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ON A CLASS OF g-KENMOTSU MANIFOLDS

Krishnendu De

Abstract. The object of the present paper is to study globally ¢-quasiconformally sym-
metric g-Kenmotsu manifolds. It has been shown that a globally ¢-quasiconformally
symmetric f-Kenmotsu manifold is globally ¢-symmetric. Also we study 3-dimensional
locally ¢p-symmetric g-Kenmotsu manifolds. Next we study second order parallel ten-
sor and Ricci soliton on 3-dimensional g-Kenmotsu manifolds. Finally, we give some
examples of 3-dimensional g-Kenmotsu manifolds which verifies our result.

1. Introduction

In [25] Tanno classified connected almost contact metric manifolds whose au-
tomorphism groups have the maximum dimension. For such a manifold M, the
sectional curvature of plane section containing & is a constant, say ¢. If ¢ > 0, M is
a homogeneous Sasakian manifold of constant ¢-sectional curvature. If c = 0, M
is the product of a line or circle with a Kaehler manifold of constant holomorphic
curvature. If ¢ < 0, M is a warped product space R x ;C". In [13] Kenmotsu
abstracted the differential geometric properties of the third case. In particular the
almost contact metric structure in this case satisfies

(Vx@)Y = g(@X, )& = n(Y)pX

and an almost contact metric manifold satisfying this condition is called a
Kenmotsu manifold ([11],[13]). Again one has the more general notion of a g-
Kenmotsu structure [11] which may be defined by

(1.1) (Vx@)Y = Blg(@X, Y)& = n(Y)PX)

where f is a non-zero constant. From the condition one may readily deduce that

(1.2) Vx& = B(X = 1(X)<).
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Kenmotsu manifolds appear as examples of f-Kenmotsu manifolds, with g = 1.
p-Kenmotsu manifolds have been studied by several authors such as Matamba
[26], Janssens, and Vanhecke [11] and many others.

In the classification of Gray and Hervella [9] of almost Hermitian manifolds there
appears a class, Wy,0f Hermitian manifolds which are closely related to locally
conformally Kaehler manifolds. An almost contact metric structure (¢, &, 1, g) on
M is trans-Sasakian [19] if (M xR, J, G) belongs to the class Wy, where J is the almost
complex structure on M xR defined by

J(X, f&) = (pX—FE, n(X) ), for all vector fields X on M, f is a smooth function on M
XIR and G is the product metric on M xIR. This may be expressed by the condition
[5]

(1.3) (Vx@)Y = a(g(X, Y)E —n(Y)X) + B(g(pX, Y)E — n(Y)pX)

for smooth functions a and g on M. Hence we say that the trans-Sasakian structure

is of type (a,p). In particular, it is normal and it generalizes both a-Sasakian and
B-Kenmotsu structures. From the formula one easily obtains

(1.4) Vx& = —a(@X) + (X = n(X)E).

Hence a trans-Sasakian structure of type («, ) with o, € Rand a = 0 is a
p-Kenmotsu structure. The relation between trans-Sasakian, a-Sasakian and g-
Kenmotsu structures was recently discussed by Marrero [15].

Propositionl.1(Marrero[15]): A trans-Sasakian manifold of dimension >5 is
either a-Sasakian, g-Kenmotsu or Cosymplectic.

Let M; and M, be almost contact metric manifolds with structure tensors
(i, i, miy gi), 1 = 1, 2. Define an almost complex structure J on My X My by

(1.5) J(X1, X2) = (1 X1 — €72 1n2(X2)E1, PaXo + €24 11(X1)E2),

where u is a function on M; x M,. Let g be the Riemannian metric on M; x M;
defined by

(1.6) 7((X1, X2), (Y1, Y2)) = €% g1(X1, Y1) +€* g2(X2, Y2),

where p and t are function on M; X M,. Blair and Oubina [5] proved that if
(M1 X My, J,g) is Kaehlerian, then M; is - Kenmotsu if and only if &t = 0 and
grad®t = —B&,.

Kenmotsu manifolds have been studied by several authors such as G.Pitis ([21],[22]),
Jun, De and Pathak [12], De and Pathak ([8], [6]), Binh, Tamassy, De and Tarafdar
[1], Sulgar, Ozglir, and De [23] and many others.

Let (M", g), n > 3, be a Riemannian manifold. The notion of the quasi-conformal
curvature tensor was introduced by Yano and Sawaki [28]. According to them a
quasi-conformal curvature tensor is defined by

C'(X,Y)Z = aR(X,Y)Z+Db[S(Y,Z)X - S(X, Z2)Y + g(Y, Z)QX
@7 ~9(%,2)QY] - == +2][g(Y, Z)X ~ 9(X, 2)Y],
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where a and b are constants, S is the Ricci tensor, Q is the Ricci operator defined by
S(X,Y) = g(QX,Y) and r is the scalar curvature of the manifold M". If a = 1 and
b= —-L, then (1.7) takes the form

C'(X,Y)Z = R(XXY)Z- ﬁ[S(Y, Z2)X = S(X, 2)Y + g(Y,2)QX
r
—-9(X, 2)QY] + -Dn=2) [9(Y, 2)X = g(X, 2)Y]
= C(X,Y)Z

where C is the conformal curvature tensor [27]. In [7], De and Matsuyama studied
a quasi-conformally flat Riemannian manifold satisfying a certain condition on the
Ricci tensor. From Theorem 5 of [7], it can be proved that a 4-dimensional quasi-
conformally flat semi-Riemannian manifold is the Robertson-Walker space time.
Robertson-Walker spacetime is the warped product | x; M*, where M* is a space of
constant curvature and | is an open interval [16]. Thus quasi-conformal curvature
tensor has some importance in general theory of relativity also. From (1.7), we
obtain

(VWwC) (X, Y)Z = a(VwR) (X, Y)Z + b[(VwS) (Y, 2)X = (VwS) (X, 2)Y

+9(Y, Z) (VwQ) (X) — 9(X, Z2) (VwQ) (V)]
_dr(W) [ a

|2 v 20 [ov 2% - gx 2)V1,

(1.8) —

where V denotes the Levi-Civita connection . If the condition
(1.9) VR=0

holds on M, then M is called locally symmetric. A g-Kenmotsu manifold is said to
be locally ¢p-symmetric if
(1.10) G*((VxR)(Y, Z)W) = 0,

for all vector fields X,Y,Z W orthogonal to £&. This notion was introduced for
Sasakian manifolds by Takahashi [24]. Later in [4], Blair, Koufogiorgos and Sharma
studied locally ¢-symmetric contact metric manifolds.

In (1.10), if X,Y,Z and W are not horizontal vectors then we call the manifold
globally ¢-symmetric.

In this paper, we define locally ¢-quasiconformally symmetric and globally ¢-
guasiconformally symmetric contact metric manifolds. A contact metric manifold
(M, g) is called locally ¢-quasiconformally symmetric if the condition

(1.11) P*(VxC)(Y,Z)W) =0

holds on M, where X,Y,Z and W are horizontal vectors. If X,Y,Z and W are
arbitrary vectors then the manifold is called globally ¢-quasiconformally symmet-
ric. Quasi-conformal curvature tensor have been studied by several authors such
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as Yano and Sawaki [28], Ghosh and De [10], De and Matsuyama [7], Ozgur and
de [20] and many others. Motivated by the above studies in the present paper we
like to study ¢-quasi-conformally symmetric g-Kenmotsu manifolds.

In a Riemannian manifold a tensor a of second order is said to be parallel if
Va =0,

where V denotes the operator of covariant differentiation with respect to the metric
tensor g.

In 1926 H. Levy [14] proved that a second order symmetric parallel non-
singular tensor on a space of constant curvature is a constant multiple of the metric
tensor. In recent papers R. Sharma [18], generalized Levy’s result and also studied
a second order parallel tensor on Kaehler space of constant holomorphic sectional
curvature as well as on contact manifolds.

A Ricci soliton is a generalization of an Einstein metric. We recall the notion
of Ricci soliton according to [17]. On the manifold M, a Ricci soliton is a triple
(g,V, A) with g, a Riemannian metric, V a vector field and A a real scalar such that

(1.12) £vg+25+20g =0,

where £ is a Lie derivative. The Ricci soliton is said to be shrinking, steady and
expanding according as A is negative, zero and positive.

A Kenmotsu manifold M of dimension n > 2 is called an Einstein manifold if the
Ricci tensor S can be expressed as

(1.13) S(X,Y) = Ag(X,Y),
where A is a constant and also called an n-Einstein manifold if
(1.14) S(X, Y) =ag(X,Y) + bn(X)n(Y),

where a and b are smooth functions on the manifold.

The paper is organized as follows:
In section 1, we give a brief account of g-Kenmotsu manifolds. After preliminaries,
in the next section , we study globally ¢-quasi-conformally symmetric f-Kenmotsu
manifolds. We prove that if a f-Kenmotsu manifold is globally ¢-quasi-conformally
symmetric, then the manifold is an Einstein manifold. We also show that a globally
¢-quasi-conformally symmetric f-Kenmotsu manifold is globally ¢-symmetric.
In Section 4, we study 3-dimensional locally ¢-quasi-conformally symmetric -
Kenmotsu manifolds. We prove that a 3-dimensional g-Kenmotsu manifold is
locally ¢p-quasiconformally symmetric if and only if the scalar curvature r is constant
ifa+b # 0andr # —6p. In the next section we prove that a parallel symmetric
(0,2) tensor field in a 3-dimensional non-cosympletic f-Kenmotsu manifold is a
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constant multiple of the associated metric tensor. In section 6, | prove that in a
3-dimensional non-cosymplectic f-Kenmotsu manifold, the Ricci soliton (g, &, A) is
shrinking and the manifold is an n-Einstein manifold. We also give some examples
of 3-dimensional f-Kenmotsu manifolds.

2. Priliminaries

Let M be a connected almost contact metric manifold with an almost contact metric
structure (¢,£,1,9), that is, ¢ is an (1,1) tensor field, £ is a vector field, 1 is a 1-form
and g is a compatible Riemannian metric such that

(2.1) P*(X) = =X+ n(X)&, (&) = 1,¢& = 0,n¢p =0
(2.2) 9(@X, oY) = g(X, Y) = n(X)n(Y)
(2.3) g(X, &) = n(X)

for all X, Y € T(M)([2],[3]).
If an almost contact metric manifold satisfies

(2.4) (V)Y = B(g(@X, Y)< = n(Y)PX),

then M is called a B-Kenmotsu manifold, where V is the Levi-Civita connection of
g. From the above equation it follows that

(2.5) Vx& = B(X = n(X)¢),

and

(2.6) (VxmY = B(g(X, Y) = n(X)n(Y)).
Moreover, the curvature tensor R and the Ricci tensor S satisfy

2.7) R(X, )& = B(n(X)Y — n(Y)X)

and

(2.8) S(X, &) = =p(n = Hn(X).

3. Globally ¢-quasiconformally symmetric g-Kenmotsu manifolds

Definition 3.1: A g-Kenmotsu manifold M is said to be globally ¢-quasiconformally
symmetric if the quasi-conformal curvature tensor C* satisfies

3.1 O*((VxC)(Y,Z)W) =0,

for all vector fields X, Y, Z € x(M).

Let us suppose that M is a globally ¢-quasiconformally symmetric g-Kenmotsu
manifold. Then by definition

(3.2) P*((VwC")(X,Y)Z) =0,
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Using (2.1) we have
(3.3) —(VwC) X, Y)Z+n((VwC) (X, Y)Z2) & = 0.
From (1.8) it follows that

—ag (VwR) (X, Y)Z, U) = bg(X, U) (VwS) (Y, Z) + bg(Y, U) (VwS) (X, 2)
—bg(Y, 2)g (VwQ) X, U) + bg(X, 2)g (VwQ) Y, U)

+2dr(w) | =2+ 20 (90, 20906 L) - 90X, 290, L))
+an ((VwR) (X, Y)Z) 1(U) + b (VasS) (¥, 2)0(U)10X) ~ b (V) (%, Z)n(U)n(Y)
#9021 (Tw Q) X) 1) - bgX, 201 (T Q) ¥) (V)

Ga) 2w [+ 20] (0% 2100 - 90X, D) (V) = 0.

Putting X = U = g;, where {ej}, (i = 1, 2, ..., n) is an orthonormal basis of the tangent
space at each point of the manifold, and taking summation over i, we get

—(a+nb - 2b) (VwS) (Y, Z) — {bg (VwQ) e, &) — nT_ldr(W) (n;fl + Zb)

b7 (VwQ)e) n(e) + ~dr(w) (=2 + 20)lg(%,2) + by (W Q) Y,2)
+a1 (VwR) (&1, Y)2) (&) = b (VwS) (&, 2)0(¥) = b1 (YwQ) Y) (@)

(3.5) +%dr(W) (% + 2b) nY)n(2) = 0.

Putting Z = &, we obtain

~(a+ 10— 20) (V) ¥, ) = (N bar(w) — = Larw) (2 + 20)

1
by (VwQ)e) ) + (W) (=2 + 2b)) + an (VR (&, 1)) )

(3.6) b (VwS) (& E)n(Y) + %dr(W) (% + Zb)n(Y) - 0.
Now
n((VwQ)e)neE) = g(VwQ)ei, &) n(ei)
= 1((VwQ) &) = 7(QX, &)
3.7) = S(X,&) = 0.
(3.8) 1 ((VwR) (&i, Y)E) nei) = g (VwR) (&3, Y)E, £) g(&i, &).

g(VwR) (&1, )&, &) = g(VwR(Ei, Y)E, &) — g (R(Vwei, Y)E, &)
-9 (R(ei/ VWY)EI é) -9 (R(ei/ Y)VWEI é) .



p-Kenmotsu Manifolds 179

Since {g;} is an orthonormal basis Vxe; = 0 and using (2.7) we find

gR(E, VwY)E &) = BlamE)VwY —n(VwY)ei, &)

= BnE)n(VwY) = n(VwY)n(ei))
= 0.

As

(3.9) gR(E,Y)E E) +g(R(EE)Y,e)=0

we have

(3.10) g (VwR(ei, Y)E, &) + g (R(ei, Y)E, Vwé) = 0.

Using this we get

(3.11) g ((VwR) (&, Y)¢, &) = 0.

By the use of (3.7), (3.8) and (3.11), from (3.6) we obtain
(312) (V) (Y, ) = =dr(Wyn(v),

since a + (n — 2)b # 0. Because if a + (n — 2)b = 0 then from (1.7), it follows that
C* = aC. Sowe can nottakea+(n—2)b = 0. Putting Y = £in (3.12) we get dr(W) = 0.
This implies r is constant. So from (3.12), we have

(3.13) (VwS) (Y, &) =0.
Using (2.8), this implies

(3.14) S(Y, W) = Ag(Y, W),
where A = —(n — 1). Hence we can state the following:

Theorem 3.1. If a g-Kenmotsu manifold is globally ¢-quasiconformally symmetric, then
the manifold is an Einstein manifold.

Next suppose S(X, Y) = Ag(X,Y), i.e. QX = AX. Then from (1.7) we have
C'(X,Y)Z = aR(XY)Z

(3.15) ; [Zb)\ - % (% ; Zb)] [9(Y, 2)X — g(X, 2)Y],
which gives us

(3.16) (VwC) (X, Y)Z = a(VwR) (X, Y)Z.

Applying ¢? on both sides of the above equation we have

(3.17) % (VwC*) (X, Y)Z = ap? (VwR) (X, Y)Z

Hence we can state:

Theorem 3.2.  Aglobally ¢-quasiconformally symmetric f-Kenmotsu manifold is globally
¢@-symmetric.

Remark 3.1. Since a globally ¢-symmetric f-Kenmotsu manifold is always a globally ¢-
quasiconformally symmetric manifold, from Theorem 3.2 we conclude that on a f-Kenmotsu
manifold, globally ¢-symmetry and globally ¢-quasiconformally symmetry are equivalent.
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4. 3-dimensional locally¢-quasiconformally symmetric g-Kenmotsu
manifolds

Let us consider a 3-dimensional g-Kenmotsu manifold. It is known that the
conformal curvature tensor vanishes identically in the 3-dimensional Riemannian
manifold. Thus we find

RX,Y)Z = g(Y,2)QX — g(X, Z)QY + S(Y, Z)X — S(X, Z)Y
(1) ~2 (Y 2)X - 9% 2)Y],

where Q is the Ricci operator, that is, g(QX,Y) = S(X,Y) and r is the scalar
curvature of the manifold.

Putting Z = ¢ in (4.1) and using (2.8) we have

(4.2) n(Y)QX = n(X)QY = (% +B)I(Y)X = n(X)Y].

Putting Y = £ in (4.2) and using (2.1) and (2.8), we get

«3) QX = Z1(r+ 2§)X ~ (r + 69109,
that is,
(4.4) S(X,Y) = %[(r +2B)g(X, Y) = (r + 6B8)n(X)n(Y)].

Using (4.3) in (4.1), we get

r+4p r+6p
RX,Y)Z = (T)[Q(Y/ Z)X = g(X, Z)Y] - (T)[g(Y’ Z)n(X)e
(4.5) —g(X, Z)n(Y)E + n(YIn(2)X — n(X)n(Z2)Y].

Putting (4.3), (4.4) and (4.5) into (1.7) we have

c(XY)z (@a+b)(r+ Gﬁ)[%{g(Y, Z2)X = g(X, 2)Y}

5 190%, 200 - g%, Z)(Y)E
(4.6) (Y )NZ)X = n(X)n(2) Y}

Thus we have
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Lemma4.1l. Let M be a 3-dimensional g-Kenmotsu manifold.
Ifa+b=0orr=-6p, then the quasi-conformal curvature tensor vanishes identically.

Next, we assume that a + b # 0 or r # —6p. Taking the covariant differentiation
of (4.6), we get

GaC)x Nz = L@ byig(r,2)X ~ g(x 2)Y)

d
T @+ bigtv, 2008

=9(X, Z2)n(Y)& + n(Y)n(2)X = n(X)n(2)Y}

~2(r + 8B)(@+ Bg(Y, Z)(Twm(X)E - g(X, V)Y
+9(Y, Zn(X)Vwe = (X, Z)n(Y)Vwé

9%, VWX + 92, VX

~90 V@)Y ~ 92, VOOV

If the vector fields X, Y and Z are horizontal, then the above equation is rewritten
as follows:

TweIx Nz = T @i 2% - g 2]
@7 2+ )@ + DY XTwn)O)E - g%, ZVum(VE]

Operating ¢? to the above equation, then we find

dr(W)
3
Hence we conclude the following theorem:

(4.8) P*(VwC)H(X, Y)Z) = — @+ b){g(Y, Z)X - g(X, 2)Y}.

Theorem 4.1. A 3-dimensional 5-Kenmotsu manifold is locally ¢p-quasiconformally sym-
metric if and only if the scalar curvature r is constant ifa + b # 0 and r # —6p.

If 5 = 1, then the manifold reduces to a Kenmotsu manifold. Thus from the
above theorem we get the following:

Corollary 4.1. A 3-dimensional Kenmotsu manifold is locally ¢-quasiconformally sym-
metric if and only if the scalar curvature r is constant ifa+ b # 0 and r # —6.
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5. Second order parallel tensor

Let us consider a parallel symmetric (0,2)-tensor 6 on a 3-dimensional g-
Kenmotsu manifold M.
Then, by V6 = 0, we have

(5.1) S(R(U, V)X, Y) + 8(X, R(U, V)Y) = 0,

where U, V, X and Y are arbitrary vectors fields on M.
As 6 is symmetric , putting U = X =Y = £ in (5.1), we obtain

(5.2) 0(&,R(&, X)€) = 0.
Now applying (2.7) in (5.2) we have
(5.3) BO(Y, &) — pn(Y)o(E, &) = 0.

Differentiating (5.3) covariantly along X we find

Blo(VxY, &) + 6(Y, Vx &)} — Bla(VxY, &)

(5.4) +9(Y, VxEIO(E, &) = 2Bg(Y, £)6(VxE, &) = 0.
Putting Y = VxY in (5.2) we get
(5.5) Blo(VxY, &) — pn(VxY)o(<, &)} = 0.

From (5.4) and (5.5) we have

Bo(Y, Vx&) = Bg(Y, Vx&)o(E, &) = 2Bg(Y, £)6(VxE, &) = 0,

which implies that
BHO(Y, X) = g(Y, X)5(&, &)} = 0.

This implies either
(5.6) oY, X) = 0(&, &)g(Y, X), or, B=0.

Since 6 and g are parallel tensor fields, A = 6(&, &) is constant on U. By the paral-
lelity of 6 and g it must be 6 = Ag on whole of M. Thus we have the following:

Theorem 5.1. A parallel symmetric (0,2) tensor in a 3-dimensional non-cosympletic f3-
Kenmotsu manifold is a constant multiple of the associated metric tensor.

6. Riccisolitons

Suppose a 3-dimensional g-Kenmotsu manifold admits a Ricci soliton de-
fined by (1.12). It is well known that Vg = 0. Since A in the Ricci soliton equation
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(1.12) is a constant, so VAg = 0. Thus £yg + 2S is parallel. Hence using the previ-
ous theorem we have £yg + 2S is a constant multiple of metric tensors g, that is,
£vg + 28 = ag, where a is constant. Hence £yg + 2S + 2Ag reduces to (a + 21)g, that
implies A = —a/2. So we have the following:

Theorem 6.1. In a3-dimensional non-cosymplectic S-Kenmotsu manifold, the Ricci soli-
ton (g, V, A) is shrinking or expanding according as a is positive or negative.

Now in particular we investigate the case V = &. Then (1.12) reduces to
(6.1) £:9+25+2Mg = 0.
Using (2.5) in a 3-dimensional g-Kenmotsu manifold we have
(6.2) Ecg(Y, Z) = 2B(9(Y, Z) — n(Y)n(2)).

Then using (6.1) in (6.2) we get A = =S(&, &) = p(n — 1). Also from (6.1) it follows
that the manifold is an n-Einstein manifold. Thus we have

Corollary 6.1. In a3-dimensional non-cosymplectic f-Kenmotsu manifold, the Ricci soli-
ton (g, &, A) is shrinking and the manifold is an n-Einstein manifold.

7. Example of a 3-dimensional - Kenmotsu manifold

Example 7.1: We consider the 3-dimensional manifold M = {(x,y, z) € R3,z # 0},
where (X, y, z) are standard co-ordinate of IRS.

The vector fields

e—ezi e—e(i+i) e—ai
LTV ox P ok oy P %oz

are linearly independent at each point of M, where « is constant.
Let g be the Riemannian metric defined by

g(ey,e1) = g(ez, e2) = gles,e3) =1

g(e1,e3) = g(e1, e2) = g(ez, €3) =0,

Let ) be the 1-form defined by 1(Z) = g(Z, e3) for any Z € x(M).
Let ¢ be the (1, 1) tensor field defined by

Per) = —e2, P(e2) =1, ¢(es) =0.
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Then using the linearity of ¢ and g, we have

nes) =1,
$?Z = ~Z + n(2)es,
9(PZ, W) = g(Z, W) — n(Z)n(W),

forany Z,W € x(M).

Then for e3 = &, the structure (¢, &, 1, g) defines an almost contact metric
structure on M.

Let V be the Levi-Civita connection with respect to metric g. Then we have
[e1,e2] =0, [ei,e3] =—aes and [eye3] = —aes.

Taking es = & and using Koszul formula for the Riemannian metric g, we can
easily calculate

Ve,e1 =ae3, Veer =0, Vge3=-ae,
Ve,61 =0, Ve =—ae3, Vg3 =—aey,
(7.2) Ve,e1 =0, Vee,=0, Vee3=0.
We see that the structure (¢, &, 1, g) satisfies the formula (2.5) for § = —a. Hence

the manifold is a f-Kenmotsu manifold with = constant.

Example 7.2: We consider the 3-dimensional manifold M = {(x,y,z) € R%,z # 0},
where (X, y, z) are standard co-ordinate of IRS.

The vector fields P

e1 = Z&, € =Z—

are linearly independent at each point of M.

Let g be the Riemannian metric defined by

g(e1,e1) = g(e2, €2) = g(es,e3) = 1

g(e1,€3) = g(e1,€2) = g(e2,83) = 0,
that is, the form of the metric becomes

dx? + dy? + dz?
-T2

Let ) be the 1-form defined by 1(Z) = g(Z, e3) for any Z € x(M).
Let ¢ be the (1, 1) tensor field defined by

Per) = —e2, P(e2) =1, ¢(es) =0.
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Then using the linearity of ¢ and g, we have

nes) =1,
$*Z = ~Z +1(2)es,
9(@Z, W) = g(Z, W) = n(Z)n(W),
forany Z,W € x(M).

Then for e3 = &, the structure (¢, &, 1, g) defines an almost contact metric
structure on M.

Let V be the Levi-Civita connection with respect to metric g. Then we have

[er,e3] = ez —e3e;
- Zi(zi)_zi(zi
X" 0z 07" oX
_ g 9
X0z dzdx  oJx
(72) = —€1.

Similarly, [e;,2] =0 and [ey, e3] = —€z.
The Riemannian connection V of the metric g is given by
29(VxY,Z) = Xg(Y,Z)+Yg(Z X)—Zg(X,Y)
(7.3) = gX [V, Z]) = g(Y, [X, Z]) + g(Z [X, YD),

which known as Koszul’s formula.
Using (7.3) we have

2g(Ve,e3,61) = —2g(e1, 1)
(7.4) = 2g(—ey,e1).
Again by (7.3)
(7.5) 29(Ve,e3,82) = 0 = 2g(—€1,€2)
and
(7.6) 29(Ve,e3,€3) = 0 = 2g(—€1, €3).

From (7.4), (7.5) and (7.6) we obtain
Zg(vele3/ X) = 29(_91/ X)/

for all Xex(M).

Thus
Ve, €3 = —€1.
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Therefore, (7.3) further yields
Ve,e1 =63, Vg2 =0, Veez=-—e,
Ve,e1 =0, Ve =¢63, Vee3=—6

(77) Vesel = O/ VEan = 0/ Vese3 =0.

(7.7) tells us that the manifold satisfies (2.5) for § = -1 and & = e;. Hence the
manifold is a g-Kenmotsu manifold with g =constant.

It is known that
(7.8) R(X,Y)Z = VxVyZ — VyVxZ — VixviZ.

With the help of the above results and using (7.8), it can be easily verified that

R(el/ 62)63 = O/ R(eZI e3)e3 = _eZI R(el/ e3)e3 = _el/
R(e1, e2)eo = —e1, R(ez,e3)e2 =e3, R(ey, e3)e2 =0,
R(e1,e2)e1 = €2, R(ez,e3)e1 =0, R(ey, e3)er = ea.

From the above expressions of the curvature tensor we obtain

S(es, €1) g(R(e1, e2)ez, €1) + g(R(eq, €3)es, €1)
(7.9) - -2

Similarly we have
S(e2/ eZ) = S(e3/ 63) =-2.

Therefore,
r= S(el, el) + 5(92, e2) + S(e3/ 63) = —6.

Thus the scalar curvature r is constant. Hence Theorem 4.1 is verified.
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