Obviously, if ϕ is continuous then Pϕ and agrees with ψ on [m(t0), t0] due to the
definition of P . For t > t0, note that from (3.13), (3.16), (3.14) and (3.15) it follows

|Pϕ (t)| = ‖ψ‖



1 +

N
∑

j=1

∫ t0

t0−τj(t0)

|hj (v)| dv



M

+



|ẋ (t0)|+ ‖ψ‖

N
∑

j=1

(∣

∣

∣

∣

∣

bj(t0)

1− τ ′j (t0)

∣

∣

∣

∣

∣

+

∫ t0

t0−τj(t0)

|Cj(t0, v)|Rj (t) dv

)





×

∫ t

t0

e−
∫

t

u
H(v)dve

−
∫

u

t0
A(v)dv

du+ α ‖ϕ‖ .

To prove that P : Sψ → Sψ it is necessary to show that the term

∫ t

t0

e−
∫

t

u
H(v)dve

−
∫

u

t0
A(v)dv

du,

is bounded. To do that, remember that 3.17 implies that A(t) ≥ A1(t) ≥ 0 for
t ≥ t0, so

∫ t

t0

e−
∫

t

u
H(v)dve

−
∫

u

t0
A(v)dv

du ≤

∫ t

t0

e−
∫

t

u
H(v)dve

−
∫

u

t0
A1(v)dvdu.

We decompose the last integral term in the following manner

∫ t

t0

e−
∫

t

u
H(v)dve

−
∫

u

t0
A1(v)dvdu =

∫ J

t0

e−
∫

t

u
H(v)dve

−
∫

u

t0
A1(v)dvdu

+

∫ t

J

e−
∫

t

u
H(v)dve

−
∫

u

t0
A1(v)dvdu,(3.22)

for some J ≥ Q0. The first term on the right hand side of (3.22) is obviously
bounded. For the second term on the right hand side of (3.22), we use (3.18) to
have

(3.23)

∫ t

J

e−
∫

t

u
H(v)dve

−
∫

u

t0
A1(v)dvdu ≤ e−b

∫ t

J

e−a0u
γ

du.

Now, we define

(3.24) F (J) :=

∫ ∞

J

e−a0u
γ

du.
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Performing the change of variables u = θ
1

γ , we obtain

(3.25) F (J) =
1

γ

∫ ∞

Jγ

e−a0θθ
1

γ
−1dθ ≤

1

γ

∫ ∞

0

e−a0θθ
1

γ
−1dθ =

Γ (1/γ)

γa
1/γ
0

.

Then F (J) is bounded for γ > 0. Consequently, |Pϕ (t)| < +∞ and thus Pϕ ∈
Sψ.

Basing on Lemma (3.3) and Lemma (3.4) we built an existence and uniqueness
result. Under the conditions of the next theorem, we prove that for a given con-
tinuous function ψ : [m(t0), t0] −→ R there exists a unique continuous function x
which is solution of (1.5) on [m(t0),∞) and coincides with ψ on [m(t0), t0]. We also
prove that the zero solution of (1.5) have the property of Definition 2.1.

Theorem 3.1. Suppose the condition (3.19) and all hypotheses of Lemma (3.4)
hold with α ∈ (0, 1) in (3.16). Then, for each initial continuous function ψ :
[m(t0), t0] −→ R, there is a unique continuous function with x(t) = ψ(t) on [m(t0), t0]
that satisfies (1.5) on [t0,∞). Moreover, x (·) is bounded on [m(t0),∞) . Further-
more, the zero solution of (1.5) is stable at t = t0.

Proof. Consider Sψ the space defined by the initial continuous function ψ : [m(t0), t0] →
R. By Lemma 3.4 we know that P : Sψ → Sψ. In fact, P is a contraction with
constant α < 1 too. To see this, let ϕ, φ ∈ Sψ. Making use of condition (3.16) we
obtain

‖Pϕ− Pφ‖

≤





N
∑

j=1

∫ t

t−τj(t)

|hj (v)| dv +

N
∑

j=1

∫ t

t0

e−
∫

t

u
H(v)dv |H(u)|

∫ u

u−τj(u)

|hj (v)| dvdu

+

N
∑

j=1

∫ t

t0

e−
∫

t

u
H(v)dv

∣

∣

∣

∣

∣

(1− τ ′j(u))hj (u− τj (u))−
bj(u)

1− τ ′j (u)

∣

∣

∣

∣

∣

du

+

N
∑

j=1

∫ t

t0

e−
∫

t

u
H(v)dv

∫ u

u−τj(u)

|Cj(u, v)|Rj (v) dvdu

+

N
∑

j=1

∫ t

t0

e−
∫

t

u
H(v)dv

∫ u

t0

A(s)e−
∫

u

s
A(v)dv

∫ s

s−τj(s)

|Cj(s, v)|Rj (v) dvdsdu

+

N
∑

j=1

∫ t

t0

e−
∫

t

u
H(v)dv

∫ u

t0

e−
∫

u

s
A(v)dv

∣

∣Cj(s, s− τj(s))(1 − τ ′j(s))
∣

∣

×Rj (s− τj(s)) dsdu

+
N
∑

j=1

∫ t

t0

e−
∫

t

u
H(v)dv

∫ u

t0

e−
∫

u

s
A(v)dv |rj (s)| dsdu



 ‖ϕ− φ‖

≤ α ‖ϕ− φ‖ ,
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for t > t0. Trivially, this inequality also holds on [m(t0), t0]. Therefore, P is a
contraction mapping on the complete metric space (Sψ, ρ) since we have supposed
α < 1. By the contraction mapping principle, P possesses a unique fixed point x
in Sψ which is bounded continuous function. Due to Lemma 3.3, this is a solution
of (1.8) and hence a solution of (1.5) on [m(t0),∞). It follows that x is the only
bounded function satisfying (1.5) on [m(t0),∞) and the initial function.

It remains to show that the zero solution of (1.5) is stable. Toward this, let first

(3.26) L := sup
t≥t0

∫ t

t0

e−
∫

t

u
H(v)dve

−
∫

u

t0
A1(v)dvdu.

Let ǫ > 0 be given. Choose |ẋ(t0)| and ψ : [m (t0) , t0] −→ R satisfying ‖ψ‖ < δ
(δ ≤ ε), with δ such that

δ



1 +

N
∑

j=1

∫ t0

t0−τj(t0)

|hj (v)| dv



M

+



|ẋ (t0)|+ δ

N
∑

j=1

(∣

∣

∣

∣

∣

bj(t0)

1− τ ′j (t0)

∣

∣

∣

∣

∣

+

∫ t0

t0−τj(t0)

|Cj(t0, v)|Rj (t) dv

)



L

≤ (1− α) ǫ.(3.27)

If (x (t) , y (t)) is a solution of (1.8) with y = ẋ on [t0,∞) and, y (t0) = ẋ (t0) then,
x (·) = (Px) (·) defined in (3.20). Notice that with such a δ, |x (s)| = |ψ (s)| < ǫ on
[m (t0) , t0]. We claim that |x (t)| < ǫ for all t ≥ t0. If x is a solution with initial
function ψ then, as consequence of (3.20), we have

|x (t)|

≤



δ + δ

N
∑

j=1

∫ t0

t0−τj(t0)

|hj (v)| dv



M

+



|ẋ (t0)|+ δ

N
∑

j=1

|bj(t0)|
∣

∣1− τ ′j (t0)
∣

∣

+ δ

∫ t0

t0−τj(t0)

|Cj(t0, v)|Rj (v) dv



L

+εα

≤ (1− α) ε+ εα ≤ ε.(3.28)

Now, recalling (3.1) of Lemma 3.1, we have

ẋ(t) = ẋ(t0)e
−

∫
t

t0
A(v)dv

−

N
∑

j=1

∫ t

t0

e−
∫

t

s
A(v)dv

∫ s

s−τj(s)

aj(s, v)gj (v, x (v)) dvds

−

N
∑

j=1

∫ t

t0

e−
∫

t

s
A(v)dvωj(s)

d

ds
x (s− τj (s)) ds.
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Integrating the last term on right hand side by parts we obtain

ẋ(t) = e
−

∫
t

t0
A(v)dv



ẋ(t0) +

N
∑

j=1

bj(t0)

1− τ ′j (t0)
x (t0 − τj (t0))





−
N
∑

j=1

bj(t)

1− τ ′j (t)
x (t− τj (t))

+

∫ t

t0

e−
∫

t

s
A(v)dv

N
∑

j=1

(

rj(s)x (s− τj (s))−

∫ s

s−τj(s)

aj(s, v)gj (v, x (v)) dv

)

ds.

By conditions (3.27) and (3.19) we get the estimation

|ẋ(t)| ≤ |ẋ(t0)|+ δ

N
∑

j=1

|bj(t0)|
∣

∣1− τ ′j (t0)
∣

∣

+ ε

N
∑

j=1

[

|bj(t)|
∣

∣1− τ ′j (t)
∣

∣

+

∫ t

t0

e−
∫

t

s
A(u)du

(

|rj(s)|+

∫ s

s−τj(s)

|aj(s, v)|Rj (v) dv

)

ds

]

≤
(1− α) ε

L
+ εβ ≤ ε

(

1

L
+ β

)

.

Therefore, the zero solution is stable at t = t0.

Theorem 3.2. Under the hypotheses of Theorem3.1 the zero solution of (1.5) is
asymptotically stable if and only if

(3.29)

∫ t

t0

H(s)ds −→ ∞, as t −→ ∞.

Proof. First, suppose that (3.29) holds. We wish the solutions of (1.5) to tend to
zero whenever condition (3.29) holds. For this, we will modify Sψ in order to receipt
functions that tends to zero as t −→ ∞. So, we let

S0
ψ : = {ϕ ∈ [m(t0),∞) → R | ϕ ∈ C,

ϕ(t) = ψ(t) for t ∈ [m(t0), t0] and ϕ(t) → 0 as t→ ∞} .

Since S0
ψ is closed in Sψ and (Sψ, ρ) is complete, then the metric space

(

S0
ψ , ρ
)

is also complete. We begin by proving that Pϕ (t) → 0 as t → ∞ for ϕ ∈ S0
ψ.

To this end, denote the nine terms on the right hand side of (3.20) by I1,I2,...,I9,

respectively and let ϕ ∈ S0
ψ be fixed. Since

∫ t

0 H(s)ds −→ ∞, as t −→ ∞, by
condition (3.29), we see obviously that the first term I1 of (3.20) tends to zero as
t −→ ∞. For a given ǫ > 0, choose T0 > 0 large enough so that t − τj (t) ≥ T0 for
j = 1, N implies |ϕ (s) | < ǫ if s ≥ t− τj (t). Therefore, the third term I3 in (3.20)



Nonlinear Delay Integro-Differential Equations 47

satisfies

|I3| ≤

N
∑

j=1

∫ t

t−τj(t)

|ϕ (v)| |hj (v)| dv ≤ ε

N
∑

j=1

∫ t

t−τj(t)

|hj (v)| dv

≤ αǫ < ǫ.

Thus, I3 −→ 0 as t −→ ∞. We check that I2 −→ 0 as t −→ ∞. So we have to
prove that the two right hand side terms of the decomposition expression (3.22) go
to zero at infinity. But the first term of that decomposition is as

∫ J

t0

e−
∫

t

u
H(v)dve

−
∫

u

t0
A1(v)dvdu = e−

∫
t

J
H(v)dv

∫ J

t0

e−
∫

J

u
H(v)dve

−
∫

u

t0
A1(v)dvdu,

which tends to 0 as t −→ ∞ by condition (3.29). Nevertheless, the second term of
on the right had side of (3.22) needs some more details for its convergence to zero.
To overcome the difficulties, remember that from (3.18) we have obtained (3.24).
Upon replacing of u by Jθ in (3.24) we get

(3.30) F (J) = J

∫ ∞

1

e−(a0J
γ )θγdθ.

The function G (λ) :=
∫∞

1
e−λθ

γ

dθ satisfies the conditions of Theorem 2.1 where

(3.31) λ = a0J
γ , α = 1, ϕ (θ) = θγ , f ≡ 1 ϕ′ (α) = γαγ−1 = γ f (α) = 1.

It follows that

(3.32) G (λ) ∼
f (α)

ϕ′ (α)

1

λ
e−λϕ(α) =

1

γ

1

λ
e−λ, (λ −→ +∞) .

Thus we can write

(3.33) F (J) ∼
1

γa0
J1−γe−a0J

γ

, (J −→ +∞) .

It is enough to make z = a0J
γ and a straightforward computation gives

(3.34)
1

γa0
J1−γe−a0J

γ

=
1

γa
1/γ
0

z
1

γ
−1e−z ≤

1

γa
1/γ
0

zme−z −→ 0 as z −→ ∞.

where m := [1/γ] + 1. Thus, for every ǫ > 0 we can find a J∗ ≫ Q0 large enough
such that for every J ≥ J∗

(3.35)
e−b

γa0
J1−γe−a0J

γ

≤ ǫ.

Clearly, the expansion (3.22) is valid if J is replaced by J∗. So, the last term tends
towards zero when t −→ ∞. Hence the second term I2 in (3.20) tends to zero as
t −→ ∞. Now consider I = |I4|+ ...+ |I9|. To simplify our expressions, we define
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V (u) : =

N
∑

j=1

∫ u

u−τj(u)

[|hj (v)H(u)|+ |Cj(u, v)|Rj (v)] dv

+
N
∑

j=1

∣

∣

∣

∣

∣

(1− τ ′j(u))hj (u− τj (u))−
bj(u)

1− τ ′j (u)

∣

∣

∣

∣

∣

+

N
∑

j=1

∫ u

t0

e−
∫

u

s
A(v)dv

∣

∣Cj(s, s− τj(s))(1 − τ ′j(s))
∣

∣Rj (s− τj(s)) ds

+
N
∑

j=1

∫ u

t0

e−
∫

u

s
A(v)dv

(

A(s)

∫ s

s−τj(s)

|Cj(s, v)|Rj (v) dv + |rj (s)|

)

ds.(3.36)

So, for the given ǫ > 0, there exists a T ∗ > t0 such that s ≥ T ∗ implies |ϕ(s− τj (s))| <
ǫ for j = 1, N . It is clear that |ϕ(s)| < ε ( because s > s− τj (s), j = 1, N ). Thus,
for t ≥ T ∗, by making use conditions (3.14) and (3.15) the term I satisfies

I ≤ ǫ

N
∑

j=1

∫ t

t−τj(t)

|hj (v)| dv + ε

∫ t

T∗

V (u) e−
∫

t

u
H(v)dvdu

+ sup
ζ≥m(t0)

|ϕ (ζ)|

∫ T∗

t0

V (u) e−
∫

t

u
H(v)dvdu

≤ 2αǫ+ sup
ζ≥m(t0)

|ϕ (ζ)|

∫ T∗

t0

V (u) e−
∫

t

u
H(v)dvdu(3.37)

Also, the conditions (3.29) implies that, there exists T ∗∗ > T ∗ such that for t ≥ T ∗∗

we have

(3.38) e−
∫

t

T∗∗
H(v)dv sup

ζ≥m(t0)

|ϕ (ζ)|

∫ t

T∗

V (u) e−
∫

T∗∗

u
H(v)dvdu ≤ ǫ.

So, I −→ 0 as t −→ ∞ and consequently, (Pϕ) (t) −→ 0 as t −→ ∞. Thus, P
maps S0

ψ into itself. Also, P is still a contraction on S0
ψ with a unique fixed point

x. By Lemma 3.3, x is a solution of (1.5) on [t0,∞). We conclude that x (t) is the
only continuous solution of (1.5) agreeing with the initial function ψ. As x ∈ S0

ψ,
x (t) → 0 as t → ∞. Therefore, the zero solution is asymptotically stable, since it
is stable by Theorem 3.1 and we have just concluded that |x (t)| + |y (t)| −→ 0 as
t −→ ∞ if condition (3.29) holds.

Conversely, we shall prove that
∫∞

t0
H(v)dv = ∞. Contrary to this, there exists

a sequence {tn}n≥1 with tn −→ ∞ as n −→ ∞ and such that
∫ tn
t0
H(v)dv = l for a

certain finite number l ∈ R
+. By condition (3.13), we may also choose µ > 0 that

satisfies the inequality, −µ ≤
∫ tn
t0
H(v)dv ≤ µ, for all n ≥ 1. For convenience of



Nonlinear Delay Integro-Differential Equations 49

notation we set

C0 :=

N
∑

j=1

(

|bj(t0)|
∣

∣1− τ ′j (t0)
∣

∣

|ψ (t0 − τj (t0))|+

∫ t0

t0−τj(t0)

|Cj(t0, v)|Rj (v) |ψ (v)| dv

)

.

Recalling (3.36), we define the function W (·) by

W (u) := V (u) + C0e
−

∫
u

t0
A(v)dv

.

By conditions (3.16), (3.17) and (3.18), we have

(3.39)

∫ tn

t0

e
−

∫
tn
t0

H(v)dv
W (u) du ≤ (α+ C0L) .

This yields

(3.40) e
−

∫
tn
t0

H(v)dv
∫ tn

t0

e
∫

u

t0
H(v)dv

W (u) du ≤ (α+ C0L) .

Then,

(3.41)

∫ tn

t0

e
∫

u

t0
H(v)dv

W (u)du ≤ (α+ C0L) e
µ.

The inequality (3.41) leads to the fact that the sequence

(3.42)

∫ tn

t0

e
∫

u

t0
H(v)dv

W (u)du,

is bounded, so there exists a convergent subsequence. For brevity, we assume that

(3.43) lim
t−→∞

∫ tn

0

e
∫

u

0
H(v)dvW (u) du = σ > 0.

Then, we can choose a positive integer n0 large enough such that

(3.44)

∫ tn

tn0

e
∫

u

t0
H(v)dv

W (u) du <
δ0
8M

,

for n ≥ n0, where ǫ > δ0 > 0 satisfies


|ψ (tn0
)|+ δ0

N
∑

j=1

∫ tn0

tn0
−τj(tn0)

|hj (v)| dv



M

+



|ẋ (tn0
)|+ δ0

N
∑

j=1

|bj(tn0
)|

∣

∣1− τ ′j (tn0
)
∣

∣

+δ0

∫ tn0

tn0
−τj(tn0)

|Cj(tn0
, v)|Rj (v) dv

)

L

≤ (1− α) .(3.45)
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Now, we consider the solution x (t) = x (t, ψ, ẋ (tn0
)) of equation (1.5), for the initial

values ψ and ẋ (tn0
) such that

ψ (tn0
) =

3δ0
4

, ẋ (tn0
) =

δ0
4

|ψ (s)|+ |ẋ (s)| ≤ δ0, s ≤ tn0
.(3.46)

We may choose ψ such that

(3.47) ψ (tn0
)−

N
∑

j=1

∫ tn0

tn0
−τj(tn0)

hj (v)ψ (v) dv ≥
δ0
4
.

By a similar argument as in (3.28) and by replacing ǫ by 1, this implies that |x (t)| ≤
1. Having in mind the fact that x is a fixed point of P , we have, for n ≥ n0

∣

∣

∣

∣

∣

∣

x (tn)−
N
∑

j=1

∫ tn

tn−τj(tn)

hj (v)x (v) dv

∣

∣

∣

∣

∣

∣

≥

∣

∣

∣

∣

∣

∣

e
−

∫
tn
tn0

H(v)dv



ψ (tn0
)−

N
∑

j=1

∫ tn0

tn0
−τj(tn0)

hj (v)ψ (v) dv





+ ẋ (tn0
)

∫ tn

tn0

e−
∫

tn
u

H(v)dve
−

∫
u

tn0

A(v)dv
du

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∫ tn

tn0

e−
∫

tn
u

H(v)dvW (u)du

∣

∣

∣

∣

∣

≥ e
−

∫
tn
tn0

H(v)dv δ0
4

−

∫ tn

tn0

e−
∫

tn
u

H(v)dvW (u)du

≥ e
−

∫
tn
tn0

H(v)dv

[

δ0
4

− e−
∫ tn0

0
H(v)dv

∫ tn

tn0

e
∫

u

0
H(v)dvW (u)du

]

≥
δ0
8
e−2µ > 0.(3.48)

On the other hand, if the zero solution is asymptotically stable, then x (t) =
x (t, ψ, ẋ(tn0

)) −→ 0, as t −→ ∞. It remains only to check that the term

N
∑

j=1

∫ tn

tn−τj(tn)

hj (v)x (v) dv

decays to zero at infinity to obtain the contradiction. By the mean value theorem
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and condition (3.16), we have
∣

∣

∣

∣

∣

∣

N
∑

j=1

∫ tn

tn−τj(tn)

hj (v) x (v) dv

∣

∣

∣

∣

∣

∣

= |x (ηtn)|

∣

∣

∣

∣

∣

∣

N
∑

j=1

∫ tn

tn−τj(tn)

hj (v) dv

∣

∣

∣

∣

∣

∣

≤ α |x (ηtn)| ≤ |x (ηtn)| .(3.49)

Since tn and tn − τj (tn) → ∞ as n→ ∞, then also ηtn −→ ∞. It follows that

lim
tn−→∞



x (tn)−
N
∑

j=1

∫ tn

tn−τj(tn)

hj (v) x (v) dv



 = 0.

Which leads to a contradiction. This completes the proof of our claim.

In this section, we will give an example to apply our results

Example 3.1. Consider the following nonlinear delay integro-differential equation with
variable delay

(3.50) ẍ+ f (t, x, ẋ) ẋ+
2∑

j=1

∫ t

t−τj(t)

aj(t, s)gj (s, x (s)) ds+
2∑

j=1

bj(t)x
′ (t− τj (t)) = 0,

for t ≥ 0. We let A (t) := f (t, x (t) , ẋ (t)) =
1− 0.5 cos (ẋ(t)x(t))

5 (t+ 1)
1

5

+2 tanh t, g1 (t, x (t)) :=

0.2t sin x (t), g2 (t, x (t)) := 0.4t cos x (t), a1 (t, s) = a2 (t, s) := e−3(t+s), τ1 (t) = 0.5t,

τ2 (t) := 0.5t and b1 (t) := λ
0.125t

0.25t2 + 1
, b2 (t) := σ

0.125t

0.25t2 + 1
where 0 < (λ+ σ) ≤ 1/7.

Then the zero solution of (3.50) is asymptotically stable.

Proof. We prove that all the hypotheses of Theorem (3.2) hold for equation (3.50).
Observe that the conditions (3.14), (3.15) and (3.17) are satisfied, with R1(t) =

R2(t) := t and A1 (t) :=
0.5

5 (t+ 1)
1

5

+ 2 tanh t, for t ≥ 0. Now, choose h1 (t) :=

λ
t+ 1

t2 + 1
, h2 (t) := σ

t+ 1

t2 + 1
. Clearly, the conditions (3.13) and (3.29) hold. Further-

more, for t ≥ u ≥ 0 we have
∫ t

u

H (v) dv +

∫ u

0

A1 (t) dv ≥

∫ u

0

A1 (t) dv ≥ 0.5

∫ u

0

1

5 (v + 1)
1

5

dv

≥
1

8
u

4

5 −
1

8
.(3.51)

Consequently, condition (3.18) is satisfied with a0 = 1/8, b0 = −1/8 and γ = 4/5.

Remains to prove that the condition (3.16) is also satisfied. There are seven
terms on the left hand side of (3.16). By integration we see that,
∫ t

0.5t

H (v) dv =

∫ t

0.5t

|h1 (v)| dv +

∫ t

0.5t

|h2 (v)| dv = (λ+ σ)

∫ t

0.5t

t+ 1

t2 + 1
dv

≤ (λ+ σ) 0.84.(3.52)
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Since H(t) ≥ 0 for t ≥ 0, then making use of (3.52) we can derive the estimation

∫ t

0

e−
∫

t

u
H(v)dv |H(u)|

∫ u

u−τ1(u)

|h1 (v)| dvdu

≤

(

sup
u≥0

∫ u

0.5u

|h1 (v)| dv

)∫ t

0

e−
∫

t

u
H(v)dv |H(u)| dvdu

≤ (λ+ σ) 0.84.(3.53)

The expression of the third term of (3.16) provides the following

∫ t

0

e−
∫

t

u
H(v)dv

∣

∣

∣

∣

(1− τ ′1(u))h1 (u− τ1 (u))−
b1(u)

1− τ ′1 (u)

∣

∣

∣

∣

du

=

∫ t

0

e−
∫

t

u
H(v)dv

∣

∣

∣

∣

λ0.25u+ 0.5λ

0.25u2 + 1
−

λ0.25u

0.25u2 + 1

∣

∣

∣

∣

du

= 0.5λ

∫ t

0

1

0.25

1

u2 + 4
du = λ arctan

1

2
t ≤ λ

π

2
.(3.54)

and

∫ t

0

e−
∫

t

u
H(v)dv

∣

∣

∣

∣

(1− τ ′2(u))h2 (u− τ2 (u))−
b2(u)

1− τ ′2 (u)

∣

∣

∣

∣

du

= 0.5σ

∫ t

0

1

0.25

1

u2 + 4
du = σ arctan

1

2
t ≤ σ

π

2
.

For the fourth term of (3.16) we observe that

|C1 (u, v)| =

∣

∣

∣

∣

∫ v

u

a1 (w, v) dw

∣

∣

∣

∣

=

∣

∣

∣

∣

e−3v

∫ v

u

e−3wdw

∣

∣

∣

∣

=
1

3

∣

∣e−3v
(

e−3u − e−3v
)∣

∣ .(3.55)

But,
(

e−3v − e−3u
)

≥ 0, for 0 ≤ v ≤ u.

So,

∫ t

0

e−
∫

t

u
H(v)dv

∫ u

u−τ1(u)

|C1(u, v)|R1 (v) dvdu

≤

∫ t

0

∫ u

0.5u

|C1(u, v)| |R1 (v)| dvdu

≤ 0.2
1

3

∫ t

0

∫ u

0.5u

(

e−6v − e−3v−3u
)

vdvdu := N (t)

≤ 0.00026(3.56)
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This is because, the function N (·) is a strictly positive and increasing on [0,∞)
satisfying N (t) → 0.00027 as t −→ ∞. and

∫ t

0

e−
∫

t

u
H(v)dv

∫ u

u−τ1(u)

|C2(u, v)|R2 (v) dvdu ≤

∫ t

0

∫ u

0.5u

|C2(u, v)| |R2 (v)| dvdu

≤ 0.00052.

To estimate the fifth term of (3.16), note that

A(t) ≤
1

5 (t+ 1)
1

5

+ 2 tanh t ≤ 2.3,

and

e−
∫

u

s
A(v)dv ≤ e−

∫
u

s
A1(v)dv ≤ e−2

∫
u

s (
sinh v
cosh v )dv =

cosh2 s

cosh2 u
.

Therefore,

∫ t

0

e−
∫

t

u
H(v)dv

∫ u

0

A(s)e−
∫

u

s
A(v)dv

∫ s

s−τ1(s)

|C1(s, v)| |R1 (v)| dvdsdu

≤ (0.2)2.3

∫ t

0

∫ u

0

e−2
∫

u

s
tanh vdv 1

3

∫ s

0.5s

(

e−6v − e−3v−3s
)

vdsdvdu

≤ 0.46

∫ t

0

1

cosh2 u

∫ u

0

1

3

1

4

(

e2s + 2 + e−2s
)

×

∫ s

0.5s

(

e−6v − e−3v−3s
)

vdsdvdu

≤
0.46

12
sup
u≥0

∣

∣N̄ (u)
∣

∣

∫ t

0

1

cosh2 u
du

≤
0.46

12
0.09

∫ t

0

1

cosh2 u
du =

0.46

12
0.09 tanh t

≤ 0.46
0.09

12
= 0.00345.(3.57)

This follows from the fact that,

N̄ (u) :=

∫ u

0

(

e2s + 2 + e−2s
)

∫ s

0.5s

(

e−6v − e−3v−3s
)

vdvds,

is a positive function, increasing on [0,∞) and N̄1 (u) ≤ 0.09 for any u ≥ 0.

and

∫ t

0

e−
∫

t

u
H(v)dv

∫ u

0

A(s)e−
∫

u

s
A(v)dv

∫ s

s−τ2(s)

|C2(s, v)| |R2 (v)| dvdsdu

≤ 0.0069,
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with N̄2 (u) = N̄1 (u). Moreover, similar arguments as above show that one can
estimate the sixth term of (3.16) as

∫ t

t0

e−
∫

t

u
H(v)dv

∫ u

0

e−
∫

u

s
A(v)dv |C1(s, s− τ1(s))| |(1− τ ′(s)|

× |R1 (s− τ(s))| dsdu

≤ 0.2

∫ t

0

1

cosh2 u

∫ u

0

1

4

(

e2s + 2 + e−2s
) 0.25

3

(

e−3s − e−4.5s
)

sdsdu

≤ 0.2
0.25

12

∫ t

0

1

cosh2 u

∫ u

0

(

e2s + 2 + e−2s
) (

e−3s − e−4.5s
)

sdsdu

≤ 0.0041666,(3.58)

and

∫ t

t0

e−
∫

t

u
H(v)dv

∫ u

0

e−
∫

u

s
A(v)dv |C2(s, s− τ2(s))| |(1− τ ′(s)| |R2 (s− τ(s))| dsdu

≤ 0.0083332.

For the seventh we have, for t ≥ 0,

r1 (t) =

(

b1(t)A(t) + b′j(t)
)

0.5

λ0.125

(

t

t2 + 1
A(t) +

1− t2

(t2 + 1)
2

)

= λ0.125
1

t2 + 1

(

0.5t

5 (t+ 1)
1

5

+ 2t tanh t+
1− t2

t2 + 1

)

≥ λ0.125

(

1

t2 + 1

)

.(3.59)

It is clear that the function r1 (·) is positive and H (t) ≥ (λ+ σ)
t

t2 + 1
for t ≥ 0,

which implies that

∫ t

0

e−
∫

t

u
H(v)dv

∫ u

0

e−
∫

u

s
A(v)dv |r1 (s)| dsdu

=

∫ t

0

e−
∫

t

u
H(v)dvb1 (u) du =

∫ t

0

e−
∫

t

u
H(v)dv λ0.125u

0.25u2 + 1
du

=
0.125

0.25

λ

λ+ σ

∫ t

0

e−
∫

t

u
H(v)dv (λ+ σ) u

u2 + 4
du

≤
λ

λ+ σ

0.125

0.25

∫ t

0

e
−

∫
t

u

(λ+ σ) v

v2 + 1
dv (λ+ σ) u

u2 + 1
du ≤

0.125

0.25
=

λ

λ+ σ
0.5.(3.60)
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and
∫ t

0

e−
∫

t

u
H(v)dv

∫ u

0

e−
∫

u

s
A(v)dv |r2 (s)| dsdu ≤

σ

λ+ σ
0.5.

The summation yields

α : = (λ+ σ) 0.84 + (λ+ σ) 0.84 + (λ+ σ)
π

2
+ 0.00052.+ 0.00026

+0.0083332+ 0.0041666+
λ

λ+ σ
0.5 +

σ

λ+ σ
0.5

= (λ+ σ)
(

1.68 +
π

2

)

+ 0.51276

≤
3.2508

7
+ 0.51276 = 0.97716.

Also, we remark that the condition (3.19) holds, because 0 ≤ 2 (b1 (t) + b2 (t)) +
1

12

(

N̄1 (t) + N̄2 (t)
)

< +∞. Consequently, the zero solution of equation (3.50) is

asymptotically stable.

Remark 3.1. It is obvious that by letting b ≡ 0 in Example (3.1), we obtain asymptotic
stability for the trivial solution of (3.50). Nevertheless, such a conclusion cannot be ob-
tained from the work of D. Pi in [18]. Because, in [18], R (·) is supposed to be bounded
while in our consideration is not. Further, the condition (iii) of Theorem 2 in [18] is not
applicable here. Thus, our results improve clearly those of [10] and [18].
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