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ON MAXIMAL FUNCTION AND V-CONJUGATION

Samra Sadiković

Abstract. In this paper we prove that on the 3-series field H1 cannot be defined by
means of the V-conjugation. In other words, the norms ‖f‖H1 and ‖f̃‖L1 are not
equivalent in the case of the 3-series field. This gives a new proof to the result of
Memić [7], which answers a question raised by P. Simon [13]. Also, we prove that the
mean value of function f ∈ L1(G) on the coset IN−1(x) is dominated by either σMN−1

or σMN
on some translated element.
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1. Introduction and Preliminaries

The definition of Hardy spaces is possible in several ways. The only question is
which of these possibilities is useful in respect of the Vilenkin-Fourier analysis.

For bounded locally compact Vilenkin groups, the Hardy space can be charac-
terized in two equivalent ways. The first one is by atomic structure. The atomic
decomposition is a useful characterization of Hardy spaces by the help of which
some duality theorems and martingale inequalities can be proved [19]. It is known
[9] that in the investigations with respect to the Vilenkin system the boundedness
condition plays an important part. In the bounded case the H1 space is atomic.

The second way of characterizations of Hardy spaces is by maximal function.
In the theory of trigonometric series it is well known that the classical H1 space
contains exactly those L1−functions, whose (trigonometric) conjugate function is
integrable. We investigate the analogous question for the Vilenkin system.

We use standard notations and many formulae contained in [4], where the max-
imal function and maximal operator were substantially studied.
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Let (m0,m1, . . . ,mn, . . . ) be a bounded sequence of integers not less than 2.
Put m := max

n
mn.

Let G :=
∏∞

n=0 Zmn
, where Zmn

denotes the discrete group of order mn, with
addition mod mn. Each element from G can be represented as a sequence (xn)n,
where xn ∈ {0, 1, . . . ,mn − 1}. Addition in G is obtained coordinatewise.

The group of integers of the p-series field is similarly defined by
∏∞

n=0 Zp, where
p ≥ 2 is an integer.

The topology on G is generated by the subgroups
In := {x = (xi)i ∈ G, xi = 0 for i < n}, and their translations In(y) := {x = (xi)i ∈
G, xi = yi for i < n}.

The basis (en)n is formed by elements en = (δin)i.

Define the sequence (Mn)n as follows: M0 = 1 and Mn+1 = mnMn.

If |In| denotes the normalized product measure of In then it can be easily seen
that |In| =M−1

n .

For every nonnegative integer n, there exists a unique sequence (ni)i so that

n =
∞
∑

i=0

niMi.

The generalized Rademacher functions are defined by

rn(x) := e
2πixn
mn , n ∈ N ∪ {0}, x ∈ G,

and the system of Vilenkin functions by

ψn(x) :=

∞
∏

i=0

rni(x), n ∈ N ∪ {0}, x ∈ G.

The Fourier coefficients, the partial sums of the Fourier series, the Dirichlet
kernels, the Fejér means, and the Fejér kernels with respect to the Vilenkin system
are respectively defined as follows

f̂(n) =

∫

f(x)ψ̄n(x)dx,

Snf =

n−1
∑

k=0

f̂(k)ψk,

Dn =
n−1
∑

k=0

ψk,

σnf =
1

n

n
∑

k=1

Skf,

Kn =
1

n

n
∑

k=1

Dk,
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for every f ∈ L1(G).

It can be easily seen that

Snf(y) =

∫

Dn(y − x)f(x)dx,

σnf(y) =

∫

Kn(y − x)f(x)dx,

and
DMn

(x) =Mn1In(x).

We introduce the maximal function and the maximal operator:

f∗(x) = sup
n

|In|
−1|

∫

In(x)

f(t)dt|,

σ∗f(x) = sup
n

|σnf(x)|.

We say that operator T is of type (Y,X) if there exist an absolute constant
C > 0 for which ‖Tf‖Y 6 C‖f‖X for all f ∈ X.
T is of weak type (L1, L1) if there exist an absolute constant C > 0 for which

µ(Tf > λ) 6 C‖f‖1/λ,

for all λ > 0 and f ∈ L1(G).

It is known that the operator which maps function f to the maximal function
f∗ is of weak type (L1, L1), and of type (Lp, Lp) for all 1 < p ≤ ∞ [10].

Generally speaking, the Hardy space Hp(G), p > 0 consists of integrable func-
tions f for which f∗ ∈ Lp(G). Hp(G) is a Banach space with the norm

‖f‖Hp := ‖f∗‖p.

Many equivalent norms are defined in [13], [19] and [1]. The boundedness of σ∗

from H1 to L1 for bounded groups was established by [3](see also [13]). However,
P. Simon proved in [13] that the boundedness of the group is necessary and sufficient
for the boundedness of the maximal operator σ∗. We remark that in the so-called
positive case, i.e. for non-negative functions the reverse of Fujiis inequality can be
proved in a simple way (see e.g. Schipp - Wade - Simon - Pál [11]). Theorem 1
of Fujii was extended by F. Weisz in [17], [18] and [19] on (Hp, Lp), for p > 1

2 . In
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[20] F. Weisz proved that σ∗ is bounded from H
1
2 to the so-called weak L

1
2 . Later

U. Goginava in [6] (see also [2]) has shown by means of a counterexample that σ∗

cannot have type (H
1
2 , L

1
2 ). We remark that from this it follows by interpolation

that σ∗ is not bounded from the Hardy space Hp to the space weak-Lp for any
0 < p < 1

2 . Furthermore, we are concerned only with the one-dimensional case,
however, there are many works by Gát, Goginava, Simon, Weisz, etc. with respect
to the analogous questions in the two- or multi-dimensional case.

In [13] it was also proved that that the V-conjugate function is bounded from
H1 to L1. However, we prove that for a conveniently chosen sequence of functions
the inverse inequality does not hold. This gives new proof to the result of Memić
[7], which answers a question raised by P. Simon [13].

The V-conjugate of an integrable function f defined in [13] has the form:

f̃ :=

∞
∑

k=0

f ∗ LkDMk
,

where

Lk := −

△k
∑

j=1

rjk +

mk−1
∑

j=△k+1

rjk,

△k = [mk−1
2 ], if mk > 2, and △k = 1, if mk = 2.

In [13] Theorem 4 it has been proved that the V-conjugation is of type (H1, L1).

The question on whether ‖f̃‖L1 provides a new norm on H1 was also mentioned
in [13].

Here we also give the expression of Lk by Simon [14]:

a)

Lk(x) = 1−
1

i

(−1)xk

sinπxk

mk

+
exp

(

−πxki
mk

)

i

(

sin
xkπ

mk

)−1

(xk 6= 0,mk ≡ 1(2));

b) for mk ≡ 0 (2)(mk > 2) (xk 6= 0) we have

(1.1) Lk(x) = 1 +
1

i

exp
(

−πxki
mk

)

[1− (−1)xk ]

sinπxk

mk

;
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c) in the case mk = 2 we have Lk(x) = −(−1)xk (x ∈ G).

For s ∈ {0, 1, ...,mk − 1} we write

Lk(sek) = 1 +
i(−1)s

sin sπ
mk

−
icos sπ

mk
+ sin sπ

mk

sin sπ
mk

.

2. Main results

Theorem 2.1. On the group of integers of the 3-series field, the norms ‖f‖H1

and ‖f̃‖L1 are not equivalent.

Proof. We construct the sequence of functions (fn)n as follows:

fn = 1I1(e0) − 1I1(−e0) + 2 ·

n−1
∑

k=0

3k(1Ik+2(ek+1) − 1Ik+2(−ek+1)).

We use the expression of Lk proved in [14]

Lk(sek) = 1−
1

i

(−1)s

sin
πs

mk

+

exp

(

−
πsi

mk

)

i

(

sin
sπ

mk

)−1

,

for

(s 6= 0,mk ≡ 1(2)).

so we have for s ∈ {0, 1, 2}

Lk(sek) = 1 +
i(−1)s

sin
sπ

3

−
i cos

sπ

3
+ sin

sπ

3

sin
sπ

3

=
i(−1)s

sin
sπ

3

− i
cos

sπ

3

sin
sπ

3

.

If s is even, we have

Lk(sek) = i
1− cos

sπ

3

sin
sπ

3

= 2i
sin2

sπ

6

2 sin
sπ

6
cos

sπ

6

= i tan
sπ

6
.
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If s is odd, we obtain

Lk(sek) = −i
1 + cos

sπ

3

sin
sπ

3

= −2i
cos2

sπ

6

2 sin
sπ

6
cos

sπ

6

= −i cot
sπ

6
.

Let βs = tan πs
6 when s is even, and βs = − cot πs

6 , when s is odd.

This yields

(f ∗ LkDMk
) (y) =

∫

f(x)(LkDMk
)(y − x)dx

= Mk

∫

Ik(y)

f(x)Lk(y − x)dx

= Mk

mk−1
∑

s=0

∫

(y−x)∈(s·ek+Ik+1)

f(x)Lk(y − x)dx

= Mk

mk−1
∑

s=0

iβs

∫

t∈(s·ek+Ik+1)

f(y − t)dt

= i

mk−1
∑

s=0

βsa
k
s (y),

where aks(y) =Mk

∫

s·ek+Ik+1

f(y − t)dt.

Notice that if s is odd then

−βs = cot
πs

6
= tan

(π

2
−
πs

6

)

= tan

(

3− s

6
π

)

= β3−s.

This is clearly also valid when s is even. Therefore,

2
∑

s=0

βsa
k
s =

2
∑

s=1

βsa
k
s = β1(a

k
1 − ak−1).

Let t ∈ Ik+2(ek+1) ∪ Ik+2(−ek+1) and 0 ≤ k ≤ n− 1, then

Lk+1DMk+1
∗ fn(t) = iβ1(a

k+1
1 (t)− ak+1

−1 (t)) = −2 · 3kiβ1.

If t ∈ Ik+2 and 0 ≤ k ≤ n− 1, then

Lk+1DMk+1
∗ fn(t) = 4 · 3kiβ1.
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Moreover,

LsDMs
∗ fn(t) = 0,

if t ∈ Ik+2(ek+1) ∪ Ik+2(−ek+1) and s ≥ k + 2. Also,

L0 ∗ fn(t) = −iβ1,

for every t ∈ I1(e0) ∪ I1(−e0), and

L0 ∗ fn(t) = 2iβ1,

if t ∈ I1.

Using these facts, we obtain that

f̃n(t) = −iβ1,

for every t ∈ I1(e0) ∪ I1(−e0).

On I1 \ In+1,

f̃n(t) =

n
∑

s=0

LsDMs
∗ fn(t) =

k+1
∑

s=0

LsDMs
∗ fn(t),

if t ∈ Ik+1 \ Ik+2. It follows

f̃n(t) = 2iβ1 + 4iβ1

k
∑

s=1

3s−1 − i2 · 3kβ1 = 2iβ1(1 + 3k − 1− 3k) = 0.

Finally, on In+1,

f̃n(t) =
n
∑

s=0

LsDMs
∗ fn(t) = 2iβ1 + 4iβ1

n
∑

s=1

3s−1 = 2iβ13
n.

It follows that

‖f̃n‖L1 =
4

3
β1.

It is also easily seen that

‖f‖H1 = ‖f∗
n‖1 = (

2

3
+ 4

n−1
∑

k=0

3k

3k+2
)β1 = (

2

3
+

4

9
n)β1.

The second result does not give a characterization of Hardy spaces, but it is
connected with Lemma 2.2 [7] in which it was proved that there exists a constant
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C > 0, only depending on the sequence (mn)n, such that

|f ∗ LnDMn
| ≤ C sup

s∈{0,...,mn−1}

|SMn+1
f(x+ sen)− SMn

f(x)|.

Namely, we prove that the mean value of f on the coset IN−1(x) is dominated by
either σMN−1

or σMN
on some translated element.

Theorem 2.2. Let x ∈ G, N ∈ N. Then,

|SMN−1
f(x)| ≤ 4max(|σMN−1

f(x+ jeN−1)|, |σMN
f(x+ jeN−1)|),

for at least some j ∈ {0, 1, . . . ,mN−1 − 1} , where j depends on x.

Proof. Notice that the expression in the right side is constant on each IN -coset.

Assume that for some x ∈ G, N ∈ N,

|SMN−1
f(x)| > 4max(|σMN−1

f(x+ jeN−1)|, |σMN
f(x+ jeN−1)|),

for every j ∈ {0, 1, . . . ,mN−1 − 1}. In [4, Lemma 2.6], it was proved that for
z ∈ G \ IN , KMN

(z) = Mt

1−r(iet)
, if z − iet ∈ IN , i = 0, 1, . . . ,mt − 1, and

KMN
(z) = 0 otherwise. It was also noticed in the proof of [4, Theorem 2.1] that

KMN
(z) = MN−1

2 , if z ∈ IN .

Following the proof of [4, Theorem 2.1], we have

(2.1) σMN
f(x) =

N−1
∑

t=0

mt−1
∑

i=1

Mt

1− rt(iet)

∫

IN (x+iet)

f(y)dy +
MN − 1

2

∫

IN (x)

f(y)dy.

From our assumption, it follows that

∣

∣

∣

∣

∣

∣

mN−1−1
∑

j=0

σMN
f(x+ jeN−1)

∣

∣

∣

∣

∣

∣

<
mN−1

4
|SMN−1

f(x)|.
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Applying formula (2.1), we get

mN−1−1
∑

j=0

σMN
f(x+ jeN−1) =

mN−1−1
∑

j=0

MN − 1

2

∫

IN (x+jeN−1)

f(y)dy

+

N−1
∑

t=0

mt−1
∑

i=1

Mt

1− rt(iet)

mN−1−1
∑

j=0

∫

IN (x+iet+jeN−1)

f(y)dy

=
MN − 1

2

∫

IN−1(x)

f(y)dy +

N−1
∑

t=0

mt−1
∑

i=1

Mt

1− rt(iet)

∫

IN−1(x+iet)

f(y)dy

= (
mN−1

2
−

1

2M
N−1

)SMN−1
+

N−2
∑

t=0

mt−1
∑

i=1

Mt

1− rt(iet)

∫

IN−1(x+iet)

f(y)dy

+

mN−1−1
∑

i=1

MN−1

1− rN−1(ieN−1)

∫

IN−1(x)

f(y)dy.

Using the formula

mN−1−1
∑

i=1

1

1− rN−1(ieN−1)
=
mN−1 − 1

2
,

obtained in the proof of [4, Lemma 2.3], we get from the assumption and (2.1) that

mN−1−1
∑

j=0

σMN
f(x+ jeN−1) = (

mN−1

2
−

1

2M
N−1

)SMN−1

+

N−2
∑

t=0

mt−1
∑

i=1

Mt

1− rt(iet)

∫

IN−1(x+iet)

f(y)dy

+
mN−1 − 1

2
MN−1

∫

IN−1(x)

f(y)dy

= (
mN−1

2
−

1

2M
N−1

)SMN−1

+

N−2
∑

t=0

mt−1
∑

i=1

Mt

1− rt(iet)

∫

IN−1(x+iet)

f(y)dy

+
MN−1 − 1

2

∫

IN−1(x)

f(y)dy +
mN−1 − 2

2
MN−1

∫

IN−1(x)

f(y)dy

+
1

2

∫

IN−1(x)

f(y)dy

= (mN−1 − 1)SMN−1
f(x) + σMN−1

f(x),
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hence,

|(mN−1 − 1)SMN−1
f(x) + σMN−1

f(x)| <
mN−1

4
|SMN−1

f(x)|,

which leads to the contradicting fact

|σMN−1
f(x)| >

mN−1

4
|SMN−1

f(x)|.
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