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ON φ-IDEAL WARD CONTINUITY

Bipan Hazarika and Ayhan Esi

Abstract. An ideal I is a family of subsets of positive integers N which is closed under
taking finite unions and subsets of its elements. Let P denote the space whose elements
are finite sets of distinct positive integers. Given any element σ of P, we denote by p(σ)
the sequence {pn(σ)} such that pn(σ) = 1 for n ∈ σ and pn(σ) = 0 otherwise. Further
Ps =

{
σ ∈ P :

∑∞
n=1 pn(σ) ≤ s

}
, i.e.Ps is the set of those σ whose support has cardi-

nality at most s, and Φ = {φ = (φn) : 0 < φ1 ≤ φn ≤ φn+1 and nφn+1 ≤ (n+ 1)φn} .
A sequence (xn) of points in R is called φ-ideal convergent (or Iφ -convergent) to a real
number ` if for every ε > 0{

s ∈ N :
1

φs

∑
n∈σ,σ∈Ps

|xn − `| ≥ ε

}
∈ I.

We introduce φ-ideal ward continuity of a real function. A real function is φ-ideal ward
continuous if it preserves φ-ideal quasi Cauchy sequences where a sequence (xn) is called
to be φ -ideal quasi Cauchy (or Iφ-quasi Cauchy) when (∆xn) = (xn+1− xn) is φ-ideal
convergent to 0. i.e. a sequence (xn) of points in R is called φ-ideal quasi Cauchy (or
Iφ-quasi Cauchy) for every ε > 0 if{

s ∈ N :
1

φs

∑
n∈σ,σ∈Ps

|xn+1 − xn| ≥ ε

}
∈ I.

In this paper, we prove that any φ-ideal continuous function is uniformly continuous
either on an interval or on a φ-ideal ward compact subset of R. We also characterize
the uniform continuity via φ-ideal quasi-Cauchy sequences.
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1. Introduction

A real valued function is continuous on the set of real numbers if and only if it
preserves Cauchy sequences. Using the idea of continuity of a real function and the
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idea of compactness in terms of sequences, many kinds of continuities were intro-
duced and investigated, not all but some of them we recall in the following: forward
continuity [6], slowly oscillating continuity [9], statistical ward continuity [7], δ-
ward continuity [12], ideal ward continuty [2, 13], Nθ-ward continuity [3, 4] and
λ-statistical ward continuity [14]. The concept of a Cauchy sequence involves far
more than that the distance between successive terms is tending to zero. Neverthe-
less, sequences which satisfy this weaker property are interesting in their own right.
A sequence (xn) of points in R is called quasi-Cauchy if (∆xn) is a null sequence
where ∆xn = xn+1 − xn. In [1] Burton and Coleman named these sequences as
”quasi-Cauchy” and in [8] Çakallı used the term ”ward convergent to 0” sequences.
In terms of quasi-Cauchy we restate the definitions of ward compactness and ward
continuity as follows: a function f is ward continuous if it preserves quasi-Cauchy
sequences, i.e.(f(xn)) is quasi-Cauchy whenever (xn) is, and a subset E of R is ward
compact if any sequence x = (xn) of points in E has a quasi-Cauchy subsequence
z = (zk) = (xnk

) of the sequence x = (xn).

2. Preliminaries and Notations

First of all, some definitions and notation will be given in the following. Throughout
this paper, N, and R will denote the set of all positive integers, and the set of all
real numbers, respectively. We will use boldface letters x, y, z, ... for sequences
x = (xn), y = (yn), z = (zn), ... of terms in R.
It is known that a sequence (xn) of points in R, the set of real numbers, is slowly
oscillating if

lim
λ→1+

limn max
n+1≤k≤[λn]

|xk − xn| = 0,

where [λn] denotes the integer part of λn. This is equivalent to the following if
(xm − xn) → 0 whenever 1 ≤ m

n → 1 as m,n → ∞. Using ε > 0 s and δ s this is
also equivalent to the case when for any given ε > 0, there exists δ = δ(ε) > 0 and
N = N(ε) such that |xm − xn| < ε if n ≥ N(ε) and n ≤ m ≤ (1 + δ)n (see [9]).

A function defined on a subset E of R is called slowly oscillating continuous if
it preserves slowly oscillating sequences, i.e.(f(xn)) is slowly oscillating whenever
(xn) is.

The notion of ideal convergence, which is a generalization of ordinary conver-
gence, and statistical convergence, was introduced by Kostyrko et al. [24] and also
independently by Nuray and Ruckle in [25] who called it generalized statistical con-
vergence (see [17, 18]) based on the structure of the admissible ideal I of subset of
natural numbers N.

A family of sets I ⊂ P (N) (the power sets of N) is said to be an ideal on N if
and only if
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(i) φ ∈ I

(ii) for each A,B ∈ I, we have A ∪B ∈ I

(ii) for each A ∈ I and each B ⊂ A, we have B ∈ I.

A non-empty family of sets F ⊂ P (N) is said to be a filter on N if and only if

(i) φ /∈ F

(ii) for each A,B ∈ F, we have A ∩B ∈ F

(iii) each A ∈ F and each B ⊃ A, we have B ∈ F.

An ideal I is called non-trivial ideal if I 6= φ and N /∈ I. Clearly I ⊂ P (N) is a
non-trivial ideal if and only if F = F (I) = {N−A : A ∈ I} is a filter on N.

A non-trivial ideal I ⊂ P (N) is called

(i) admissible if and only if {{n} : n ∈ N} ⊂ I.

(ii) maximal if there cannot exists any non-trivial ideal J 6= I containing I as a
subset.

Recall that a sequence x = (xn) of points in R is said to be I-convergent to the
number ` if for every ε > 0, the set {n ∈ N : |xn − `| ≥ ε} ∈ I . In this case we
write I-limxn = `. A sequence x = (xn) of points in R is said to be I-quasi-Cauchy
if I − limn(xn+1 − xn) = 0. We see that I-convergence of a sequence (xn) implies
I-quasi-Cauchyness of (xn). We note that the definition of a quasi-Cauchy sequence
is a special case of an ideal quasi-Cauchy sequences where I is taken as the finite
subsets of the set of positive integers. Cakalli and Hazarika [2] introduced the con-
cept of ideal quasi Cauchy sequences and proved some results related to ideal ward
continuity and ideal ward compactness. For more details on ideal convergence we
refer to [19, 20, 21, 22, 28].

Throughout this paper we assume I is a non-trivial admissible ideal in N, also,
I(R) and ∆Iφ will denote the set of all I-convergent sequences and the set of all
φ-ideal quasi-Cauchy sequences of points in R, respectively.

Now we give the following interesting examples which show emphasis the inter-
est in different research areas.

Example 2.1.[29] Let n be a positive integer. In a group of n people, each per-
son selects at random and simultaneously another person of the group. All of the
selected persons are then removed from the group, leaving a random number n1 < n
of people which form a new group. The new group then repeats independently the
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selection and removal thus described, leaving n2 < n1 persons, and so forth until
either one person remains, or no persons remain. Denote by pn the probability that,
at the end of this iteration initiated with a group of n persons, one person remains.
Then the sequence p= (p1, p2, .., pn, ...) is a Iφ-quasi-Cauchy sequence, and limn pn
does not exist.

Example 2.2. [23] Let n be a positive integer. In a group of n people, each
person selects independently and at random one of three subgroups to which to
belong, resulting in three groups with random numbers n1, n2, n3 of members;
n1 + n2 + n3 = n. Each of the subgroups is then partitioned independently in
the same manner to form three sub subgroups, and so forth. Subgroups having no
members or having only one member are removed from the process. Denote by tn
the expected value of the number of iterations up to complete removal, starting ini-
tially with a group of n people. Then the sequence (t1,

t2
2 ,

t3
3 , ...,

tk
k , ...) is a bounded

nonconvergent Iφ-quasi-Cauchy sequence.

Example 2.3.[23] Let x := (xn) be a sequence such that for each nonnegative
integer n, xn is either 0 or 1. For each positive integer n set an = x1+x2+...+xn

n .
Then an is the arithmetic mean average of the sequence up to time or position n.
Clearly for each n, 0 ≤ an ≤ 1. (an) is a quasi-Cauchy sequence. i.e.the sequence
of averages of 0 s and 1 s is always a quasi-Cauchy sequence.

Connor and Grosse-Erdman [16] gave sequential definitions of continuity for real
functions calling G-continuity instead of A-continuity and their results covers the
earlier works related to A-continuity where a method of sequential convergence, or
briefly a method, is a linear function G defined on a linear subspace of s, space
of all sequences, denoted by cG, into R. A sequence x = (xn) is said to be G-
convergent to ` if x ∈ cG and G(x) = `. In particular, lim denotes the limit function
lim x = limn xn on the linear space c and st-lim denotes the statistical limit function
st-lim x = st-limn xn on the linear space st(R). Also I-lim denotes the I-limit
function I-lim x = I-limn xn on the linear space I(R). A method G is called regular
if every convergent sequence x = (xn) is G-convergent with G(x) = lim x. A method
is called subsequential if whenever x is G-convergent with G(x) = `, then there is
a subsequence (xnk

) of x with limk xnk
= `. Recently, Cakalli gave new sequential

definitions of compactness and slowly oscillating compactness in [9, 10].

3. φ-ideal ward continuity

Let P denote the space whose elements are finite sets of distinct positive integers.
Given any element σ of P, we denote by p(σ) the sequence {pn(σ)} such that
pn(σ) = 1 for n ∈ σ and pn(σ) = 0 otherwise. Further

Ps =

{
σ ∈ P :

∞∑
n=1

pn(σ) ≤ s

}
,
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i.e.Ps is the set of those σ whose support has cardinality at most s, and Φ =
{φ = (φn) : 0 < φ1 ≤ φn ≤ φn+1 and nφn+1 ≤ (n+ 1)φn} .A sequence (xn) of points
in R is called φ-ideal convergent (or Iφ-convergent) to a real number ` if for every
ε > 0 s ∈ N :

1

φs

∑
n∈σ,σ∈Ps

|xn − `| ≥ ε

 ∈ I.
We introduce φ-ideal ward continuity of a real function. A real function is φ-ideal
ward continuous if it preserves φ-ideal quasi Cauchy sequences where a sequence
(xn) is called to be φ -ideal quasi Cauchy (or Iφ-quasi Cauchy) when (∆xn) =
(xn+1 − xn) is φ-ideal convergent to 0. i.e.a sequence (xn) of points in R is called
φ-ideal quasi Cauchy (or Iφ-quasi Cauchy) for every ε > 0 ifs ∈ N :

1

φs

∑
n∈σ,σ∈Ps

|xn+1 − xn| ≥ ε

 ∈ I.
Now we give the definitions of Iφ-sequential compactness of a subset E and Iφ-
sequential continuity of a function defined on E of R as follows.

Definition 3.1. A subset E of R is called Iφ-sequentially compact if whenever (xn)
is a sequence of points in E there is Iφ -convergent subsequence y = (yk) = (xnk

)
of (xn) such that Iφ-lim y is in E.

Definition 3.2. A function f : E → R is Iφ-sequentially continuous at a point x0
if, given a sequence (xn) of points in E, Iφ-lim x = x0 implies that Iφ-lim f(x) =
f(x0).

Theorem 3.1. A subset of R is sequentially compact if and only if it is Iφ-
sequentially compact.

Proof. The proof easily follows from Corollary 3 on page 597 in [10] and Theorem
1 in [2] so is omitted.

Theorem 3.2. Any Iφ-sequentially continuous function at a point x0 is continu-
ous at x0 in the ordinary sense.

Proof. Let f be any Iφ-sequentially continuous function at point x0, Since any
proper admissible ideal is a regular subsequential method, it follows from Theorem
13 on page 316 in [11] that f is continuous in the ordinary sense.

Theorem 3.3. Any continuous function at a point x0 is Iφ-sequentially continu-
ous at x0.

Proof. Proof of the theorem follows from Theorem 2.2 in [27].
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Combining Theorem 3.1 and Theorem 3.2 we have the following:

Corollary 3.1. A function is Iφ-sequentially continuous at a point x0 if and only
if it is continuous at x0.

Theorem 3.4. If a function is δ-ward continuous on a subset E of R, then it is
Iφ-sequentially continuous on E.

Proof. Let f be any δ-ward continuous function on E. It follows from Corollary
2 on page 399 in [12] that f is continuous. By Theorem 3.1 we obtain that f is
Iφ-sequentially continuous on E. This completes the proof.

Corollary 3.2. If a function is quasi-slowly oscillating continuous on a subset E
of R, then it is Iφ-sequentially continuous on E.

Proof. Let f be any quasi-slowly oscillating continuous on E. It follows from The-
orem 3.2 in [15] that f is continuous. By Theorem 3.1 we deduce that f is Iφ-
sequentially continuous on E. This completes the proof.

We say that a sequence x = (xn) is Iφ-ward convergent to a number ` if Iφ-
limn→∞∆xn = ` where ∆xn = xn+1−xn. For the special case ` = 0 we say that x is
φ-ideal quasi-Cauchy, or Iφ-quasi-Cauchy, in place of Iφ-ward convergent to 0. Thus
a sequence (xn) of points of R is Iφ-quasi-Cauchy if (∆xn) is Iφ-convergent to 0.
We denote ∆Iφ the set of all φ-ideal quasi Cauchy sequences of points in R (see [22]).

Now we give the definition of Iφ-ward compactness of a subset of R.

Definition 3.3. A subset E of R is called Iφ-ward compact if whenever x = (xn)
is a sequence of points in E there is a subsequence z = (zk) = (xnk

) of x such that
Iφ-limk→∞∆zk = 0.

We note that this definition of Iφ-ward compactness can not be obtained by any
G-sequential compactness, i.e.by any summability matrix A, even by the summa-
bility matrix A = (ank) defined by ank = −1 if k = n and akn = 1 if k = n + 1
and

G(x) = Iφ − limAx = Iφ − lim
k→∞

∞∑
n=1

aknxn = Iφ − lim
k→∞

∆xk

(see [10] for the definition of G-sequential compactness). Despite that G-sequential
compact subsets of R should include the singleton set {0}, Iφ-ward compact subsets
of R do not have to include the singleton {0}.
We give the definition of Iφ-ward continuity of a real function.

Definition 3.4. A function f is called Iφ-ward continuous on E if Iφ-limn→∞∆f(xn) =
0 whenever Iφ-limn→∞∆xn = 0, for a sequence x = (xn) of terms in E.
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Theorem 3.5. If a function f is uniformly continuous on a subset E of R and
(xn) is a quasi-Cauchy sequence of points in E, then (f(xn)) is Iφ-quasi Cauchy.

Proof. Let f be uniformly continuous on E. Suppose that there exists a quasi-
Cauchy sequence (xn) of points in E. To show that (f(xn)) is Iφ-quasi Cauchy.
i.e.for every ε > 0 we need to show thats ∈ N :

1

φs

∑
n∈σ,σ∈Ps

|f(xn+1)− f(xn)| < ε

 ∈ F.
As f is uniformly continuous on E, for this ε, there exists a δ > 0 such that
|f(x) − f(y)| < ε whenever |x − y| < δ for x, y ∈ E. Since (xn) is quasi-Cauchy,
there exists an ingeter n0 ∈ N such that |xn+1 − xn| < δ for n ≥ n0. Now we have

1

φs

∑
n∈σ,σ∈Ps

|f(xn+1)− f(xn)| < ε for s ≥ n0.

Therefore s ∈ N :
1

φs

∑
n∈σ,σ∈Ps

|f(xn+1)− f(xn)| < ε

 ∈ F.
This completes the proof of the theorem.

Theorem 3.6. Let E be an Iφ-ward compact subset of R and let f : E → R be an
Iφ-ward continuous function on E. Then f is uniformly continuous on E.

Proof. Suppose that f is not uniformly continuous on E so there exists an ε > 0
such that for any δ > 0, for x, y ∈ E with |x − y| < δ but |f(x) − f(y)| ≥ ε. For
each positive integer n we can find (xn) and (yn) are sequences of points in E such
that |xn − yn| < 1

n but |f(xn)− f(yn)| ≥ ε. Since E is Iφ-ward compact, there is a
subsequence (xnk

) of (xn) such that Iφ-limk→∞∆xnk
= 0. On the other hand there

is a subsequence of (ynkj
) of (ynk

) such that Iφ-limj→∞∆ynkj
= 0. It is clear that

the corresponding sequence (xnkj
) is also Iφ -quasi Cauchy i.e.Iφ-limj→∞∆xnkj

= 0

because (ynkj
) is an Iφ-quasi-Cauchy sequence and we have

xnkj
− xnkj+1

= (xnkj
− ynkj

) + (ynkj
− ynkj+1

) + (ynkj+1
− xnkj+1

).

Now we define a sequence z = (zj) be setting z1 = xnk1
, z2 = ynk1

, z3 = xnk2
,

z4 = ynk2
, z5 = xnk3

, z6 = ynk3
, and so on. Thus (zj) is an Iφ-quasi-Cauchy

sequence while (∆f(zj)) is a Iφ-quasi-Cauchy. This contradiction completes the
proof of the theorem.

Corollary 3.3. If a function f is Iφ-ward continuous on a bounded subset E of
R, then it is uniformly continuous on E.
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Proof. The proof follows from the preceding theorem and Theorem 8 in [2].

We have much more below for a real function f defined on an interval that f is
uniformly continuous if and only if (f(xn)) is Iφ-quasi Cauchy whenever (xn) is a
quasi-Cauchy sequence if points in E. First we give the following lemma.

Lemma 3.1. Let (ξn, ηn) is a sequence of ordered pairs of points in an interval
such that limn |ξn − ηn| = 0, then there exists an Iφ-quasi Cauchy sequence (xn)
with the property that for any positive integer i there exists a positive integer j such
that (ξi, ηi) = (xj−1, xj).

Proof. The following proof is similar to that of [1], but we give it for completeness.
For each positive integer k, we can fix zk0 , z

k
1 , z

k
2 , ..., z

k
nk

in E with zk0 = ηk, z
k
nk

= ξk+1

and |zki − zki−1| < 1
k for 1 ≤ i ≤ nk. Now we write the sequence

(xn) = (ξ1, η1, z
1
1 , ..., z

1
n1−1, ξ2, η2, z

2
1 , ..., z

2
n2−1, ξ3, η3, ..., ξk, ηk, z

k
1 , ..., z

k
nk−1, ξk+1, ηk+1, ...)

Then we obtain that for any positive integer i there exists a positive integer j such
that (ξi, ηi) = (xj−1, xi). The sequence constructed is a quasi-Cauchy sequence and
it is an Iφ-quasi Cauchy sequence, since any quasi-Cauchy sequence is an Iφ-quasi
Cauchy sequence. This completes the proof of the theorem.

Theorem 3.7. If a function defined on an interval E is Iφ-ward continuous, then
it is uniformly continuous.

Proof. Suppose that f is not uniformly continuous on E. Then there exists ε > 0
such that for any δ > 0 there exist x, y ∈ E with |x−y| < δ but |f(x)−f(y)| ≥ ε. For
every n ∈ N fix ξn, ηn ∈ E with |ξn−ηn| < 1

n but |f(ξn)−f(ηn)| ≥ ε. By the Lemma
3.1, there exists an Iφ-quasi Cauchy sequence (xi) such that for any integer i ≥ 1
there exists a j with ξi = xj and ηi = xj+1. This implies that |f(xj+1)−f(xj)| ≥ ε.
Hence (f(xi)) is not Iφ-quasi Cauchy. Thus f does not preserve Iφ-quasi Cauchy
sequences. This established the proof of the theorem.

Since the sequence constructed in Lemma 3.1 is also quasi-Cauchy, we see that
the function f is uniformly continuous on an interval E if the sequence (f(xn)) is Iφ-
quasi Cauchy whenever (xn) is a quasi-Cauchy sequence of points in E. Combining
this with the Theorem 3.5, we have the following result.

Corollary 3.4. If a function defined on an interval is Iφ-ward continuous, then
it is ward continuous.

Proof. The proof follows from the Theorem 3.7 and Theorem 5 in [12], so it is
omitted.

Corollary 3.5. If a function defined on an interval is Iφ-ward continuous, then
it is slowly oscillating continuous.
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Proof. The proof follows from the Theorem 3.7 and Theorem 5 in [12], so it is
omitted.

Cakalli [5] introduced the concept G-sequentially connected as, a non-empty subset
E of R is called G-sequential connectedness if there are non-empty and disjoint
G-sequentially closed subsets U and V such that A ⊆ U ∪ V, and A∩U and A∩ V
are empty. As far as G-sequentially connectedness is considered, then we get the
following results.

Theorem 3.8. Any Iφ-sequentially continuous image of any Iφ -sequentially con-
nected subset of R is Iφ-sequentially connected.

Proof. The proof follows from the Theorem 1 in [5].

Theorem 3.9. A subset of R is Iφ-sequentially connected if and only if it is con-
nected in ordinary sense and so is an interval.

Proof. The proof follows from the Corollary 1 in [5].
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13. H. Çakallı, A study on ideal ward continuity, arXiv:1305.3227v1



690 Bipan Hazarika and Ayhan Esi
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