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TRANS-SASAKIAN MANIFOLDS ∗
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Abstract. The aim of the present paper is to study generalized M -projective φ-
recurrent trans-Sasakian manifold and its various geometric properties. First, we find
the sufficient condition for generalized M -projective φ-recurrent trans-Sasakian mani-
fold to become Einstein. Then non-existence of generalized M -projective φ-recurrent
trans-Sasakian manifold has been shown under certain condition. Finally, the sufficient
condition for super generalized Ricci-recurrent was also established.
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1. Introduction

A new class of almost contact manifold was initiated by Oubina [14], called trans-
Sasakian manifold, which is of type (0, 0), (α, 0) and (0, β) are respectively known
as the cosymplectic, α-Sasakian and β-Kenmotsu manifold; where α, β are being
smooth scalar functions. In particular, if α = 0, β = 1 and α = 1, β = 0 then a trans-
Sasakian manifold will become a Kenmotsu and Sasakian manifold, respectively.

In 1971, Pokhariyal and Mishra [15] defined a new curvature called M -projective
curvature tensor on Riemannian manifold. After that many researcher such as Ojha
[12, 13], Singh [20], Choubey and Ojha [3] studied some properties of M -projective
curvature in different manifolds.

The idea of local symmetry of a Riemannian manifold started by Cartan [1]. This
idea has been used by many authors in several directions such as recurrent man-
ifolds by Walker [24], semi-symmetric manifold by Szabo [22], pseudo-symmetric
manifold by Chaki [2], pseudo-symmetric spaces by Deszcz [5], weakly symmetric
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manifold by Tamassy and Binh [23], weakly symmetric Riemannian spaces by Sel-
berg [21]. Despite, the idea of pseudo-symmetric by Chaki and Deszcz and weak
symmetry by Selberge and Tamassy and Binh are different. As a mild version of
local symmetry, Takahashi [25] introduced the notion of φ-symmetry on a Sasakian
manifold. For generalizing the idea of φ-symmetry, De et al. [8] introduced the
concept of φ-recurrent Sasakian manifold. De [7] and Pal [11] studied generalized
concircularly recurrent and generalized M -projectively recurrent Riemannian man-
ifold. The purpose of this paper is to study generalized φ-recurrent trans-Sasakian
manifold using M -projective curvature in place of Riemannian curvature i.e gener-
alized M -projectively φ-recurrent trans-Sasakian manifold.

The paper is organized as follows:

In Section 2, we gave basic formulae of trans-Sasakian manifold and some rel-
evant definitions. In Section 3, we studied generalized M -projectively φ-recurrent
trans-Sasakian manifold and obtain a sufficient condition for such a manifold to be
Einstein. Then, we found the condition such that the generalized M -projectively
φ-recurrent trans-Sasakian manifold will not exist. Finally, we find different condi-
tion for such manifold to be super generalized Ricci recurrent and quasi-generalized
Ricci-recurrent.

2. Preliminaries

In this section, we mention some basic formulae and definitions which will be
used later.

Let Mm be an m = (2n+1) dimensional almost contact metric manifold [4, 17]
equipped with an almost contact metric structure (φ, ξ, η, g) consisting of a (1, 1)
tensor field φ, a characteristic vector field ξ, a 1-form η and a Riemannian metric
g. Then

(2.1) φ2X = −X + η(X)ξ, η(ξ) = 1, η(φX) = 0, φξ = 0,

(2.2) g(φX, φY ) = g(X,Y )− η(X)η(Y ),

(2.3) g(ξ, ξ) = 1, φ ◦ ξ = 0, η ◦ φ = 0,

for any X , Y in TM . From (2.1) and (2.2), it can be easily seen that

(2.4) g(X,φY ) = −g(φX, Y ), g(X, ξ) = η(X).

For an almost contact metric structure (φ, ξ, η, g) on M , we put

(2.5) Φ(X,Y ) = g(X,φY ).

Let M2n+1 be almost contact manifold and consider the structure (M ×R, J , G)
belongs to the class W4 of the Hermitian manifolds, we denote a vector field on
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M × R by (X, f d

dt
), where X is tangent to M, t is the coordinates of R and f as

C∞ function on M ×R. Define an almost complex structure [9]

J

(

X, f
d

dt

)

=

(

φX − fξ, η(X)
d

dt

)

,

for any vector field X on M ×R and G is Hermitian metric on the product M ×R.
This may be expressed by the condition

(2.6) (∇Xφ)Y = α(g(X,Y )ξ − η(Y )X) + β(g(φX, Y )ξ − η(Y )φX),

where ∇ is a Levi-civita connection and α, β are some smooth functions on M2n+1

and we say that trans-Sasakian structure is of type (α, β). From the above it is
follows that

(2.7) (∇Xη)Y = −αg(φX, Y ) + βg(φX, φY ),

(2.8) (∇Xξ) = −αφX + β(X − η(X)ξ).

On trans-Sasakian manifold M2n+1 with structure (φ, ξ, η, g), the following rela-
tions hold [4, 17]:

R(X,Y, ξ) = (α2 − β2)[η(Y )X − η(X)Y ] + (Y α)φX − (Xα)φY

+2αβ[η(Y )φX − η(X)φY ] + (Y β)φ2X − (Xβ)φ2Y,(2.9)

(2.10) R(ξ,X, ξ) = (α2 − β2 − ξβ)[η(X)ξ −X ],

(2.11) 2αβ + ξα = 0,

(2.12) η(R(X,Y, ξ)) = η(R(ξ, Y, ξ)) = 0,

(2.13) S(X, ξ) = [2n(α2 − β2)− ξβ]η(X)− (2n− 1)Xβ − (φX)α,

(2.14) S(ξ, ξ) = 2n(α2 − β2 − ξβ),

(2.15) S(φX, φY ) = S(X,Y )− 2n(α2 − β2 − ξβ)η(X)η(Y ),

(2.16) Qξ = (2n(α2 − β2)− ξβ)ξ − (2n− 1)gradβ + φ(gradα),

(2.17) S(X,Y ) = g(QX, Y ),
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where R is the curvature tensor, S is the Ricci tensor, r is scalar curvature and Q be-
ing the symmetric endomorphism of the tangent space at each point corresponding
to Ricci tensor S. Now, if we assume

(2.18) φ(gradα) = (2n− 1)gradβ,

then [4, 17]

(2.19) S(X, ξ) = 2n(α2 − β2)η(X),

(2.20) S(φX, φY ) = S(X,Y )− 2n(α2 − β2)η(X)η(Y ),

(2.21) Qξ = 2n(α2 − β2)ξ.

(∇WS)(Y, ξ) = 2n(α2 − β2)[−αg(Y, φW ) + βg(Y,W )]

+αS(Y, φW )− βS(Y,W ).(2.22)

Here, we are going to mention some definitions, which will be considered in the later
results:

Definition 2.1. [9] A Riemannian manifold M2n+1 is said to be φ-symmetric, if
the curvature tensor R satisfies the relation

(2.23) φ2((∇WR)(X,Y, Z)) = 0, for all X, Y and Z ∈ TM.

Definition 2.2. [9] A Riemannian manifold M2n+1 is said to be generalized Ricci-
recurrent, if the Ricci tensor S satisfies the relation

(2.24) (∇WS)(X,Y ) = A(W )S(X,Y ) + B(W )g(X,Y ),

for all X,Y and W ∈ TM and A,B are the non-vanishing 1-forms.

Definition 2.3. [18] A Riemannian manifold M2n+1 is said to be super general-
ized Ricci-recurrent, if the Ricci tensor S satisfies the relation

(∇WS)(X,Y ) = A(W )S(X,Y ) +B(W )g(X,Y ) + C(W )η(X)η(Y ),

(2.25)

for all X, Y and W ∈ TM and A,B and C are the non-vanishing 1-forms.

In specific, if B(W ) = C(W ), then the relation (2.25) converted to the quasi-
generalized Ricci-recurrent manifold [19].
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3. Generalized M-projective φ-recurrent trans-Sasakian manifold

Definition 3.1. A trans-Sasakian manifold M2n+1 is said to be generalized M -
projective φ-recurrent, if the M -projective curvature tensorM∗ satisfies the relation

φ2((∇WM∗)(X,Y, Z)) = A(W )M∗(X,Y, Z)

+B(W )[g(Y, Z)X − g(X,Z)Y ],(3.1)

where A and B are two 1-forms, B is non-zero and defined by

g(W,ρ1) = A(W ), g(W,ρ2) = B(W ),

and

M∗(X,Y, Z)

= R(X,Y, Z)−
1

4n

[

S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY

]

,(3.2)

for all X,Y, Z,W ∈ TM and ρ1, ρ2 being vector fields associated to the 1-form A

and B, respectively.

Theorem 3.1. If a generalized M -projective φ-recurrent trans-Sasakian manifold
M2n+1 satisfies φ(gradα) = (2n − 1)gradβ, then the associated 1-form A and B

are related by the equation

(3.3) [2n(2n+ 1)(α2 − β2)− r]A(W ) + 8n2B(W )− dr(W ) = 0.

Proof. Let us consider that M2n+1 be a generalizedM -projective φ-recurrent trans-
Sasakian manifold. Then by virtue of the relation (2.1), the equation (3.1) becomes

−(∇WM∗)(X,Y, Z) + η((∇WM∗)(X,Y, Z))ξ

= A(W )M∗(X,Y, Z) +B(W )(g(Y, Z)X − g(X,Z)Y ).(3.4)

From the above equation, it follows that
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−g((∇WR)(X,Y, Z), U) + g((∇WR)(X,Y, Z), ξ)g(U, ξ)

+
1

4n

[

(∇WS)(Y, Z)g(X,U)− (∇WS)(X,Z)g(Y, U)

+g(Y, Z)(∇WS)(X,U)− g(X,Z)(∇WS)g(Y, U)

]

−
1

4n

[

(∇WS)(Y, Z)g(X, ξ)− (∇WS)(X,Z)g(Y, ξ)

+g(Y, Z)(∇WS)(X, ξ)− g(X,Z)(∇WS)g(Y, ξ)

]

η(U)

= A(W )

[

g(R(X,Y, Z), U)−
1

4n

(

S(Y, Z)g(X,U)− S(X,Z)g(Y, U)

+g(Y, Z)S(X,U)− g(X,Z)S(Y, U)

)]

+B(W )[g(Y, Z)g(X,U)− g(X,Z)g(Y, U)].(3.5)

Let us suppose {e1, e2, . . . , e2n+1} be an orthonormal basis of the tangent space at
any point of the manifold. Setting X = U = ei in the relation (3.5) and taking
summation over i, 1 ≤ i ≤ 2n+ 1, we obtain

−(∇WS)(Y, Z) +
1

4n

[

(2n− 1)(∇WS)(Y, Z) + dr(W )g(Y, Z)

]

+η((∇WR)(ξ, Y, Z))−
1

4n

[

(∇WS)(Y, Z)− (∇WS)(ξ, Z)η(Y )

+g(Y, Z)(∇WS)(ξ, ξ)− (∇W )(S, ξ)η(Z)

]

=
2n+ 1

4n
A(W )S(Y, Z) +

[

2nB(W )−
r

4n
A(W )

]

g(Y, Z).(3.6)

Putting Z = ξ in the above equation, we can find

−(∇WS)(Y, ξ) +
1

4n

[

(2n− 1)(∇WS)(Y, ξ) + dr(W )g(Y, ξ)

]

+η((∇WR)(ξ, Y, ξ))−
1

4n

[

(∇WS)(Y, ξ)− (∇WS)(ξ, ξ)η(Y )

+g(Y, ξ)(∇WS)(ξ, ξ)− (∇W )(Y, ξ)

]

=
2n+ 1

4n
A(W )S(Y, ξ) +

[

2nB(W )−
r

4n
A(W )

]

η(Z).(3.7)
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By virtue of the relations (2.10), (2.12) and (2.22), we obtain
(

− 1 +
(2n− 1)

4n

)

(∇WS)(Y, ξ) +
dr(W )

4n
η(Y )

= A(W )

[

S(Y, ξ)−
1

4n

(

(2n− 1)S(Y, ξ) + rη(Y )

)]

+2nB(W )η(Y ).(3.8)

Putting Y = ξ and then using the equations (2.19) and (2.22), we have the relation
(3.3).

Theorem 3.2. A generalized M -projective φ-recurrent trans-Sasakian manifold
M2n+1 satisfying φ(gradα) = (2n− 1)gradβ is an Einstein manifold.

Proof. Let M2n+1 be a generalized M -projective φ-recurrent trans-Sasakian mani-
fold. By making use of the equations (2.19) and (3.3) in the relation (3.8), one can
easily found

(3.9) (∇WS)(Y, ξ) = 0.

By virtue of the equation (2.22), the above equation becomes

2n(α2 − β2)[−αg(Y, φW ) + βg(Y,W )] + αS(Y, φW )− βS(Y,W ) = 0.

(3.10)

Interchanging Y and W by φY and φW , respectively in the above relation and then
using equations (2.1), (2.4), (2.17), (2.18) and (2.21), we get

S(Y,W ) = 2n(α2 − β2)g(Y,W )

and

(3.11) S(φY,W ) = 2n(α2 − β2)g(φY,W ).

Hence, it is Einstein.

Theorem 3.3. Let M2n+1 be an Einstein trans-Sasakian manifold with a constant
scalar curvature satisfying φ(gradα) = (2n−1)gradβ , then it can not be generalized
M -projective φ-recurrent.

Proof. Let M2n+1 be trans-Sasakian manifold. Since it is an Einstein manifold,
hence with the help of relation (2.20), we can obtain

(3.12) r = 2n(2n+ 1)(α2 − β2).

Now, suppose if possible, M2n+1 is a generalized M -projective φ-recurrent. Then
by virtue of above relation relation, the equation (3.3) implies that

dr(W ) = 8n2B(W ).
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Also, since r is constant, therefore dr(W ) = 0 and hence from the above relation,
we can conclude

B(W ) = 0,

which is a contradiction to the fact that for generalized M -projective φ-recurrent
B(W ) 6= 0. Thus we finished the proof.

Theorem 3.4. A generalized M -projective φ-recurrent trans-Sasakian manifold
M2n+1 is super generalized Ricci-recurrent.

Proof. Let M2n+1 be a generalized M -projective φ-recurrent trans-Sasakian mani-
fold. Then taking contraction over Y and Z of the relation (3.5), we obtain

−
2n+ 1

4n
(∇WS)(X,U)−

dr(W )

4n
η(X)η(U)

=
2n+ 1

4n
A(W )S(X,U) +

[

2nB(W )−
dr(W )

4n
−

r

4n
A(W )

]

g(X,U),(3.13)

which implies

(∇WS)(X,U) = −A(W )S(X,U)−
dr(W )

2n+ 1
η(X)η(U)

+
1

2n+ 1

[

rA(W ) + dr(W ) − 8n2B(W )

]

g(X,U),(3.14)

which shows that M2n+1 is a super generalized Ricci-recurrent.

If we assume scalar curvature r is constant, then we can state the following corollary:

Corollary 3.1. If a generalized M -projective φ-recurrent trans-Sasakian manifold
M2n+1 is of constant scalar curvature, then it is generalized Ricci-recurrent.

Next, if we consider

(3.15) rA(W ) − 8n2B(W ) = 0.

Then by the equation (3.14), we can write

(∇WS)(X,U) = −A(W )S(X,U)

−
dr(W )

2n+ 1

[

g(X,U) + η(X)η(U)

]

.

Thus we can state two other corollaries:

Corollary 3.2. A generalized M -projective φ-recurrent trans-Sasakian manifold
M2n+1 is quasi-generalized Ricci-recurrent, if the relation (3.15) hold.

Corollary 3.3. If a generalized M -projective φ-recurrent trans-Sasakian manifold
M2n+1 is of constant scalar curvature and the relation (3.15) holds, then it is Ricci-
recurrent.
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