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ENDPOINT ESTIMATES FOR MULTILINEAR COMMUTATOR OF
INTEGRAL OPERATOR

Xia Wu and Pei He

Abstract. In this paper, we prove the endpoint estimates for some multilinear com-
mutator of certain integral operators.
Keywords: Multilinear commutator, integral operator.

1. Introduction

Let b € BMO(R™) and T be the Calder6n-Zygmund operator. It is well known
that the commutator [b, T] is defined as follows:

[0, T](f)(x) = b(z)T(f)(x) = T(bf)(x).

A classical result of Coifman, Rochberb and Weiss (see [2]) proved that the commu-
tator [b, T'] is bounded on LP(R™), (1 < p < 00). In [5], E.Harboure, C.Segovia and
J.L.Torrea proved the boundedness properties of the commutators for the extreme
values of p (also see [1]). In this paper, we will introduce the multilinear commutator
of certain integral operator and prove the boundedness properties of the operator
for the extreme cases. The integral operator include the Littlewood-Paley operator,
Marcinkiewicz operator and Bochner-Riesz operator.

First, let us introduce some notations (see [3][8-10]). In this paper, @ will denote
a cube of R™ with sides parallel to the axes. For a cube @ and a function b, let
bo = Q|7 [, b(z)dx and b(Q) = [, b(x)dz, the sharp function of b is defined by

1

#(a) = sup - [ [b(o) = boldy
Q3w Q) Q

It is well-known that (see [3])

1
b (x zsupinf—/ b(y) — c|dy.
(@) = s nf o [ )~

Received April 17, 2016; accepted June 03, 2016
2010 Mathematics Subject Classification. Primary 42B20; Secondary 42B25

579



580 X. Wu, P. He

We say that b belongs to BMO(R™) if b* belongs to L°°(R"™) and define ||b||garo =
|[b%||L~. It has been known that (see [9])

[[b — borgllBrro < CKl|bl|Baro-

We also define the central BMO(R™) space by CMO(R"™), which is the space of
those functions f € Lj,.(R™) such that

Ifllewo = sup i@ | 1)~ foldy < o
It is well-known that
Fllearo = sup inf Q0.1 [ |£(z) = el
r>1c€C Q
The A; weight is defined by (see [3])

1
Ay ={0<welLj,.:sup —/ w(y)dy < cw(x),a.e.}.
Q3x |Q| Q

Definition 1. A function a is called a H'(R"™)—atom, if there exists a cube Q,
such that

1) supp a C Q = Q(I07T)7

2) llallz= < Q7

3) [gn a(z)dz = 0.
It is well known that the Hardy space H'(R") has the atomic decomposition char-
acterization (see [3][8][10]).

Definition 2. Let 0 < d < nand 1 < p < n/d. We shall call Bg(R”) the space
of those functions f on R™ such that

n(l/p—46/n

1 fllBs = supr™ N xaomllze < oo
r>1

Definition 3. Suppose b; (j = 1,---,m) are the fixed locally integrable func-
tions on R™. Let Fi(x,y) be the function defined on R™ x R™ x [0,+00). Set

n

S,(f) () = / Fy(a,y)f(u)dy

and

SEN@ = [ TI0s(e) = b Fie) fo)dy

for every bounded and compactly supported function f. Let H be the B@nach space
H = {h :||h|| < oo} such that, for each fixed z € R™, S;(f)(x) and S?(f)(z) may
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be viewed as the mappings from [0, +00) to H. The multilinear commutator related
to S; is defined by

TE(f) (@) = ISP (@),

where F} satisfies: for fixed ¢ > 0 and 0 < § < n,

1F(e )|l < Cla —y| "

and
1Fy(z, ) — Fi(@, 2)|| + ||Fi(y, 2) — Fiz,2)|| < Cly — 2[|z — 2| 7"

if 2|y — z| < |z — z| and 2|y — u| < |z — u|. We also define T5(f)(z) = ||S:(f)(x)]].

Note that when by = - - - = by, Tj; is just the m order commutator (see [1][13]).
It is well known that commutators are of great interest in harmonic analysis and
have been widely studied by many authors (see [1][4][5-7]).

Given a positive integer m and 1 < j < m, we denote by C7" the family of all
finite subsets ¢ = {o(1),---,0(j)} of {1,---,m} of j different elements. For o € C7",

set 0¢ = {1,---,m}\ 0. For b = (b1, - -, by,) and o = {o(1),- - -,0(j)} € i, set

bo = (bo(1)** ba(s))s Do = bo(1)-bo(sy and ||bs||Baro = |[bo(1)||Baro - ||bo (i || BMO-
2. Theorems and Proofs

We begin with a preliminary lemma.
Lemma.(see [3]) Let w € A;. Then wyg € Ay for any cube Q.

Theorem 1. Let 0 < § < n and b = (by,--- ,by,) with b; € BMO(R™) for
1 < j < m. Suppose that Ts is bounded from L*(w) to L¥(w) for all u,v with

l<u<wv/d, 1/v=1/u—§/nand w € A;. Then T} is bounded from L"/%(R") to
BMO(R™).

Proof. It is only to prove that there exist a constant C'g such that
1 5
=7 [ T3 (@) = Coldr < Cl[f]|1n/s.
1Rl Jo
Fix a cube Q = Q(xo,d), we decompose f into f = f1 + fo with fi = fx2q, fo =
X@wm\20)-

When m =1, set (b1)g = |Q|™* fQ b1(y)dy, we have

SPH () (@) = (b1(@) = (01)Q) St () (@) = Se((br — (b1)@) 1) (x) = Si (b1 — (b1)@) f2) (),

SO
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175" (f)(@) = T5(((b1)@ — ba) f2) (o)
157 () @)1 = [1S:(((b1)@ — b1) f2) (o)

157 (f)(@) = Se(((br)q — b1) fo) (o)

(01 (2) = (b1)Q) St (F) (@) + [[Se((b1 = (b1)@) f1) (@)l
HI[Se((01 = (b1)@) f2) () = Se((b1 = (br)@) f2) (o)
A(z) + B(z) + C(x).

For A(x), set 1 <p <n/d, 1/¢g=1/p—35/n and 1/qg+ 1/¢' = 1, by the Holder’s
inequality and Lemma, we get

Q/ A |dx<<|Q|/|b1 ol dx) <|Q|/ 7 )1/q

<<wwumMoKmq(/‘Lf PXQ<ym)
|Q|q ||f||L"/5|Q| (1=(op/n))/p

< C||billBmoll fllpnrs-

For B(z), taking 1 <r <n/d and 1/s = 1/r — §/n, by the Holder’s inequality, we

have
1 1 . 1/s
@/Q|B(I)|d$ < (@/n(Té((bl(I) —(b1)@) f1)(x)) da:)

ClQI™*[(by — (b1)@) fx20llL-

1/s
< (g L I = talir) 17l

< ClihillBmoll flpnss-

For C(z), by the Minkowski’s inequality, we obtain

1)
(

VANVAN

< Cl|billBmo At

IN

am</ b1 (9) — )l F @) Eelary) — Fiwo, )l|dy

z — 2ol
<q/ n(0) — ()all ) — =2y
ly — ol
|z — 2ol
<oy | 103 = r)all ()l ———0
£ Jatactansi<arsi v—

o0

dé
SOEJLKlydﬂw@@m:ﬂmw—&bW@My
k=1 To—
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§/n
<CY 27k / n/éq >
Z (.. wwrsa

1 1-6/n
x (— b1 (y) — <b1>Q|wdy)

25H1Q Jarsag

< CZ k27% by || paro || 1| s
k=1

< Cliallassol 1l
thus
1
1 [ [€@ldz < Clinllasol Al
@l Jo

This completes the proof of the case m = 1.

When m > 1,set bg = ((b1)g, - - » (bm)o) € R™, where (b;)g = |Q|~ fQ y)dy, 1 <
7 < m, we have

St(f)@) = (ba(z) -

= (bi(@) = (b)) - (b (@) = (b)@)Se(f)(x
(=)™, (b1 = (b1)@) - - (b — (bm)@) f1)(x)
(1), (b1 — (b1)@) - (b — (b)) fo) (x)
m—1
+ (—1)" 7 (b(&) — bQ)eSe((b — bg)oe f) ()
j=1 G’GC;”
thus
ITE(f) () = T5(((b1)g — 1) -+ ((bm)@ — bm) f2) (0)]

)
<|I(b1(w) (01)Q) -+~ (b () = (bm)e ) (/) (@)l
+Z > @) = b@)eS:((B = ba)oe f)(@)]

j=loeCcy
+[Se((b1 = (b1)@) -+ (b — (b)) f1)(@)]]
+([Se((b1 = (b1)@) =+ (b — (bm)@) f2)(@) = St((b1 — (b1)Q) - - - (b — (bm) @) f2) (o)
= Li(z) + L(7) + I3(x) + L4(2).

For I (z), taking 1 < p <n/é, and 1/g = 1/p — §/n, by the Holder’s inequality, we
have
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e o) "G s

o 1/p
< bl paolQl -1/ < /{D2 If(x)lpdx)

< C|lbl|sarol|fll pars Q19| Q| Cr/m) /P
< Clbllsmoll fllprrs-

For I(x), taking 1 <p <n/éd and 1/g=1/p — &/n, then

i| /Q I(z)dz

3 <|Q|/ (B(z)~be) |qu> <|Q|/ 75((6 )'qd“’>l/q

P (/.. 106 ~Ea)s ($)|pXQ(:E)d:E>1/p

j=1 GCm

m— . . 1/q
s 32 lfellaco <ﬁ /Q |<b<x>—bQ>gc|qda:> 111z
7j=1 C

I A

j=1

S
<Y N bollzarollboellBarol | fll s
j=1 ceCy

—

< Cllbllsaollfllpnrs-

For I5(z), taking 1 < p<n/dand 1/¢=1/p—d/n, we get

ﬁ / Is(z)dx

(& / T3 (b - (bm —(bmm)fl)(x)wdx)l/q

ClRI™VI((ba(2) = (b1)@) -+~ (bm(@) — (bm)@) f1(@)]|

1 . 1/q
¢ (w /w (1) = (b1)Q) - (bn(2) = (b)) dw) 111 ors

S C||b||BMO||f||Ln/6-

IN

IN

IN

For I,(x), we have
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i) < [ 1T0:0) = )0l /) xaor WIIF (o) = Fiao )y

j=1
1 |$—l’0|E
<c [ T[0) - Gl —dy
(2Q)° E ! ’ ly — 2o +e—3d
<C / z — wo|f|ao — y| "D bi(y) — (b, F)ldy
; 2’““Q\2kQ| oflzo =9l |j];[1( i (y) — (b5)Q)ILf (W)

o &/n
; 2MQ| ()]

e A ORI ORI

Jj=1

< CZ ko ke H |1b;]|Bazo || f1] Lnrs

k=1 j=1
< C|bllsmollfIlznss-

Thus

1 -
o [ I@lde < Clflzaollfls
@l Ja

This completes the proof of Theorem 1.

Theorem 2. Let 0 < § < n, 1 < p < n/d and b = (by,--- ,by,) with b; €
BMO(R™) for 1 < j < m. Suppose that Ty is bounded from L*(w) to L¥(w) for

all u,v with 1 < u < v/8, 1/v =1/u — §/n and w € A;. Then T} is bounded from
BS(R™) to CMO(R™).

Proof. It suffices to prove that there exist constant Cg, such that
1 ;
o1 [ 5 ()(@) = Coldr < C[f] s
@l Jq

holds for any cube @ = Q(0,d) with d > 1. Fix a cube @ = Q(0,d) with d >

1. Set fl = fX?Qu f2 = fXRn\QQ and gQ = ((bl)Q7 7(bm)Q)7 where (b])Q —
QI fQ 1bj(y)|dy, 1<j <m, we have



586 X. Wu, P. He

ITE(F)(x) = Ts(((b1)@ — b1) -+ (bm) — bm) f2)(w0)]
<||<b1<x> (51)0) - (b (@) = () > (f)(@)]]

+
j= 1060”

+[5:((br = (b1)@) - - (b = (bm)@) f1) ()]

F[18:((01 = (b1)@) -+ (b — (bm)@) f2) (2) = Se((b1 — (b1)Q) - - - (brm — (b)) f2) (o)l

= Hy(z) + Ha(x) + Hs(z) + Hy(z).
Taking 1 < p < n/d, 1/s = 1/r — 6/n, by the Holder’s inequality and Lemma, we

have
1
— d
1/q
K K
(IQI/'H @) dx) <|Q|/|T5 o)
. 1/p
< Clilawoll /([ If(x)lpdx)
Q
< C|bl|Barod "0 || x| Lo
< CHgHBMOHf”Bg'
For Hs(z), taking 1 <p <n/d,1/s=1/r—4d/n,and 1/s' +1/s =1, then
1
— H. d
al o (@)
1/s’ 1 oL 1/s
(Ge) ~ Tl ae) (1 [ 1= F)e) )
. > (@ 16 al,
m— . 1/r
¢S I lmsolQ ( [ 106) - Ea)e )@ o )
i=1

(p—r)/pr
o7/ (- r>d$>

¢S Y loseo (a7 [, 106 =B

Jj=1 ceCcy

< QI P | fxqllry

m—1
<C > > bollsmollboe|lBarod P72 fxq|| Lo

j=1 UEC;.”

< O[]l mmol|f |5
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For H3(z), taking 1 <p<n/d,1/s=1/r—d/nand 1/s'+1/s =1, we get

|®/H3

1/s
< (g [ 01 = ) (= o) )0 )

< C1QIT*I((ba(2) = (b1)@) -+~ (b (@) — (b)) S x2ellLr

1 x) — T) — pr/(p=7) 4y (p=r)/er
<OQ@/’MN><mm (b () — (b)) d)

x d= VPO fyag |
< O[]l mmol|f |5
For H4(x), we have

@) < [ 11100 00107 eor IR 1) ~ o vy
Jj=1
- N p | — xol®
sczéﬁlyww )l =y
coo z — zo|°|zo — y| "0 mb- — (b; d
- %wam' olflo — vl ) GO

IN

3 (/Rn If(y)xgkﬁg(y”pdy)l/p

k=
/ | [ @ Da)|71dy
2k+lQ _]

=1

1-1/p

<Cka2 kEHHb lBaro (21 d) = /P=8/m)| fxoniag || s
k=1 J=1

< Cllbllsaoll fllss,
thus .
a1 [ Hi@lde < CllmsrollfLs;
(@] Q P

This completes the proof of Theorem 2.

Theorem 3. Let 0 < § < n and b = (by,--- ,by,) with b; € BMO(R™) for
1 <j < m. If for any H!(R")-atom a supported on certain cube @ and u € Q,

there is
n/(n—>=4)
) dr < C,

> % [ (1060w

j=loeCy®

U )~ Ba)oaly)dy Filx,u)
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then Tg is bounded from H'(R™) to L™ (=9 (R™).

Proof. Let a be an atom supported in some cube (). We write

j[ITfOﬁ(xﬂ"“”’&dI:i/’ITgﬁﬁ(xﬂ"“”*&dx4- 18 (a) (@) =D do =I+11.
n 2Q

(2Q)¢

For I, taking 1 < p <n/d and 1/qg=1/p— d/n, we have
n/(n—34) n/((n— n/(n—>4) —n/((n—
I < |ITE @)L 12Q /(=90 < a2 Q| =7/ (=99 < ¢,

For 11, we first calculate Stg(a) (x), we have

i = Isf @ < [0 - 6)e) wa) [ Ry
£33 E@)-bg)o /| (B~ Fie ) 6y) =Bty
j=loeCm zoyl<t
3 || 50 / Fo(z,u)(B(y) — b)oaly)dy
j= IGECm lz—y|<t

= A(z) + B(z) + C(z).

For A(x), we have

M@SAKNE@M Fi(z, u)|||a( h@H% el

o0
<C oo —— —dy b;(
< Cllall. Z/ o |x_u|n+g S Hl ol
m
<C||a||L°°Z| uln-i—a 5(27M)" H el
thrs

SCwHGHL“’H“’ (bj)ql-

Thus
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(n—38)/n
( / (A(x))"/m—f”dx)
(2Q)¢
n/(ns) ] (m9)/n

<Ol | oo | G L iz

- m n/(n—>34) nw_:(;
1
< Cllal=t" Y e | | Iby(@) — (b))o] dx
lall 2 T | fyeng 13 ) i)
= 1
n-+ k+1,\n—9
< Clla||p=t EZ W@ t)
k=1
n—34§
n/(n—>=5) T
1
1 1b;(2) — (b;)o) da
[2KH1Q| J(ar+1g) H
< Clbllsmo-
For B(z), we have
B(z) < Z (b(x) — bg)ae / [[Fi(z,y) — Fe(z,u)|[(b(y) — bg)oaly)dy
j=1oeCr le—y|<t
N POy T ly—ul® o
< CZ Z llal|z== (b(z) = bg)oe W(b(y) —bQ)ody
j=1ceCy lz—y|<t
<CY > lallpe (b(x) — bg)oe
j=1 UECJT”
> WP (By) — Bo)ady
DB A v e ¥

Z [lal| L= (B(x) — bo)or

oeC

E
X b(y) —bg)sdy
S s / B =)

HM3
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m

Z > |z (b(z) — bg)oe

=loeC®

1 —kp\e(o—kp\n 1 TN P N2 !
X |z — u|n+s—6 2(2 t)°(27") (|2kQ| kaQ(b(y) bQ)ady>

N i - tn+€
<OD° S falli (e) ~ Bo)oe lnio
j=loeCy
thus
(n—38)/n
< (B(w))”/("é)dx>
(2Q)e°
SCZ Z 6o || Baro||al | L= t™
j=loeCy
N 1 - . n/(n—3a) (n—=0)/n
8 T (0(2) = bQ)oe dx
; (/2’“+1Q\2kQ (|$—UI"+55( (z) —bq) ) )
3 G SRS 1 .
<C Z Z ||b0||BMO||a||L°°t +EZW(2k+1t) )
j=loeCr P
- - n/(n—3a) (n—=68)/n
b -b oc d
(|2k+lQ| 2k+1Q (b() ) x)
bl Baro-
So, if
N n/(n—>=4)
Z Z / < bQ gc ‘/ )dy Ft(:zr u) ) dz <C,
j=loeCcm (2Q)°
then

[ @@ <c

This completes the proof of the Theorem 3.
3. Applications

Now we give some applications of theorems in this paper.
Application 1. Littlewood-Paley operator.

Fixed 0 < 6 < n and € > 0. Let ¢ be a fixed function which satisfies the
following properties:
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(1) [ga ¥(z)dz =0,

(2) [¥(2)] < O+ o))+,

(3) [(z +y) = ¥(2)] < Cly|*(L + |z[)~ 179 when 2y| < [z].
The Littlewood-Paley multilinear operators are defined by

oo = ([T irpert) ",

where

FED@) = [ TT0:0) = bi0)ate = )7 )y

and 1y (x) =t~ (x/t) for t > 0. Set Fi(f)(y) = f * ¥i(y). We also define

st = ([ |Ft<f><x>|2%)l/2 ,

which is the Littlewood-Paley operator(see [10]). Let H be the space

H = {h: =/ |h<t>|2dt/t)l/2 < oo},

then, for each fixed x € R™, th(f) (z) and th(f) (x,y) may be viewed as the map-
pings from [0, 4+00) to H, and it is clear that

&5 (@) = 1FN @I, gps()@) = |1F(F)(@)]]

It is easily to see that g, ¢ satisfies the conditions of Theorems 1, 2 and 3 (see [5-7]),
thus Theorems 1, 2 and 3 hold for gf’by 5
Application 2. Marcinkiewicz operator.

Fixed 0 < d <mnand 0 < v < 1. Let Q be homogeneous of degree zero on
R"™ with [g,_, Q(2')do(2’) = 0. Assume that Q € Lip,(S™~"). The Marcinkiewicz
multilinear operators are defined by

Wb o)) = ( / N |Ff<f><x>|2ﬂ) "

where

F = [ 110 - b g oy

|
-1

Set
() = | %ﬂy)dy.

z—y|<t |$ -y
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We also define

st = ([T irowrs) "

which is the Marcinkiewicz operator (see [11]). Let H be the space

H = {h :||h]| = </OOO |h(t)|2dt/t3)l/2 < oo} .

Then, it is clear that

Ko (N)(@) = IE (N @), pas()@) = [1EF)@),

It is easily to see that pq s satisfies the conditions of Theorems 1, 2 and 3 (see
[7][11]), thus Theorems 1, 2 and 3 hold for ,ulg’z)é.
Application 3. Bochner-Riesz operator .

Let n > (n—1)/2, B}(f)(€) = (1 — 2[¢*) f(€) and B](z) = t—"B"(z/t) for
t > 0. Set

0@ = [ TL0i@ - b ) Bl ~ ) 1w
n il
The maximal Bochner-Riesz multilinear commutator are defined by

B} ()(x) = sup | B} (£)()]

We also define that

By« (f)(z) = sup |BY (f)(@)l,

which is the maximal Bochner-Riesz operator(see [7][12]). Let H be the space
H = {h :||h]| = sup |h(t)| < oo}, then
>0

BY (f)(x) = |BL (@), BI(f)(x) = IBI(f)()|-

It is easily to see that Bf’;)* satisfies the conditions of Theorems 1, 2 and 3 with

d =0 (see [12]), thus Theorems 1, 2 and 3 hold for Bgﬁ*.
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