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Abstract. In this paper, some perturbed companion of Ostrowski type integral inequal-
ities for functions whose second derivatives are either bounded or of bounded variation
are established.
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1. Introduction

In 1938, Ostrowski [29] established a following useful inequality:

Theorem 1.1. Let f : [a,b] — R be a differentiable mapping on (a,b) whose

derwative f' : (a,b) — R is bounded on (a,b), i.e. |f'||,, = sup |f'(t)] < oo.
te(a,b)

Then, we have the inequality

a+b

Gt Ol D
it ]w D

1) |r@) -y [ o] <

for all x € [a, b].
The constant % is the best possible.

Definition 1.1. Let P:a =29 < 21 < ... < &, = b be any partition of [a, ] and
let Af(z;) = f(zig1) — f(2:), then f is said to be of bounded variation if the sum

> 1Af ()
i=1

is bounded for all such partitions.
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Definition 1.2. Let f be of bounded variation on [a,b], and > Af (P) denotes
the sum > |Af(z;)| corresponding to the partition P of [a,b]. The number
i=1

b
\/ (f) = sup {3 Af (P): P e P(lab])}.

is called the total variation of f on [a,b]. Here P([a,b]) denotes the family of par-
titions of [a, b] .

n [16], Dragomir proved the following Ostrowski type inequalities for functions
of bounded variation:

Theorem 1.2. Let f : [a,b] — R be a mapping of bounded variation on [a,b].
Then

(1.2) /bf(t)dt—(b—a)f(w) < B (b—a)+ ’ —(HbH\?

holds for all z € [a,b]. The constant & is the best possible.

n [13], the authors obtained the following Ostrowski type inequalities for func-
tions whose second derivatives are bounded:

Theorem 1.3. Let f : [a,b] — R be continuous on [a,b] and twice differentiable
n (a,b), whose second derivative " : (a,b) — R is bounded on (a,b). Then we

have the inequality
f(b) = f(a) a+b
/ 1) b —a v 2

2
1 (x _b) 1 1 2 "
< 5 [( j) VIR T A AaEON P/
S HfléHoo (b—a)2

for all x € [a,b].

Ostrowski inequality has potential applications in mathematical sciences. In
the past, many authors have worked on Ostrowski type inequalities for functions
(bounded, of bounded variation, etc.) see for example ([1]-[10], [13]-[19], [27],[28],[30]-
[37]). Furthermore, several works were devoted to study of perturbed Ostrowski
type inequalities for bounded functions and functions of bounded variation, please
refer to ([11],[12], [20]-[26]). In this study, we establish some perturbed compan-
ion of Ostrowski type inequalities for twice differentiable functions whose second
derivatives are either bounded or of bounded variation.
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2. Some Identities

Before we start our main results, we state and prove the following lemma:

Lemma 2.1. Let f : [a,b] — C be a twice differantiable function on (a,b). Then
for any A\i(x), i = 1,2,3 complex number and all x € [a, “T'H’} the following identity
holds

a () — f'(a - T a - b
(2.1)<x—3:b>f() fé o )—f()+f(2+b )+bia/llf(t)dt

3
6(b—a) [(m —a)’ (M (z) + X3(2)) +2 (a ; b :v) )\2(:5)‘|

_ 1 ¢ 21 en arbme a+b)? "
= 0w Va (t—a)” [f (t)—)\l(x)]dt—l-/z (t— 5 > (£ (£) = Ao ()] dt

b
o O-x@) dt]

+b—2x

where the integrals in the right hand side are taken in the Lebesgue sense.

Proof. Using the integration by parts, we have

e2 [ @t - sl
/m (t —a)® f"(t)dt — M\ (z) /I (t —a)®dt

= -0 Ala) g

—2/w (t —a) f'(t)dt —
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ey m_m (-2 ”)2 () = ()] di
/:H)z (t S ;L b>2 F(t)dt — Mo () /:H)x (t I ; b)th
(+- “;b)zf’@ B (1252 s

a+b—x

+2 /;er_w Ft)de — Aa(z) (t— a+b>3

at+b—x

x

3 2

_ (G;Lb—x)Q[f’(aer—w)—f/(ﬂC)]

o

_g)\g(x) <a;b —:v>3

at+b—x

a;—b—x> [f(a+b—x)+f(x)]+2L F(t)dt

and
b
/ (t = )2 [f(t) — Aa(2)] dt
a+b—x
b b
— [ e-vrrwa-x [ -yt
a+b—z atb—z
_ . 2 pr b _ _ b
o — (t—b) f(t)‘wb_w 2(t=b) fF(B)loyy

b

+2/b F(t)dt — )\3T(£C)(t—b)3

+b—x

at+b—zx
=—(@—a)’flla+b—2z)—2(x—a)fla+b—x)

+2/b Ftyat— 288 (4 _ g3

+b—x 3

If we add the equality (2.2)-(2.4) and divide by 2(b — a), we obtain required
identity. O

Corollary 2.1. Under assumption of Lemma 2.1 with \;(z) = X\;,i=1,2,3

1) if we choose x = a, we have
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—a a b
es e - - P o
b 2
ii) if we choose x = ‘IT“’, we have

N S CO R

111) if we choose x =

(27) — /f dt——[ <3a+b>+f<“z3b>}—(b?;gz)Q(AlJrzAQHg)

3a+b a+3b

- ﬁl/ <t—a>2[f“<t>—xl]dt+/3a; (t—a;b)Q[f”(t)—/\g]dt

b
+ [, =0 ® - x dt] .

b
(¢ 0?10 - e+ [ (=010 - x) dt} ,

304b we have

Corollary 2.2. If we take \y = —Xg in (2.6), then we get

%a/abfa)dt—f(“;b)

1 aTer 271 en b 21
= m[/ (t—a)[f (t)—/\l]dt+/;+b(t—b) f (t)—i—)\l]dt],

a 2

and choosing Ay = A3 = —Ag in (2.7), we have the inequality

o[ () < (45)]

3a+b a+3b
4

- g |

* /b (t=0)* [f"(t) = \i] dt] .

2
(t —a)® [f”(t)—)\l]dt—i-/w (t—a;’b) [f7(t) + M) dt
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3. Inequalities for Functions Whose Second Derivatives are Bounded

Recall the sets of complex-valued functions:

Uy (7. T) := {f : [a,b] = C|Re [(I‘—f(t)) (m) —ﬂ >0 for almost every t€|a, b]}

and

_o+r

Ay (7,1) == {f : [a,b] = C| ‘f(t) 5 < % T — ~| for ae. t € [a,b]}.

Proposition 3.1. [25] For any v,I' € C, v # I, we have that U,y (7,T) and
Z[a,b] (v,T) are nonempty and closed sets and

U[a,b] (FYa F) = Z[a,b] (77 F) .

Theorem 3.1. Let f : [a,b] — C be a twice differentiable function on (a,b) and
x € (a,b). Suppose that vi(z),l'i(x) € C, vi(x) # Ti(z), i = 1,2,3 and f" €
U[a,;ﬂ] (717 Fl) N U[m,a-l—b—w] (72; FQ) N U[a-l—b—;ﬂ,b] (735 F3) ) then we have the Znequahty

a "(z) — f'(a —x T a —x b
’($_3:b)f() flatb=s) f@+fat )+bia/af<f>dt

1

T12(b—a) [(z —a)® [vi(z) + T1(z) + 73(2) + 3(2)]
3
+2 <a -; b x) [Y2(z) + FQ(I)]] ’
< ﬁ [(x — a)3 [IT1(z) — v ()] + |T3(x) — y3(x)|]

+2 (a;rb - w)3 Ta(z) — 72(9””]

for all x € [a, ‘ZTH’] .

Proof. Taking the modulus identity (2.1) for Ay (z) = w, Ao(z) = M

and )\3 (JJ) - Ma since f” S U[a,z] (71 5 Fl)mU[x,aerfx] (’727 F2)ﬁﬁ[a+b7x,b] (’737 F3)7
we have
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‘(x_?)a—i—b)f’(x)—f’(a—i—b—:v) f@)+flatb-a) 1 /bf(t)dt

4 2 a 2 b—a J,
1

el
3
+92 <a —; b x) [y2(x) + F2(517)]]

< gmay |, (- |- 2R
. atb—z a+b n2(@) +I'a(2)
-

HOREEs
dt]

y a+b—x a 2
Sﬁllfl(a:)—%(a:)l/a(t—a)2dt+|1“2(x)_%(x)|/z (t— 42—b> "

2
b
s = @) [ (t-b) dt]
at+b—x

(z —a)’ [11(2) + T1(z) + 3(2) + Ts(@)]

dt

F(6) =

dt

+ t—b

+b—2x

- ﬁ l(x —a)® Ty (z) — 71 (x)] +2 (a—;—b

+(z — a)®|Ts(z) — y3(2)]]

which completes the proof. [

3
—w) Ta(z) — 7o (@)

Corollary 3.1. Under the assumption of Theorem 3.1,

i) if we choose x = a, then we have

b—a iy oy L@HF®) L (b-a)?
oy |7 7 (6)~ £ (a)) - +b_a/a 0yt~ o) 7o)
_a2
= U 48) |F2($)_’72($)|7

ii) if we choose x = ‘IT“’, then we have

i [ a7 () - S @) 41w ) + o)

_ (B-ap
- 96

(T2 (2) = (@) + [Ts(x) — (@)l
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iii) if we choose x = 3“+b , then we have

(3.3) . /f dt__{ <3a+b>+f<a—z3b)}
N (b76§) (m(z) + 1 (2) + 292(x) + 202(x) + v3(z) + 3(2))
< Loy (0) — 0 (@) 4 21T2(0) — )] + [Pale) (O]
- 768

Corollary 3.2. If we choose I'1(z) = —T'3(z) and v1(z) = —y3(x) in (3.2), then

/f Dt <a+b> (b a)?

0y @) - @),
and choosing T'1(z) = Ts(x) = —Ta(z) and y1(z) = y3(x) = —y2(x) n (3.3), we

i [ 3 () o ()

(b—
< O @) @,

4. Inequalities for Functions Whose Second Derivatives are of
Bounded Variation

Assume that f : [a,b] = C be a twice differentiable function on I° (the inte-
rior of I) and [a,b] C I°. Then, from (2.1), we have for A;(z) = f"(a), A2(z) =
L)/ (adb—2) and Mg(a) = f/(b)

() — f'(a —x z a - b
(4.1)<x—3“:b)f() f; o )—f()+f(2+b )+bia/f(t)dt

1 3 //a " a+b_x ¥ //x //a —x
—m[@c—a) (1@ + 500 + (0 =) )+ Mk >]]

1

) U (8 —a)” [£(t) = /(@) di+

/:er—m (t— a;—b)Q {f”(t) (=) +f"2(a+b—x)} gt

" ~/a+bz (t=0)"[f"(t) — f"(b)] dt]

for any z € [a, “T“’] .
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Theorem 4.1. Let : f : [a,b] — C be a twice differentiable function on I° (the
interior of I) and [a,b] C I°. If the second derivative f" is of bounded variation on
[a,b], then

(4‘@_ 3a2—b) f’(x)—f';a—i—b—x) 3 f(:C)—i—f(;l—i—b—x)

b
e [ HO@ - s [ - 0 (@) + )

I (“*b _x)B [f"(x) +f”(a+b—:v)]]

2
1 ‘ " a+b patbre " ’ 1
= 50-a (x_“)g\!(f)+< 2 ‘x) \! (f>+($—a)3a+\£x(f )]
a 3 "
3 ) max{(:v—a)g,(%b—:v) }\/Z(f ),
- 6(b—a
O [2e- 0+ (252 - ) max {VENE PN o ()

for any x € [a,b].

Proof. Taking modulus (4.1), we get
(4.3) ‘(w— 3“+b) ['@) = flatb-2) f@)+flatb—z)

4 2 2

b
e [ H0d = s [ 0 (@) + )

n (“*b _;C>3 [ (2) +f”(a+b—w)]] ’

2

IN

: ) [/j (t—a)*|f"(t) = f"(a)] dt

2(b—a
@)+ et b—a)

a+b—zx 2
+/ t_a—i—b
; 2 2

b
2 pn "
S SURIKOES O

dt

()

=T.

Since f” is of bounded variation on [a, b], we get

(4.4) 1£7(t) = ()] < \/(f") for t € [a, ],
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f"(@) + f"(a+b—x)

(15) 7(6) .
< %[If”(t) =@+ [ (a+b—z) = f'()]]
1 otb—
< 3 \z/ "Yfort € [x,a+b— 1]
and
b
(4.6) | (t <\ (") fort € fa+b—u,b].

¢
If we put (4.4)-(4.6) in (4.3), we have

t

s [0 (Voo [ (=) (7Y o)

T

IN

a x

b b
+ / o (t—b)? (\/( f”)) dt]

t

T T a+b—x atb—z a 2
< [\{(f")A arag Voo [T (2057 a
b b
+a+\£x(f )/Hbz (t—b) dt]
_ 1 3 y a+b Batrs " 3 ’ %
- l PV (S -e) Ve V)

which completes the proof of the first inequality in (4.2).

The proof of the second inequality in (4.2) is obvious from properties of maxi-
mum. [

Corollary 4.1. Under assumptions of Theorem 4.1,

i) if we take x = a, we have the inequality

—a a b —a)?
S - - T - CL ) + )
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it) if we take x = “F, we have

—a)2,’
< o-ar V")

b a —a)?
i [ fa- g (50) - B+ | < B

a

iii) if we take x = 3‘IT+Z’, we get
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