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Abstract. The object of the present paper is to study decomposable and warped prod-
uct generalized quasi Einstein manifolds.
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1. Introduction

A Riemannian manifold (M™, g), n = dim M > 2, is said to be an Einstein manifold
if the following condition
r

(1.1) Rij = —gij

holds on M, where R;; and r denote the Ricci tensor and the scalar curvature of
(M™, g), respectively. According to Besse([2], p. 132), (1.1) is called the Einstein
metric condition. Einstein manifolds play an important role in Riemannian Ge-
ometry as well as in general theory of relativity. Also, Einstein manifolds form a
natural subclass of various classes of Riemannian manifolds by a curvature condition
imposed on their Ricci tensor ([2], p. 432-433). For instance, every Einstein man-
ifold belongs to the class of Riemannian manifolds (M™, g) realizing the following
relation:

(1.2) Rij = Agij + pAiAj,

where A\, p € R and A; is a non-zero covariant vector. Moreover, different struc-
tures on Einstein manifolds have been studied by several authors.

A non-flat Riemannian manifold (M™,g) (n > 2) is defined to be a quasi-
Einstein manifold if its Ricci tensor R;; of type (0,2) is not identically zero and
satisfies the condition (1.2).

It is to be noted that Chaki and Maity [5] also introduced the notion of quasi-
FEinstein manifolds in a different way. They have taken A\ and p as scalars and
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the non-zero covariant vector A; as a unit covariant vector. Such an n-dimensional
manifold is denoted by the symbol (QF),. Quasi-Einstein manifolds have been
studied by several authors such as De and Ghosh ([9], [10], [11], [12]), Ghosh, De
and Binh [16], De and De [8], Debnath and Konar [14], Bejan and Binh [1] and
many others.

Quasi-Einstein manifolds arose during the study of exact solutions of the Fin-
stein field equations, as well as during considerations of quasi-umbilical hypersur-
faces of semi-Euclidean manifolds. For instance, the Robertson-Walker space-time
are quasi-Einstein manifolds. Also, quasi-Einstein manifold can be taken as a model
of the perfect fluid space-time in general relativity [12]. So quasi-Einstein manifolds
have some importance in the general theory of relativity.

Quasi-Einstein manifolds have been generalized by several authors in several
ways such as generalized quasi-Einstein manifolds ([6], [10], [19]), super quasi Ein-
stein manifolds ([7], [13], [21]), N(k)-quasi-Einstein manifolds ([17], [20], [25]) and
many others. Also in [24] quasi-Einstein warped products have been studied by
Sular and Ozgiir.

In a recent paper De and Ghosh [10] introduced the notion of generalized quasi
Einstein manifolds. A non-flat Riemannian manifold is called a generalized quasi
Einstein manifold if its Ricci tensor R;; of type (0,2) is non-zero and satisfies the
condition

(1.3) Rij = Agij + nAiA; + vBiBj,

where A, p and v are certain non-zero scalars and A;, B; are two orthogonal unit
covariant vectors such that g% 4;A; = 1, ¢ B;B; = 1 and g A; B; = 0. The vectors
A; and B; are called the generators of the manifold and A, ;4 and v are called the
associated scalars. Such a manifold is denoted by G(QE),. If v = 0, then the
manifold reduces to a quasi Einstein manifold. G(QF),, arose during the study of
2-quasi umbilical hypersurface of a Euclidean space [10]. In 2011, De and Mallick
[15] prove the existence of G(QF),, by several examples. Motivated by the above
studies, the authors study the decomposability and warped product of G(QE),.

The paper is organized as follows:
First, we state some examples of G(QFE),,. Then in Section 3, we study a decompos-
able generalized quasi Einstein manifold. Section 4 deals with a G(QFE),, warped
product manifold. Finally, we consider a G(QFE), warped product manifold, base
of which is unit dimensional.

2. Examples of G(QFE),
Example 2.1. [15] A 2-quasi-umbilical hypersurface of a space of constant curvature is
a G(QFE)n, which is not a quasi-Einstein manifold.

Example 2.2. [15] A quasi-umbilical hypersurface of a Sasakian space form is a G(QE)n,
which is not a quasi-Einstein manifold.
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Example 2.3. De and Mallick [15] considered a Riemannian metric g on R* by
(2.1) ds? = giyda'de’ = ()3 [(dz")? + (dz?)? + (dz®)?] + (dz™)>.

Then they showed that (M47g) is a generalized quasi-Einstein manifold, which is not a
quasi-Einstein manifold.

Example 2.4. [22] Ozgiir and Sular assumed an isometrically immersed surface M in E*
with non-zero distinct principal curvatures A and p. Then they considered the hypersurface
M = M x E"2? in E""! n > 4. The principal curvatures of M are 5\7 i, 0,..., 0, where
0 occures (n-2)-times. Hence the manifold is a 2-quasi umbilical hypersurface and so it is
generalized quasi-Einstein.

Example 2.5. [22] Ozgﬁr and Sular assumed a sphere S? in E**2 given by the immersion
f:58% = E**2 and BS? be the bundle of unit normal to S2. The hypersurface M defined
by the map ¢; : BS? — EF*2 o, (x,&) = F(x,t€) = f(x) + t€ is called the tube of radius
t over S2. Tt was proved in [4] that if (\,\) are the principal curvature of S? then the
principal curvatures of M are (25,25, —1,...,—1), where —1 occures (k — 1)-times.
So M is 2-quasi umbilical and hence it is generalized quasi-Einstein.

3. Decomposable G(QFE),
A Riemannian manifold (M", g) is said to be decomposable or a product manifold
[23] if it can be expressed as MY x M, P for 2 < p < (n — 2), that is, in some
coordinate neighbourhood of the Riemannian space (M™,g), the metric can be
expressed as o
(3.1) ds? = g;jda'da? = Gapda®da® + Qzﬁdxo‘dxﬁ,
where go, are functions of z',z?,...,2P denoted by Z and gap are functions of
Pt P2 2™ denoted by z*; a,b,c,... run from 1 to p and o, 8,7, ... run from
p+1 to n.

The two parts of (3.1) are the metrics of MY (p > 2) and My~ " (n—p > 2) which
are called the components of the decomposable manifold M™ = MY x My ?(2 <
p<n-—2).

Let (M™,g) be a Riemannian manifold such that M?(p > 2) and My *(n —
p > 2) are components of this manifold. Here throughout this section each object
denoted by a ‘bar’ is assumed to be from M; and each object denoted by ‘star’ is
assumed to be from M.

Then in a decomposable Riemannian manifold M™ = M} x M3y " (2 < p < n—2),
the following relations hold [26]:

Ry = Rab? RaB = RZQ; Roo =037 =7+177,

where 7,7 and r* are scalar curvatures of M, M7 and M, respectively.

Let us consider a Riemannian manifold (M™, g), which is a decomposable G(QE).,.

Then M™ = M} x My ?(2 <p <n-—2). Now from (1.3) we get

(32) Rab = )‘gab + MAaAb + VBaBba
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and
(3.3) Rig = Aghp + nALAG + vB.Bj,
where 1t
. i fori=12, ...,p

(34) Az(x) - { A;" for 1:p—|—17 ey I

Also we have B B
(3.5) Roo = Maa + BAGAL + VB, B
which implies that - -
(3.6) pALAL, +vB, B, = 0.
If possible, let -
(3.7) pALAL =0,
which implies -
(3.8) AAL =0,
since p # 0. Hence B
(3.9) either Ag =0 or AL, =0

(but not both, since A; is no more a unit vector).
Using (3.7) in (3.6) we get B
(3.10) vB,B =0,
which implies
(3.11) B.,B: =0,
since v # 0. Therefore B
(3.12) either B, =0 or B}, =0,
From (3.9) and (3.12) we have four cases as follows:
Case I: A, =0 and B, =0,
Case II: A} =0 and B}, =0,
Case III: A, =0 and BY =0,
Case IV: A% =0 and B, = 0.
Now if possible let A, = 0 and B, = 0, then (3.2) reduces to

(3.13) Rap = AGap-

This shows that the manifold M} is an Einstein manifold. On the other hand, if
possible let A% =0 and B, = 0, then (3.3) reduces to

As above (3.14) shows that the manifold My ™* is an Einstein manifold.

Obviously the other cases are trivial. We get the similar results if we assume
that (3.10) holds.

Thus we have the follwing:
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Theorem 3.1. If a G(QE), is a decomposable Riemannian manifold (M™, g) such
that M = M} x My~ ", (2 <p <n-—2), and either (3.7) or (3.10) holds, then one
component of the decomposable manifold is an Einstein manifold and the other is a
generalized quasi Einstein manifold.

4. G(QE), warped product manifolds

The study of warped product manifold was initiated by Kruckovi¢ [18] in 1957.
Again in 1969 Bishop and O’Neill [3] also obtained the same notion of the warped
product manifolds while they were constructing a large class of manifolds of negative
curvature. Warped product are generalizations of the Cartesian product of Rieman-
nian manifolds. Let (M, g) and (M*, g*) be two Riemannian manifolds. Let M and
M* be covered with coordinate charts (U; 2!, 22, .....2P) and (V;yPTL yP*2 .. y")
respectively.

Then the warped product M = M x ¢ M* is the product manifold of dimension
n furnished with the metric

(4.1) g=m"(9) + (fom)o™(g),

where 7 : M — M and o : M — M™ are natural projections such that the warped
product manifold M x s M* is covered with the coordinate chart

12 +1 _ pt+l o pt2 o pt2 n_ .m
(U x Viazh,a®, .. aP aPTr = P70 aPTe =P 2™ =y™).

Then the local components of the metric g with respect to this coordinate chart
are given by
gi;  for i=a and j=b,
(4.2) gij =« fgi; fori=aandj=p,
0 otherwise,

Here a,b,c,... € {1,2,...,p} and o, B,7,... € {p+ 1,p+ 2,...,n} and i,j,k,... €
{1,2,...,n}. Here M is called the base, M* is called the fiber and f is called warping
function of the warped product M = M X ¢ M*. We denote by F;k, Rijri, Rijand r
as the components of Levi-Civita connection V, the Riemann-Christoffel curvature
tensor R, Ricci tensor S and the scalar curvature of (M, g) respectively. Moreover
we consider that, when Q is a quantity formed with respect to g, we denote by Q
and %, the similar quantities formed with respect to g and g* respectively. Then

the non-zero local components of Levi-Civita connection V of (M, g) are given by

1

_ . 1
(43) be = Lbes g'y = Fﬁ(’lyv %»y = _igabfbggw Fgﬁ = ﬁfaéga
where f, = O0,f = 88;;. The local components Rpijr = gthéjk = ghl(akl"lij —
o;TL, + I‘Z?I‘fnk - I‘%I‘fnj), O = 8%'“ of the Riemann-Christoffel curvature tensor

R of (M, g) which may not vanish identically are the following:

(44) Rabcd = Rabcdu Raab,@ = _fTabgzﬁa Ra,@vﬁ = fRZBryé - fQPGZB'yév
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where Giji = gugjr — girg; and
Ty = =35 (Vofa = g5 fafo), tr(T) = g"Tup, P = 7hxg® fufy. Again the non-
zero local components of the Ricci tensor R, = g“Rijkl of (M, g) are given by

(45) Ruyy = Rap + (n - p)Taba RozB = RZB - QgZﬁu

where @ = f((n —p — 1)P — tr(T)). The scalar curvature r of (M, g) is given by

(4.6) r=7r+ T? —(n=p)(n—p—1)P —2tr(T)].

Let M = M x ¢ M* be a non-flat warped product manifold and also let M be a
G(QE),. That is,

(4.7) Rap = Aab + 1A Ay + v By By,

From (4.7), using (4.5) we get

(4.8) Rap + (n — p)Tap = ANgap + A Ay + v By By,
where 1 fori

(4.9) A0 ={ 2 e "

and B for il

(4.10) Bi(z) = { B} oc‘zlilelzr_wi,sé',w g

Then from (4.8) we get

(4.11) Rap = AGap + 1AL Ay + BBy — (n — p)Tup,

If possible, we assume that M is also G(QE),, then from (4.11) we get
(4.12) T = 0.

Conversely, if (4.12) holds, then from (4.11) we can conclude that M is a G(QE),.
Thus we have the following:

Theorem 4.1. M = M x ; M* is a G(QE),, warped product manifold, if and only
if M is a G(QE), provided Ty, = 0.

Now if in particular

(413) Tab = kgabu

where k # 0 is some constant. Then (4.11) takes the form
(414) Rab = {)\ - k(n - p)}gab + MAaAb + VBaBba

where A; and B; are defined by (4.9) and (4.10) from which it follwos that M is a
G(QE),. Conversely, if M is a G(QE),, then using (4.14) in (4.11) we get (4.13).
Thus we have the following:
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Theorem 4.2. M = M x; M* is a G(QE),, warped product manifold, then M is
a G(QE), if and only if (4.13) holds.

Similarly, we get from (4.7)
(4.15) Rog = Agap + pAcAg + vByBg.
Using (4.5), (4.15) yields
(4.16) os = (M 4+ Q)gnp + HALAL + vB, B
Hence M* is a G(QE)n—p.

Converse is trivial. Thus we have the following:

Theorem 4.3. M = M x; M* is a G(QE),, warped product manifold, if and only
if M* is a generalized quasi-Finstein manifold of dimension (n-p).

5. G(QEFE), warped product manifolds with unit dimensional base

In this section, we consider G(QFE), warped product manifolds M = I x ¢ M*,
dimI = 1, dimM* =n —1(n > 3), f = exp{%}. We take the metric on I as (dt)>.
Using the above consideration and (4.5), we get

(5.1) Ry = Ryt — (”17_61)[4(1// +(¢)?]:

which implies
(n—1)

(5.2) Ry = — 16 (44" + (¢')?],
since Ry of I is zero. Also

* 6% " IN27 %
(5.3) Rap = Rop — 7140 = 1)g" + (2n = 3)(¢') J9ap,

where ¢” and “”’ denote the 1st order and 2nd order partial derivative respectively,
with respect to ‘t’. Since M is a generalized quasi Einstein manifold, from (1.3) we
have

(54) Rtt = )\gtt + ILLAtAt + I/BtBt.
and
(5.5) Raﬁ = )\gag + /LAQAB + I/BQBB,

where we take A; and B; as defined in (4.9) and (4.10). Now since dimlI = 1, we
can take - -
(5.6) Ay =1 and By =m,

where | and m are functions on M. Using (4.1), (4.2), (4.9), (4.10) and (5.6), the
equations (5.4) and (5.5) reduce to

(5.7) Rt = A+ pl® +vm?,
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and
(5.8) Rap = efgly + Al Al + vB.Bj.
From (5.2) and (5.7) we get
-1
(5.9) At pl? +vm? = — (n16 )[4q” +(¢)?].

Again from (5.3) and (5.8) we obtain

(5.10) R%, = =

o8 = g4 = 1)g" + (20 = 3)(¢)* + 16Mg5s + pAL AL + VB B,

where A, 11 and v are related by (5.9). Thus (5.10) implies that M* is a generalized
quasi Einstein manifold. Hence we have the following:

Theorem 5.1. If M = I x; M*, is a G(QE), warped product manifold and
dimI = 1, dimM* = n—1(n > 3), then M* is a generalized quasi Einstein manifold.

Now, we consider warped product manifolds M = I x  M*, dimlI = 1, dimM* =
n—1(n > 3), f = exp{%} and M* is a (QE),. We take the metric on I as (dt)?.
In this case, (5.2) and (5.3) can also be obtained using the above consideration and
(4.5). Since M* is (QFE)y, from (1.2) we have

(5.11) Rl = Mgl + AL A,

where A and p are certain non-zero scalars and A is an unit covariant vector such
* A* A*
that g;; A7 A7 =1 and

A;  fori=1
(5.12) Ail®) _{ A;  otherwise.

Using (5.11) in (5.3) we get

€e2

(513)  Rap=Agas + pALAL - T2

27 %
[4(n—1)¢" + (2n — 3)(¢')*]g5-
which implies

e?
16
Now using (4.2) and (5.12) in (5.14) we obtain

(5.14) Rap = [4(n = 1)¢" + (2n = 3)(¢')?]g%p + Ngop + HALAG.

1
(5.15)  Rop = —

A
T6l4n = 1a" + (20 = 3)(d)’]gas + —g9as T 1dadp.

q
2
Now if we choose gas = €2 B, Bg, where

B; for i=1
(5.16) Bi(x) _{ B! otherwise.
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Then (5.15) yields

1
(5.17)  Rag = —c[4n = 1)q" + (20— 3)(¢)*)gas + 1Aadg + \BaBs.

Again from (5.2) we get
1 1
Rec = c40n — 1)g" + (20— 3)(q'lgwe — 1540 — 1)q"
n

16
(5.19) +on -3~ "y 1 ag)

since gy = 1 and gy = gy in I. Thus (5.18) can be written as

(?m’ — 4) 2(” — 1)q//'

(519) Ree = 1[40 — g + (20 = 3)(¢Vlgus — 2 (¢)? + 2

Since dimlI = 1, we can take
(5.20) Ay=q and B, =./q",

where ¢’and ¢” are functions on M. Then using (5.12),(5.16) and (5.20) we can
write (5.19) as follows:

(3n —4) 2(n—1)
T

Thus from (5.17) and (5.21) we caconclude that M = I x y M* is a generalized quasi
Einstein manifold if M™* is a quasi Einstein manifold. Hence we have the following:

(5:21R0 = e An — )a" + (21— 3)(a' o - BB

Theorem 5.2. If M =1 x; M*, is a warped product manifold and diml = 1,
dimM* =n—1(n > 3) and M* is a quasi Einstein manifold, then M is a generalized
quasi Finstein manifold.
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