
FACTA UNIVERSITATIS (NIŠ)
Ser. Math. Inform. Vol. 29, No 2 (2014), 155–171

DESIGN AND COMPARISON OF TWO WEB SERVICE BASED
FRAMEWORKS FOR PARALLEL EVALUATION OF THE POPULATION IN

GENETIC ALGORITHMS ∗

Miloš Ivanović, Ana Kaplarević-Mališić, Višnja Simić and Boban Stojanović

Abstract. Genetic algorithms are powerful techniques for optimization of complex sys-
tems. These methods require a large number of evaluations of candidate solutions which
take huge CPU time. This paper introduces two web service based frameworks for par-
allel evaluation of the population in genetic algorithm using the master-slave model.
Developed frameworks can be easily incorporated into any genetic algorithm, giving a
universal mechanism for distribution of individuals and collection of the evaluation re-
sults. This concept provides parallelization of genetic algorithms on various distributed
architectures, including multiprocessors and computing clusters. Performed tests have
shown that proposed frameworks achieve significant speedup, especially when eval-
uating large-scale problems. In addition, a case study from the field of hydrology is
presented.
Key words: Parallel computing, Genetic algorithm, Optimization, Web service, Hydrology

1. Introduction

Genetic algorithms (GAs), as a major class of Evolutionary algorithms (EAs), have
proven themselves as a robust and powerful mechanism when it comes to solv-
ing challenging optimization problems [1, 2]. They mimic the process of natural
evolution, by modifying the set of potential solutions, called population, through
selection, crossover and mutation of individuals. In order to select the best can-
didates for reproduction, one has to evaluate the fitness of each individual in the
population. Solving the optimization problem using a genetic algorithm requires
evaluation of hundreds of individuals through several tens of generations. Since
each evaluation in real-world problems usually requires running a complex, time
consuming computer simulation, the whole optimization process can last for hours
or even days.

Received March 12, 2014.; Accepted Jun 03, 2014.
2010 Mathematics Subject Classification. C.2.4; G.1.6; J.2
∗The part of this research is supported by the Ministry of Education, Science and Technological Devel-
opment of the Republic of Serbia (Grants III41007, OI174028, TR37013, III44010, and TR 14005, and FP7
ICT-2007-2-5.3 (224297) ARTreat project.

155



156 M. Ivanović, A. Kaplarević-Mališić, V. Simić, B. Stojanović

In order to speed up the optimization task, various approaches for the use of
parallelism in genetic algorithms have been proposed in the literature and surveys
have been written [3, 4, 5, 6]. Three major parallel models can be distinguished [5]:
self-contained parallel cooperation (between different algorithms), problem inde-
pendent intra-algorithm parallelization, and problem dependent intra-algorithm
parallelization.

Self-contained parallel cooperation algorithms, known as island model algo-
rithms, are suitable for large scale search spaces and can be used on parallel sys-
tems with very limited communication. The population is divided into several
sub-populations (islands) and serial GA is executed in each of these islands for
a number of generations called an epoch. At the end of each epoch, individuals
migrate between neighboring islands along migration paths. Inter-processor com-
munication frequency in this model is low, but modeling requires a lot of param-
eters and design decisions. Intra-algorithm parallelization does not affect applied
genetic algorithm, and is therefore used to speed up the search. Algorithms with
problem independent intra-algorithm parallelization, called master-slave models
or global parallelization algorithms, consider parallelization of a single iteration
of a genetic algorithm. This type of parallelization model is suitable for prob-
lems where fitness evaluation of an individual is time-consuming. In problem
dependent intra-algorithm parallelization, problem-dependent operations are par-
allelized, i.e. evaluation of a single individual is parallelized (different objectives
and/or constraints). This model is useful when dealing with time and/or memory
intensive objectives and constraints. For example, when several solvers have to be
used, or when multiple runs for one fitness evaluation have to be done.

In the field of large scale optimization, both shared memory and distributed
memory parallel systems have been used. In a shared-memory multiprocessor en-
vironment, the operating system is helped with multi-threaded APIs such as POSIX
Threads, OpenMP and inherent thread models in platforms such as Java and .NET
dominate. On the other hand, considering a distributed memory environment,
previous work usually employs involved MPI (Message Passing Interface), sock-
ets and Java RMI. More recently, global Internet trends induced the use of grid
middleware such as those based on Globus toolkit and common Internet based
technologies like web services.

Many frameworks for the parallel execution of the EAs have been proposed and
implemented. Distributed BEAGLE [7] uses the master-slave model for distribut-
ing evaluations on several processors of Beowulf clusters or LANs of workstations.
ParadisEO [8] is a general framework for parallel and distributed metaheuris-
tics. It provides the most common parallel and distributed models, portable on
distributed-memory machines and shared-memory multiprocessors, since they are
implemented using standard libraries such as MPI, PVM and PThreads. MALLBA
[9] is a C++ library of algorithms for optimization that can deal with parallelism
(using MPI) on LAN or WAN platforms. All algorithms in the MALLBA library are
implemented as software skeletons that users customize depending on the specific
problem. In the Simdist framework [10], distribution subsystem and evolution-



Design and Comparison of Two Web Service Based Frameworks 157

ary system are run as separate processes, communicating only through standard
I/O streams, so the evolutionary system can be implemented in any programming
language. The framework uses MPI as the underlying protocol for parallel pro-
gramming.

This paper introduces two frameworks for parallel evaluation of the population
in GA using the master-slave model. Both frameworks distribute unevaluated
individuals to slave processes, collect and return the evaluation results to the
master. What distinguishes our systems from the ones previously developed is
that they employ web services, which provide a means of interoperating between
framework elements [11]. The frameworks are easy to implement, independent
of the chosen GA, and can be deployed on different parallel architectures, such
as multiprocessor and computing cluster. Windows Communication Foundation
(WCF) [12] was used for web service implementation in proposed frameworks.
The frameworks are presented from an architectural perspective and pros and cons
of each are analyzed in detail.

The rest of the paper is organized as follows: the proposed frameworks are de-
scribed in Section 2. In Section 3 experimental results and discussion are presented,
followed by a case study in Section 4. Section 5 concludes and outlines some future
work.

2. Description of the Frameworks

The proposed frameworks consist of one dispatcher and a number of workers. Such
architecture requires a sequential GA to be split into two separate programs: the
master part, containing the main evolutionary loop, and the slave part, containing
the fitness evaluation routine which is executed by the workers. The dispatcher
acts as the intermediate layer between the master part of GA and the workers which
evaluate individuals. The frameworks provide asynchronous parallel evaluation
of individuals from a generation. The master executes the evolutionary loop in
the main thread (Figure 2.1) to the point when a generation needs to be evaluated.
Then, the dispatcher is started in a separate thread. It receives individuals from the
master, enqueues them, distributes individuals to available workers, and returns
the evaluations results from the workers to the master. The main thread remains
stopped until all individuals from a generation are evaluated and afterwards con-
tinues with the rest of the genetic algorithm. The developer of the optimization
system has to separate the evaluation step from the rest of the genetic algorithm
loop, but has no concern with the details of distributing individuals and retriev-
ing evaluations results. It is up to the dispatcher to distribute individuals to the
workers as efficiently as possible, and gather the results.

Although both proposed frameworks follow the intra-algorithm parallelization
model, they differ regarding communication protocol. The first framework is based
on the push distribution model, where the dispatcher initiates communication with
workers and requests evaluation of individuals. In contrast, the second framework
uses a pull model, where workers request evaluation tasks from the dispatcher.



158 M. Ivanović, A. Kaplarević-Mališić, V. Simić, B. Stojanović

The motivation for using WCF comes from the fact that a certain number of
existing commercial scientific applications are developed in .NET platform. These
frameworks enable GA based applications developed in .NET platform to seam-
lessly distribute evaluation of individuals to the platforms that support WCF (Win-
dows, Mono/Linux, etc.). Furthermore, when it comes to the fitness evaluation,
the proposed frameworks allow both: usage of .NET based evaluators, as well as
evaluators developed in other platforms supported by underlying OS.

Detailed descriptions of both frameworks are given in the following text.

Create initial population Evaluate an
individual

For each individual
in population

Send to evaluation

Wait for evaluation
results

Distribute
individuals and
collect results

Evaluate population

Create new population
through selection,

crossover and mutation

stopping
criteria reached

FRAMEWORK

DISPATCHER

WORKER 1

Evaluate an
individual

WORKER 2

Evaluate an
individual

WORKER n

No

Start

Finish

Fig. 2.1: Schematic view of master-slave parallel GA with the dispatcher as the
intermediate layer between the master part of GA and the workers which evaluate
individuals

2.1. Push-model framework

The push-model framework was introduced in [13]. The main part of the dispatcher
is the evaluation pool. It represents an intermediate step between genetic algorithm
running on the master and routines that evaluate individuals on the worker nodes.
When the master sends individuals for evaluation, they are being queued in the
evaluation pool. The evaluation pool acts as the client and dispatches individuals
to the workers which are implemented as WCF web services.

Figure 2.2 illustrates the push-model framework. The evaluation pool is ini-
tialized by the master with information regarding available web services. Each
time the generation has to be evaluated, the master starts the evaluation pool in
a separate thread and sends it individuals for evaluation, where they are being



Design and Comparison of Two Web Service Based Frameworks 159

queued. The main thread of the algorithm remains blocked until all individuals
sent to evaluation are evaluated.

Fig. 2.2: Push-model framework

The evaluation pool uses the thread pool provided by the .NET Framework
through the ThreadPool class [14, 15]. A thread pool is a collection of threads that
can be used to perform a number of tasks in the background. In this framework,
every single thread is used to send an individual to the web service running on
the slave node. This way, evaluations can be processed asynchronously, without
tying up the primary thread of the evaluation pool or delaying the processing of
subsequent requests. Each thread calls the web service on a network computer and
sends it an individual that has to be evaluated. When evaluation of the individual is
done, the result is returned to the client application and assigned to the individual.
Once a thread in the pool completes its task, it is returned to a queue of waiting
threads. Then it can be reused for the rest of queued individuals, the same as the
corresponding web service which has completed the evaluation. This reuse enables
applications to avoid the cost of creating a new thread for each task.

Once all the web services return results and there are no more individuals in the
queue, the evaluation pool sends a signal to the main thread that all evaluations are
over and that the master thread can continue with the rest of the genetic algorithm.

If any web service raises an exception and the evaluation of the individual fails,
the same individual is sent to the first free web service. To avoid repetitive errors
on the faulty web service, the evaluation pool does not send individuals to that
service for some time. This way, the faulty web service is not fully eliminated from
the evaluation process, but has a chance to be recovered.

It should be noted that push-model has limitations in large computing clusters
and computing grid environments, where worker nodes usually reside behind
firewalls, and often within NAT (Network Address Translation) domain. Firewalls
and NAT prevent dispatcher to directly invoke web services residing on workers,



160 M. Ivanović, A. Kaplarević-Mališić, V. Simić, B. Stojanović

which is resolved by the pull communication model.

2.2. Pull-model framework

In a pull model, the dispatcher receives requests from both the master and workers.
The master sends individuals to the dispatcher where they wait to be evaluated.
Worker nodes request individuals from the dispatcher, execute the evaluation and
return obtained fitness values to the dispatcher. On the request of the master, the
dispatcher fetches evaluated individuals back to the master.

The dispatcher in the pull-model is divided into two components: the evalu-
ation pool and the manager. In contrast to the push-model framework, the eval-
uation pool in the pull-model does not communicate with workers directly, but
rather over the manager which is the only web service in the entire framework.
The manager is being called by both the evaluation pool and a number of workers,
acting as intermediate WCF service between job requests and available computing
resources. All the activities performed by the manager are reactions to the client
invocations.

The master starts the evaluation pool in a separate thread and sends it indi-
viduals for evaluation, where they are being queued (Figure 2.3). The evaluation
pool promptly reacts on arrival of each new individual, and sends it to the man-
ager. When a whole generation is sent, the master waits for all individuals to be
evaluated and returned from the evaluation pool.

Fig. 2.3: Pull-model framework

A worker registers with the manager and requests one individual to evaluate.
Upon a manager’s response, the worker executes evaluation of the supplied in-
dividual, returns the result and afterwards is able to request a new unevaluated
individual. The workers communicate with the manager in asynchronous fashion.
This implies that they act as clients accessing the manager through two different
types of web service calls. The first type of call pulls a job from the manager, and the



Design and Comparison of Two Web Service Based Frameworks 161

second type returns evaluation results to the manager. On each client invocation
the manager starts a separate service thread in order to enable handling multiple
clients in a parallel manner.

The frequency of worker requests plays a major role in overall pull-model
framework performance. Due to the nature of genetic algorithms, unevaluated
individuals are sent to the manager intermittently. Consequently, there are periods
between generations when workers are not occupied and therefore request new
jobs frequently. Too frequent invocations decrease the manager’s responsiveness,
since it has to employ resources for each call, send a reply back and finally release
occupied resources. In order to avoid this performance bottleneck, in case the
worker receives the response that there are no unassigned individuals at the mo-
ment, it remains idle for a specified time (workerIdleInterval) before sending out a
new job request. It should be noted that too many requests overload the manager,
but too long of an interval delays commencement of the distributed evaluation
process.

3. Performance analysis - results and discussion

The main objectives of the analysis were:

• To evaluate the parallelization validity of both proposed frameworks, measuring
speedup of GA

• To evaluate the overhead influence rate in various parts of the problem spectrum.
More precisely, the aim was to experimentally measure the extent to which
the unit size of transferred data, as well as the manager communication
frequency with worker processes, affects overall slowdown.

Using a simple GA with real-encoded chromosomes we solved the artificial test
problem. The fitness function was a dummy function that does nothing except re-
ceive individuals, sleep for a certain number of seconds, and return random fitness
value to the evaluation pool or to the manager, depending on whether push-model
or pull-model framework was used. Since one of the most significant goals of
this study was to rate inherent communication overhead within distributed GA,
the intention was to mask the influence of various CPU speeds and loads in the
real computing environment, such as a computing cluster, and isolate network-
ing effects. Therefore, it did not matter whether the workers were performing
calculations simply sleeping, it only mattered how long it took them to return
their response. The following set of parameters for the simple GA algorithm was
adopted: a simulated binary crossover with a probability of 0.9 and a distribu-
tion index of 20, and polynomial mutation with a distribution index of 20 and
probability of 1/l, where l is the chromosome length.

Benchmark setup for performance examination considered the following vari-
able parameters: fitness evaluation time for an individual (from 10 milliseconds
to 10 seconds), population size (100, 250, 500, and 1000 individuals), length of



162 M. Ivanović, A. Kaplarević-Mališić, V. Simić, B. Stojanović

chromosomes (represented by 10, 100 and 1000 variables of type double), number
of workers (5 to 24). The workerIdleInterval was set to 1 second. This value turned
out to be a well balanced choice, since managers’ CPU load never rose above 25%.

The benchmarks were carried out using two parallel architectures; shared mem-
ory architecture represented by symmetric multiprocessor, and distributed memory
architecture represented with a Beowulf type computing cluster.

For completeness, a brief description the hardware/software environment fol-
lows. Multiprocessor architecture was represented by SMP machine equipped
with 2 AMD Opteron 6174 CPUs (2.2GHz, 12-core each, totaling to 24 cores) and
64GB of RAM. Computing cluster architecture was represented with a Beowulf
type cluster consisting of 14 nodes, each with a single 2.4GHz Intel Core2Quad
Q6600 CPUs with 8GB RAM memory, totaling to 56 CPUs with 112GB RAM mem-
ory. All nodes run Scientific Linux 5.8 x86 64 with cluster jobs running inside
PBS Torque batching environment. Since the original MS .Net Framework is not
available on POSIX compatible platforms, the authors employed the substitution;
the open source implementation of .NET Framework Mono v2.10.5 which almost
completely complies to .NET 3.5 standard.

3.1. Speedup analysis

Having in mind the adopted parallelization strategy (distributed evaluations of
the individuals), it turns out that the most valuable information reflecting general
speedup is the time needed to evaluate the entire generation. The speedup values
in the diagrams below are averages taken from 100 separate runs. Depending on
the fitness evaluation time of an individual, parallelization is more or less a good
choice. Precisely speaking, we measured the time needed to evaluate the whole
generation as a function of number of workers involved, while population size
(500), as well as length of the chromosome (10 doubles) were fixed. The maximum
number of workers was limited to 24, due to the fact that this is the number of CPU
cores within representative multiprocessor architecture taken for benchmarking
purposes.

In Figure 3.1, the speedup analysis graphs of the push and pull-model frame-
work in multiprocessor and computing cluster environments are presented. Speedup
is calculated as Tt/Tm where Tt is the theoretically assumed duration of a fully se-
quential process of evaluation (number of individuals times individual evaluation
duration) and Tm is the experimentally measured time. Perfect speedup is the
theoretical limit assuming that all communications are neglected. The most ob-
vious observation considering these diagrams is that two proposed frameworks
behave more or less similarly in a scalability sense, regardless of architecture (ei-
ther multiprocessor or computing cluster). In the case of more time consuming
fitness evaluations, speedup quickly converges to theoretical ideal. On the other
hand, with less time consuming evaluations, speedup reaches maximum at some
point and then starts decreasing. The reason for such behavior lies in web service
communication overhead, which becomes more significant with larger number of



Design and Comparison of Two Web Service Based Frameworks 163

Computing Cluster
Push-model Framework

Number of Workers

5 10 15 20 25

0

5

10

15

20

25

S
p
e
e
d
u
p

Number of Workers

5 10 15 20 25

S
p
e
e
d
u
p

Multiprocessor
Push-model Framework

0

5

20

25

10

15

Fitness Evaluation Time of Individual (s)

S
p
e
e
d
u
p

Number of Workers

Multiprocessor
Pull-model Framework

5 10 15 20 25

0

5

10

15

20

25

0.05 0.10 0.25 1 10

S
p
e
e
d
u
p

Computing Cluster
Pull-model Framework

5 10 15 20 25

0

5

10

15

20

25

Number of Workers

0.01 0.15

Fig. 3.1: Speedup analysis of the distributed GA run

workers. At some point, the communication overweighs the computation, making
the entire system too expensive due to its inherent complexity. The movement of
the saddle point to the right hand side with increasing fitness evaluation time is
also an expected behaviour. Moreover, the pull-model framework has a slower
pace of efficiency improvement with increasing fitness evaluation time. This is
the effect of using pull, instead of push, method for acquiring jobs, as explained
above. If one compares the left hand side diagrams with their right counterparts
(architectural difference), it can be seen that push-model framework behaves better
on a computing cluster than on a many core multiprocessor. The explanation of
this result can be found in the communication overhead, which will be explained in
more detail in the next section. In contrast, pull-model framework behaves almost
identically on both architectures.

3.2. Rating the influence of communication overhead

In order to assess the influence of the communication overhead, we have analyzed
the functional dependencies between:

• Communication overhead and number of individuals in one generation, with vary-
ing fitness evaluation time of an individual and fixed chromosome length;



164 M. Ivanović, A. Kaplarević-Mališić, V. Simić, B. Stojanović

• Communication overhead and the size of total data transfer determined by chro-
mosome length, with varying fitness evaluation time of an individual and
fixed number of individuals in one generation.

The most significant factor that influences the overhead turns out to be the
fitness evaluation time of an individual. Since the master has to wait for all in-
dividuals of a generation to be evaluated in order to carry on with the rest of the
algorithm, the overhead influence increases with decreasing fitness evaluation time
of an individual. Having this in mind, all tests were performed with varying fitness
evaluation time of an individual.

3.2.1. How size of a generation influences the communication overhead

In this analysis, the chromosome length was fixed to a relatively low value of 10
parameters of type double. The majority of the real-world problems the authors
dealt with in the past had approximately this chromosome length, therefore the
motivation to quantify their inherent overhead. In order to simplify the comparison
between different architectures (multiprocessor or computing cluster) the number
of engaged workers was fixed to 24, as explained above.

Figure 3.2 contains four diagrams, one for each order of magnitude of the fitness
evaluation time of an individual. The overhead is quantified as a relative value
(Tp − Tt)/Tt, where Tp is an average time needed to evaluate a generation taken
from 100 consecutive runs, and Tt denotes theoretical ideal time value obtained by
dividing the time needed for a sequential run with 24 (fixed number of workers).

The first obvious observation from the diagrams shown in Figure 3.2 is that the
number of individuals per generation shows significant influence on the overhead
only in the cases of more time consuming fitness evaluations. The result makes
sense if one considers the size of a generation to be directly proportional to the
workers’ synchronization period. Larger generation means less frequent synchro-
nizations, which leads to lower relative overhead values. For fitness evaluation
time that exceeds 1s, the relative overhead falls below 10% for an averagely sized
generation of 500 individuals.

Moreover, if one compares measured performance of two proposed frameworks
with varying generation size, it is noticeable that pull-model framework performs
considerably worse with less time consuming evaluations and the overhead falls
at a slower rate with increase of evaluation duration of an individual. On the
other hand, considering long enough fitness evaluations, the lines that indicate
two frameworks converge toward each other, as expected.

3.2.2. How the size of a chromosome influences the communication overhead

The focus of this section is to estimate how the amount of data being sent to the
workers influences overall performance of two frameworks on two different hard-
ware architectures. The benchmarks have been performed for various chromosome



Design and Comparison of Two Web Service Based Frameworks 165

Fig. 3.2: Relative overhead as a function of number of individuals within a gener-
ation

sizes represented by 10, 102 and 103 parameters of type double, 500 individuals per
generation and 24 active workers. Therefore, overall useful application data be-
ing transferred over the network ranges from 40KB up to 4MB. In Figure 3.3, the
relative overhead defined above is shown as a function of the amount of all the
useful data being transferred through the network. Values were averaged using
100 consecutive generations. The results for fitness evaluation time of an indi-
vidual that takes less than 100ms are not shown, since their overhead is too high
to be considered for any kind of practical use. The first obvious observation is
that with increasing complexity, as overhead value falls, the data exchange matters
less and less. The push-model framework keeps the leading position in the whole
range of various fitness evaluation times of an individual. The performance differ-
ence between push-model and pull-model framework decreases quickly as fitness
evaluation time of an individual grows.

It is even more interesting how the performance of the proposed frameworks de-
pends on running within computing cluster or multiprocessor environments. If one
focuses only on ribbons representing measurements of a push-model framework,



166 M. Ivanović, A. Kaplarević-Mališić, V. Simić, B. Stojanović

Fitness Evaluation Time for an Individual (s)

0.5 1 10

10

R
e

la
ti

v
e

O
v

e
rh

e
a

d

0.25

0.20

0.15

0.10

0.05

0.00

Multiprocessor Push Model

Computing Cluster Push Model

Multiprocessor Pull Model

Computing Cluster Pull Model

0.04

0.03

0.02

0.01

0.00

Fig. 3.3: Relative overhead as a function of total data transferred through the
network

it can be seen that the multiprocessor ribbon is completely covering the computing
cluster ribbon. The same trend is also present for pull-model framework and the
explanation of this behavior is simple. While the amount of transferred data is
low, the relative overhead is lower for multiprocessor, since the entire data traffic
is handled by a single network controller without reaching its full capacity. On the
other side, when the amount of data is large, the transfer can be better handled
with multiple network controllers in the computing cluster environment.

4. Case study

An automatic calibration of distributed hydrologic model has been chosen to
demonstrate the ability of the proposed frameworks to speed up calculations in
real-world environmental engineering problems. The hydrologic model calibra-
tion is formulated as the following optimization problem: for a given hydrologic
model, find the values of parameters (which cannot be measured) to achieve the
smallest possible error of the model [16, 17]. The hydrologic model used in this
study was based on SWAT model [18] and requires a large number of input param-
eters: meteorological, topographic, pedological, parameters regarding vegetation,
etc.

Hydrologic model of the Drina river basin (Figure 4.1) has been divided into 98
watersheds consisting of approximately 25000 hydrologic response units (HRUs).
Climatic inputs used in the model included historical daily precipitation, maximum
and minimum temperature, solar radiation data, relative humidity, and wind speed
for a period of 3 years. For the given period, measured outflows at several junctions
are known. In order to fit model results to the measurements, estimation of the
following 11 parameters was performed: maximum water volume to remain on
plants in a given day, soil porosity, filtration coefficient, the maximum water volume



Design and Comparison of Two Web Service Based Frameworks 167

Fig. 4.1: Calibration of the Drina river basin hydrologic model. Comparison be-
tween measured and calculated outflows at Prijepolje hydroprofile

to remain on fully grown plants, surface runoff linear reservoir time constant,
ground water discharge linear reservoir time constant, time constant of linear
reservoir representing rivers, base temperature for the start of formation of the
snow pack, rainfall gradient, gradient of temperature drop with an increase in
altitude and snow melting factor (meanings of parameters are given in [18, 19]).
Each individual was encoded to represent a set of possible values for the model
parameters.

The problem of calibration of the Drina river basin hydrologic model is the
multiobjective optimization problem with two objective functions to minimize: (1)
the root mean square error (RMSE) of the observed vs. calculated outflows, which
tend to better fit higher (peak) outflows; (2) the logarithmic error (LOGE) that uses
the logarithms of the observed and calculated outflows, rather than their original
values, and favours lower (basic) outflows. For solving the model calibration prob-
lem we used NSGA-II algorithm [20]. The following set of algorithm parameters
was adopted: a population size of 500 individuals, a maximum of 100 generations,
a simulated binary crossover with a probability of 0.9 and a distribution index of
20, and polynomial mutation with a distribution index of 20 and probability of 1/l,
where l is the chromosome length. All results are taken from 10 independent runs.

Evaluation of a single individual requires one run of model simulation for a
given parameter set, which on average takes about 30 seconds for this model.
Consequently, sequential execution of GA with 500 individuals in 100 generations
would last for more than 17 days. GA based automatic calibration of the dis-
tributed hydrologic model of the Drina river basin has been parallelized using pull
model framework and executed on computing cluster consisted of 5 servers, each
equipped with two 16-core AMD Opteron 6272 and 48GB RAM and 10k rpm hard
disk drive. The pull-model framework has been chosen for its inherent flexibility
and acceptable relative overhead, which is less than 3% for evaluation lengths ex-



168 M. Ivanović, A. Kaplarević-Mališić, V. Simić, B. Stojanović

ceeding 10s, according to performed benchmarks. In order to examine the benefits
of parallel execution we have measured how increasing the number of processors
affects total runtime of calibration.

Fig. 4.2: The total runtime in hours and speedup of automatic calibration using
pull-model framework on the computing cluster

Figure 4.2 shows total runtime in hours and speedup of automatic calibration
using pull-model framework on the described computing cluster. As it can be seen
in Figure 4.2, the speedup is almost linear, and runtime graph steeply declines at
the beginning since 10 processors finish evaluation almost 10 times faster than one
processor.

5. Conclusions and future work

This paper presents two service-oriented frameworks for parallel evaluation of the
individuals in GA using WCF web services. The frameworks follow the master-
slave parallelization model, which does not require any change of the sequential
GA, since the fitness evaluation of an individual is separated from the rest of the
algorithm. Applied web-service oriented architecture enables the frameworks to be
used on various distributed platforms ranging from multicomputer to computing



Design and Comparison of Two Web Service Based Frameworks 169

clusters and grids. The frameworks provide suitable mechanisms intended to
distribute individuals and collect the evaluation results, independently of applied
selection, crossover and mutation operators. The first framework is based on
the push task distribution model and the second framework uses the pull task
distribution model, which is more firewall and grid friendly.

Performed benchmarks have shown that the fitness evaluation time of an indi-
vidual is the major influence on performance of the frameworks. The frameworks
exhibited significant communicational overhead for short evaluations. The over-
head has been influenced not only by fitness evaluation time, but also by chro-
mosome length and generation size. In addition, the pull model has shown even
lower performance, due to the more complex communication protocol. In contrast,
for time consuming evaluations, both frameworks have shown equal performance,
achieving almost ideal speedups. The case study has verified that the frameworks
are suitable for running GAs with computationally expensive evaluations which
are common in real-world applications.

However, considerable work remains to be done. There is a major drawback in
the pull model framework as the manager becomes a single point of failure, which
can be addressed through redundancy. The second drawback of both frameworks is
their inherent inelasticity in occupying computing resources. Even when there are
no pending evaluation tasks, the frameworks keep resources reserved, preventing
other users from employing them.

The authors are currently working on integrating grid job allocator Work Binder
[21] in order to fulfill the elasticity request in the European Grid Initiative (EGI)
grid environment. The next step might be to modify Work Binder in order to use
standard EC2 interface to independently manage cloud instances according to the
system load.

R E F E R E N C E S

1. C. A. Coello Coello, G. B. Lamont and D. A. Van Veldhuizen: Evolutionary Algorithms
for Solving Multi-Objective Problems. 2nd ed. Springer, New York, 2007.

2. K. Deb: Multi-objective optimization using evolutionary algorithms. Wiley, UK, 2001.

3. E. Alba, G. Luque and S. Nesmachnow: Parallel metaheuristics: recent advances and new
trends. Int. T. Oper. Res. 20, no. 1 (2013), 1–48.

4. A. Jaimes and C. A. Coello Coello: Applications of Parallel Platforms and Models in Evolu-
tionary Multi-Objective Optimization. In: Biologically-Inspired Optimisation Methods (A.
Lewis, S. Mostaghim, and M. Randal, eds.), Springer, Berlin, 2009, 23–49.

5. E. Talbi, S. Mostaghim, T. Okabe, H. Ishibuchi, G. Rudolph and C. A. Coello Coello:
Parallel Approaches for Multiobjective Optimization. In: Multiobjective Optimization. Inter-
active and Evolutionary Approaches (J. Branke, K. Deb, K. Miettinen, and R. Slowinski,
eds.), Springer, Berlin, 2008, 349–372.

6. M. Tomassini: Parallel and distributed evolutionary algorithms. In: Evolutionary Algorithms
in Engineering and Computer Science (K. Miettinen, M. Mkel, P. Neittaanmki, and J.
Periaux eds.), Wiley, New York, 1999, 113–133.



170 M. Ivanović, A. Kaplarević-Mališić, V. Simić, B. Stojanović

7. C. Gagne, M. Parizeau and M. Dubreuil: Distributed beagle: an environment for parallel
and distributed evolutionary computations. In: Proc. of the 17th Annual Int. Symp. on High
Performance Computing Systems and Applications (HPCS), 2003, 201–208.

8. S. Cahon, N. Melab and E. Talbi: ParadisEO: A Framework for the Reusable Design of
Parallel and Distributed Metaheuristics. J. Heuristics 10, no. 3 (2004), 353–376.

9. E. Alba, G. Luque, J. Garcia-Nieto, G. Ordonezand G. Leguizamon:MALLBA: a software
library to design efficient optimisation algorithms. Int. J. Innov. Comput. Appl. 1, no. 1 (2007),
74–85.

10. B. A. Hoverstad: Simdist: a distribution system for easy parallelization of evolutionary
computation. Genet. Program. Evol. M., 11, no. 2 (2010), 185–203.

11. D. Booth, H. Haas, F. Mccabe, E. Newcomer, M. Champion, C. Ferris, C. et al.: Web
services architecture. W3C Web Services Architecture Working Group Note. Available at:
http://www.w3.org/TR/ws-arch/, 2004.

12. D. Chappell: Introducing Windows Communication Foundation, MSDN Library. Available
at: http://download.microsoft.com/download/C/2/5/
C2549372-D37D-4F55-939A-74F1790D4963/

Introducing WCF in NET Framework 4.pdf, 2010.

13. B. Stojanovic, V. Simic, M. Ivanovic, A. Kaplarevic-Malisic and A. Stanojevic: WCF
Platform for Distributed Evaluation in Evolutionary Algorithms. In: Proc. of the 4th Int.
Conf. Science and Higher Education in Function of Sustainable Development (SED),
Uzice, Serbia (October 2011), 8–13.

14. J. Albahari and B. Albahari: C# 3.0 in a Nutshell. 3rd ed. O’Reilly Media, 2007.

15. A. Jones: C# Programmer’s Cookbook. Microsoft Press, 2003.

16. D. P. Solomatine, Y. Dibike and N. Kukuric: Automatic calibration of groundwater models
using global optimization techniques. Hydrolog. Sci. J., 44, no. 6 (1999), 879–894.

17. N. Milivojevic, Z. Simic, A. Orlic , V. Milivojevic and B. Stojanovic: Parameter
estimation and validation of the proposed SWAT based rainfall-runoff model: Methods and
outcomes. Journal of Serbian Society for Computational Mechanics, 3, no. 1 (2009), 86–
110.

18. J. G. Arnold and N. Fohrer: SWAT2000: Current capabilities and research opportunities in
applied watershed modeling. Hydrol. Process., 19, no. 3 (2005), 563–572.

19. Z. Simic, N. Milivojevic, D. Prodanovic, V. Milivojevic and N. Perovic: SWAT-
Based Runoff Modeling in Complex Catchment Areas Theoretical Background and Numerical
Procedures. Journal of the Serbian Society for Computational Mechanics, 3, no. 1 (2009),
38–63.

20. K. Deb, A. Pratap, S. Agarwal and T. Meyarivan: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6 (2002), 182–197.

21. B. Marovic, M. Potocnik and B. Cukanovic, B: Multi-application bag of jobs for interactive
and on-demand computing. Scalable Computing: Practice and Experience, 10, no. 4 (2009),
413–418.



Design and Comparison of Two Web Service Based Frameworks 171

Miloš Ivanović, Ana Kaplarević-Mališić, Višnja Simić and Boban Stojanović
Faculty of Science
Department of Mathematics and Informatics
P. O. Box 60
34000 Kragujevac, Serbia
mivanovic@kg.ac.rs (M. Ivanović)
ana@kg.ac.rs (A. Kaplarević-Mališić)
visnja@kg.ac.rs (V. Simić)
bobi@kg.ac.rs (B. Stojanović)


	Introduction
	Description of the Frameworks
	Push-model framework
	Pull-model framework

	Performance analysis - results and discussion
	Speedup analysis
	Rating the influence of communication overhead
	How size of a generation influences the communication overhead
	How the size of a chromosome influences the communication overhead


	Case study
	Conclusions and future work

