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Abstract. The object of the present paper is to study decomposable and warped prod-
uct generalized quasi Einstein manifolds.
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1. Introduction

A Riemannian manifold (Mn, g), n = dim M ≥ 2, is said to be an Einstein manifold
if the following condition

Rij =
r

n
gij(1.1)

holds on M, where Rij and r denote the Ricci tensor and the scalar curvature of
(Mn, g), respectively. According to Besse([2], p. 132), (1.1) is called the Einstein
metric condition. Einstein manifolds play an important role in Riemannian Ge-
ometry as well as in general theory of relativity. Also, Einstein manifolds form a
natural subclass of various classes of Riemannian manifolds by a curvature condition
imposed on their Ricci tensor ([2], p. 432-433). For instance, every Einstein man-
ifold belongs to the class of Riemannian manifolds (Mn, g) realizing the following
relation:

Rij = λgij + µAiAj ,(1.2)

where λ, µ ∈ R and Ai is a non-zero covariant vector. Moreover, different struc-
tures on Einstein manifolds have been studied by several authors.

A non-flat Riemannian manifold (Mn, g) (n > 2) is defined to be a quasi-
Einstein manifold if its Ricci tensor Rij of type (0,2) is not identically zero and
satisfies the condition (1.2).

It is to be noted that Chaki and Maity [5] also introduced the notion of quasi-
Einstein manifolds in a different way. They have taken λ and µ as scalars and
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the non-zero covariant vector Ai as a unit covariant vector. Such an n-dimensional
manifold is denoted by the symbol (QE)n. Quasi-Einstein manifolds have been
studied by several authors such as De and Ghosh ([9], [10], [11], [12]), Ghosh, De
and Binh [16], De and De [8], Debnath and Konar [14], Bejan and Binh [1] and
many others.

Quasi-Einstein manifolds arose during the study of exact solutions of the Ein-
stein field equations, as well as during considerations of quasi-umbilical hypersur-
faces of semi-Euclidean manifolds. For instance, the Robertson-Walker space-time
are quasi-Einstein manifolds. Also, quasi-Einstein manifold can be taken as a model
of the perfect fluid space-time in general relativity [12]. So quasi-Einstein manifolds
have some importance in the general theory of relativity.

Quasi-Einstein manifolds have been generalized by several authors in several
ways such as generalized quasi-Einstein manifolds ([6], [10], [19]), super quasi Ein-
stein manifolds ([7], [13], [21]), N(k)-quasi-Einstein manifolds ([17], [20], [25]) and
many others. Also in [24] quasi-Einstein warped products have been studied by
Sular and Özgür.

In a recent paper De and Ghosh [10] introduced the notion of generalized quasi
Einstein manifolds. A non-flat Riemannian manifold is called a generalized quasi
Einstein manifold if its Ricci tensor Rij of type (0,2) is non-zero and satisfies the
condition

Rij = λgij + µAiAj + νBiBj ,(1.3)

where λ, µ and ν are certain non-zero scalars and Ai, Bi are two orthogonal unit
covariant vectors such that gijAiAj = 1, gijBiBj = 1 and gijAiBj = 0. The vectors
Ai and Bi are called the generators of the manifold and λ, µ and ν are called the
associated scalars. Such a manifold is denoted by G(QE)n. If ν = 0, then the
manifold reduces to a quasi Einstein manifold. G(QE)n arose during the study of
2-quasi umbilical hypersurface of a Euclidean space [10]. In 2011, De and Mallick
[15] prove the existence of G(QE)n by several examples. Motivated by the above
studies, the authors study the decomposability and warped product of G(QE)n.

The paper is organized as follows:
First, we state some examples of G(QE)n. Then in Section 3, we study a decompos-
able generalized quasi Einstein manifold. Section 4 deals with a G(QE)n warped
product manifold. Finally, we consider a G(QE)n warped product manifold, base
of which is unit dimensional.

2. Examples of G(QE)n

Example 2.1. [15] A 2-quasi-umbilical hypersurface of a space of constant curvature is
a G(QE)n, which is not a quasi-Einstein manifold.

Example 2.2. [15] A quasi-umbilical hypersurface of a Sasakian space form is a G(QE)n,
which is not a quasi-Einstein manifold.
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Example 2.3. De and Mallick [15] considered a Riemannian metric g on R4 by

ds
2 = gijdx

i
dx

j = (x4)
4

3 [(dx1)2 + (dx2)2 + (dx3)2] + (dx4)2.(2.1)

Then they showed that (M4, g) is a generalized quasi-Einstein manifold, which is not a
quasi-Einstein manifold.

Example 2.4. [22] Özgür and Sular assumed an isometrically immersed surface M̄ in E3

with non-zero distinct principal curvatures λ and µ. Then they considered the hypersurface
M = M̄ × En−2 in En+1, n ≥ 4. The principal curvatures of M are λ̃, µ̃, 0,..., 0, where
0 occures (n-2)-times. Hence the manifold is a 2-quasi umbilical hypersurface and so it is
generalized quasi-Einstein.

Example 2.5. [22] Özgür and Sular assumed a sphere S2 in Ek+2 given by the immersion
f : S2

→ Ek+2 and BS2 be the bundle of unit normal to S2. The hypersurface M defined
by the map ϕt : BS2

→ Ek+2, ϕt(x, ξ) = F (x, tξ) = f(x)+ tξ is called the tube of radius
t over S2. It was proved in [4] that if (λ, λ) are the principal curvature of S2 then the
principal curvatures of M are ( λ

1−tλ
, λ

1−tλ
,− 1

t
, ...,− 1

t
), where −

1

t
occures (k − 1)-times.

So M is 2-quasi umbilical and hence it is generalized quasi-Einstein.

3. Decomposable G(QE)n

A Riemannian manifold (Mn, g) is said to be decomposable or a product manifold
[23] if it can be expressed as M

p
1 × M

n−p
2 for 2 ≤ p ≤ (n − 2), that is, in some

coordinate neighbourhood of the Riemannian space (Mn, g), the metric can be
expressed as

ds2 = gijdx
idxj = ḡabdx

adxb + g∗αβdx
αdxβ ,(3.1)

where ḡab are functions of x1, x2, ..., xp denoted by x̄ and g∗αβ are functions of

xp+1, xp+2, ..., xn denoted by x∗; a, b, c, ... run from 1 to p and α, β, γ, ... run from
p+1 to n.

The two parts of (3.1) are the metrics of Mp
1 (p ≥ 2) and M

n−p
2 (n−p ≥ 2) which

are called the components of the decomposable manifold Mn = M
p
1 × M

n−p
2 (2 ≤

p ≤ n− 2).

Let (Mn, g) be a Riemannian manifold such that M
p
1 (p ≥ 2) and M

n−p
2 (n −

p ≥ 2) are components of this manifold. Here throughout this section each object
denoted by a ‘bar’ is assumed to be from M1 and each object denoted by ‘star’ is
assumed to be from M2.

Then in a decomposable Riemannian manifoldMn = M
p
1×M

n−p
2 (2 ≤ p ≤ n−2),

the following relations hold [26]:

Rab = R̄ab; Rαβ = R∗

αβ ; Raα = 0; r = r̄ + r∗,

where r, r̄ and r∗ are scalar curvatures of M,M1 and M2 respectively.

Let us consider a Riemannian manifold (Mn, g), which is a decomposableG(QE)n.

Then Mn = M
p
1 ×M

n−p
2 (2 ≤ p ≤ n− 2). Now from (1.3) we get

R̄ab = λḡab + µĀaĀb + νB̄aB̄b,(3.2)
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and
R∗

αβ = λg∗αβ + µA∗

αA
∗

β + νB∗

αB
∗

β ,(3.3)

where

Ai(x) =

{

Āi for i=1,2, ..., p
A∗

i for i=p+1, ..., n.
(3.4)

Also we have
Raα = λgaα + µĀaA

∗

α + νB̄aB
∗

α.(3.5)

which implies that
µĀaA

∗

α + νB̄aB
∗

α = 0.(3.6)

If possible, let
µĀaA

∗

α = 0,(3.7)

which implies
ĀaA

∗

α = 0,(3.8)

since µ 6= 0. Hence
either Āa = 0 or A∗

α = 0(3.9)

(but not both, since Ai is no more a unit vector).

Using (3.7) in (3.6) we get
νB̄aB

∗

α = 0,(3.10)

which implies
B̄aB

∗

α = 0,(3.11)

since ν 6= 0. Therefore
either B̄a = 0 or B∗

α = 0,(3.12)

From (3.9) and (3.12) we have four cases as follows:

Case I: Āa = 0 and B̄a = 0,

Case II: A∗

α = 0 and B∗

α = 0,

Case III: Āa = 0 and B∗

α = 0,

Case IV: A∗

α = 0 and B̄a = 0.

Now if possible let Āa = 0 and B̄a = 0, then (3.2) reduces to

R̄ab = λḡab.(3.13)

This shows that the manifold M
p
1 is an Einstein manifold. On the other hand, if

possible let A∗

α = 0 and B∗

α = 0, then (3.3) reduces to

R∗

αβ = λg∗αβ .(3.14)

As above (3.14) shows that the manifold M
n−p
2 is an Einstein manifold.

Obviously the other cases are trivial. We get the similar results if we assume
that (3.10) holds.

Thus we have the follwing:
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Theorem 3.1. If a G(QE)n is a decomposable Riemannian manifold (Mn, g) such
that M = M

p
1 ×M

n−p
2 , (2 ≤ p ≤ n− 2), and either (3.7) or (3.10) holds, then one

component of the decomposable manifold is an Einstein manifold and the other is a
generalized quasi Einstein manifold.

4. G(QE)n warped product manifolds

The study of warped product manifold was initiated by Kručkovič [18] in 1957.
Again in 1969 Bishop and O’Neill [3] also obtained the same notion of the warped
product manifolds while they were constructing a large class of manifolds of negative
curvature. Warped product are generalizations of the Cartesian product of Rieman-
nian manifolds. Let (M̄, ḡ) and (M∗, g∗) be two Riemannian manifolds. Let M̄ and
M∗ be covered with coordinate charts (U ;x1, x2, ...., xp) and (V ; yp+1, yp+2, ...., yn)
respectively.

Then the warped product M = M̄ ×f M
∗ is the product manifold of dimension

n furnished with the metric

g = π∗(ḡ) + (f ◦ π)σ∗(g∗),(4.1)

where π : M → M̄ and σ : M → M∗ are natural projections such that the warped
product manifold M̄ ×f M∗ is covered with the coordinate chart

(U × V ;x1, x2, ...., xp, xp+1 = yp+1, xp+2 = yp+2, ...., xn = yn).

Then the local components of the metric g with respect to this coordinate chart
are given by

gij =







ḡij for i=a and j=b,
fg∗ij for i = α and j = β,

0 otherwise,
(4.2)

Here a, b, c, ... ∈ {1, 2, ..., p} and α, β, γ, ... ∈ {p + 1, p + 2, ..., n} and i, j, k, ... ∈
{1, 2, ..., n}. Here M̄ is called the base, M∗ is called the fiber and f is called warping
function of the warped product M = M̄ ×f M

∗. We denote by Γi
jk, Rijkl , Rij and r

as the components of Levi-Civita connection ∇, the Riemann-Christoffel curvature
tensor R, Ricci tensor S and the scalar curvature of (M, g) respectively. Moreover
we consider that, when Ω is a quantity formed with respect to g, we denote by Ω̄
and Ω∗, the similar quantities formed with respect to ḡ and g∗ respectively. Then
the non-zero local components of Levi-Civita connection ∇ of (M, g) are given by

Γa
bc = Γ̄a

bc, Γα
βγ = Γ∗α

βγ , Γa
βγ = −1

2
ḡabfbg

∗

βγ , Γα
aβ =

1

2f
faδ

α
β ,(4.3)

where fa = ∂af = ∂f
∂xa . The local components Rhijk = ghlR

l
ijk = ghl(∂kΓ

l
ij −

∂jΓ
l
ik + Γm

ijΓ
l
mk − Γm

ikΓ
l
mj), ∂k = ∂

∂xk , of the Riemann-Christoffel curvature tensor
R of (M, g) which may not vanish identically are the following:

Rabcd = R̄abcd, Raαbβ = −fTabg
∗

αβ, Rαβγδ = fR∗

αβγδ − f2PG∗

αβγδ,(4.4)
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where Gijkl = gilgjk − gikgjl and

Tab = − 1

2f
(∇bfa − 1

2f
fafb), tr(T ) = gabTab, P = 1

4f2 g
abfafb. Again the non-

zero local components of the Ricci tensor Rjk = gilRijkl of (M, g) are given by

Rab = R̄ab + (n− p)Tab, Rαβ = R∗

αβ −Qg∗αβ,(4.5)

where Q = f((n− p− 1)P − tr(T )). The scalar curvature r of (M, g) is given by

r = r̄ +
r∗

f
− (n− p)[(n− p− 1)P − 2tr(T )].(4.6)

Let M = M̄ ×f M∗ be a non-flat warped product manifold and also let M be a
G(QE)n. That is,

Rab = λgab + µAaAb + νBaBb.(4.7)

From (4.7), using (4.5) we get

R̄ab + (n− p)Tab = λḡab + µĀaĀb + νB̄aB̄b,(4.8)

where

Ai(x) =

{

Āi for i=1, ..., p
A∗

i otherwise,
(4.9)

and

Bi(x) =

{

B̄i for i=1, ..., p
B∗

i otherwise,
(4.10)

Then from (4.8) we get

R̄ab = λḡab + µĀaĀb + νB̄aB̄b − (n− p)Tab,(4.11)

If possible, we assume that M̄ is also G(QE)p, then from (4.11) we get

Tab = 0.(4.12)

Conversely, if (4.12) holds, then from (4.11) we can conclude that M̄ is a G(QE)p.
Thus we have the following:

Theorem 4.1. M = M̄×f M
∗ is a G(QE)n warped product manifold, if and only

if M̄ is a G(QE)p provided Tab = 0.

Now if in particular
Tab = kḡab,(4.13)

where k 6= 0 is some constant. Then (4.11) takes the form

R̄ab = {λ− k(n− p)}ḡab + µĀaĀb + νB̄aB̄b,(4.14)

where Ai and Bi are defined by (4.9) and (4.10) from which it follwos that M̄ is a
G(QE)p. Conversely, if M̄ is a G(QE)n then using (4.14) in (4.11) we get (4.13).
Thus we have the following:
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Theorem 4.2. M = M̄ ×f M
∗ is a G(QE)n warped product manifold, then M̄ is

a G(QE)p if and only if (4.13) holds.

Similarly, we get from (4.7)

Rαβ = λgαβ + µAαAβ + νBαBβ .(4.15)

Using (4.5), (4.15) yields

R∗

αβ = (λf +Q)g∗αβ + µA∗

αA
∗

β + νB∗

αB
∗

β .(4.16)

Hence M∗ is a G(QE)n−p.

Converse is trivial. Thus we have the following:

Theorem 4.3. M = M̄×f M
∗ is a G(QE)n warped product manifold, if and only

if M∗ is a generalized quasi-Einstein manifold of dimension (n-p).

5. G(QE)n warped product manifolds with unit dimensional base

In this section, we consider G(QE)n warped product manifolds M = I ×f M∗,

dimI = 1, dimM∗ = n− 1(n ≥ 3), f = exp{ q
2
}. We take the metric on I as (dt)2.

Using the above consideration and (4.5), we get

Rtt = R̄tt −
(n− 1)

16
[4q′′ + (q′)2].(5.1)

which implies

Rtt = − (n− 1)

16
[4q′′ + (q′)2],(5.2)

since R̄tt of I is zero. Also

Rαβ = R∗

αβ − e
q

2

16
[4(n− 1)q′′ + (2n− 3)(q′)2]g∗αβ ,(5.3)

where ‘′’ and ‘′′’ denote the 1st order and 2nd order partial derivative respectively,
with respect to ‘t’. Since M is a generalized quasi Einstein manifold, from (1.3) we
have

Rtt = λgtt + µAtAt + νBtBt.(5.4)

and
Rαβ = λgαβ + µAαAβ + νBαBβ ,(5.5)

where we take Ai and Bi as defined in (4.9) and (4.10). Now since dimI = 1, we
can take

Āt = l and B̄t = m,(5.6)

where l and m are functions on M. Using (4.1), (4.2), (4.9), (4.10) and (5.6), the
equations (5.4) and (5.5) reduce to

Rtt = λ+ µl2 + νm2,(5.7)
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and
Rαβ = λe

q

2 g∗αβ + µA∗

αA
∗

β + νB∗

αB
∗

β .(5.8)

From (5.2) and (5.7) we get

λ+ µl2 + νm2 = − (n− 1)

16
[4q′′ + (q′)2].(5.9)

Again from (5.3) and (5.8) we obtain

R∗

αβ =
e

q

2

16
[4(n− 1)q′′ + (2n− 3)(q′)2 + 16λ]g∗αβ + µA∗

αA
∗

β + νB∗

αB
∗

β ,(5.10)

where λ, µ and ν are related by (5.9). Thus (5.10) implies that M∗ is a generalized
quasi Einstein manifold. Hence we have the following:

Theorem 5.1. If M = I ×f M∗, is a G(QE)n warped product manifold and
dimI = 1, dimM∗ = n−1(n ≥ 3), then M∗ is a generalized quasi Einstein manifold.

Now, we consider warped product manifolds M = I×fM
∗, dimI = 1, dimM∗ =

n − 1(n ≥ 3), f = exp{ q
2
} and M∗ is a (QE)n. We take the metric on I as (dt)2.

In this case, (5.2) and (5.3) can also be obtained using the above consideration and
(4.5). Since M∗ is (QE)n, from (1.2) we have

R∗

αβ = λg∗αβ + µA∗

αA
∗

β ,(5.11)

where λ and µ are certain non-zero scalars and A∗

i is an unit covariant vector such
that g∗ijA

∗

iA
∗

j = 1 and

Ai(x) =

{

Āi for i=1
A∗

i otherwise.
(5.12)

Using (5.11) in (5.3) we get

Rαβ = λg∗αβ + µA∗

αA
∗

β − e
q

2

16
[4(n− 1)q′′ + (2n− 3)(q′)2]g∗αβ .(5.13)

which implies

Rαβ = −e
q

2

16
[4(n− 1)q′′ + (2n− 3)(q′)2]g∗αβ + λg∗αβ + µA∗

αA
∗

β .(5.14)

Now using (4.2) and (5.12) in (5.14) we obtain

Rαβ = − 1

16
[4(n− 1)q′′ + (2n− 3)(q′)2]gαβ +

λ

e
q

2

gαβ + µAαAβ .(5.15)

Now if we choose gαβ = e
q

2BαBβ , where

Bi(x) =

{

B̄i for i=1
B∗

i otherwise.
(5.16)
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Then (5.15) yields

Rαβ = − 1

16
[4(n− 1)q′′ + (2n− 3)(q′)2]gαβ + µAαAβ + λBαBβ.(5.17)

Again from (5.2) we get

Rtt =
1

16
[4(n− 1)q′′ + (2n− 3)(q′)2]gtt −

1

16
[4(n− 1)q′′

+(2n− 3)(q′)2]− (n− 1)

16
[(q′)2 + 4q′′],(5.18)

since ḡtt = 1 and gtt = ḡtt in I. Thus (5.18) can be written as

Rtt =
1

16
[4(n− 1)q′′ + (2n− 3)(q′)2]gtt −

(3n− 4)

16
(q′)2 +

2(n− 1)

4
q′′.(5.19)

Since dimI = 1, we can take

Āt = q′ and B̄t =
√
q′′,(5.20)

where q′and q′′ are functions on M. Then using (5.12),(5.16) and (5.20) we can
write (5.19) as follows:

Rtt =
1

16
[4(n− 1)q′′ + (2n− 3)(q′)2]gtt −

(3n− 4)

16
AtAt +

2(n− 1)

4
BtBt.(5.21)

Thus from (5.17) and (5.21) we caconclude that M = I×f M
∗ is a generalized quasi

Einstein manifold if M∗ is a quasi Einstein manifold. Hence we have the following:

Theorem 5.2. If M = I ×f M∗, is a warped product manifold and dimI = 1,
dimM∗ = n−1(n ≥ 3) and M∗ is a quasi Einstein manifold, then M is a generalized
quasi Einstein manifold.
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18. G. I. Kručkovič: On semi-reducible Riemannian spaces, Dokl. Akad. Nauk SSSR
115(1957), 862 − 865 (in Russian).
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