ON A CLASS OF β -KENMOTSU MANIFOLDS

Krishnendu De

Abstract. The object of the present paper is to study globally ϕ -quasiconformally symmetric β -Kenmotsu manifolds. It has been shown that a globally ϕ -quasiconformally symmetric β -Kenmotsu manifold is globally ϕ -symmetric. Also we study 3-dimensional locally ϕ -symmetric β -Kenmotsu manifolds. Next we study second order parallel tensor and Ricci soliton on 3-dimensional β -Kenmotsu manifolds. Finally, we give some examples of 3-dimensional β -Kenmotsu manifolds which verifies our result.

1. Introduction

In [25] Tanno classified connected almost contact metric manifolds whose automorphism groups have the maximum dimension. For such a manifold M, the sectional curvature of plane section containing ξ is a constant, say c. If c>0, M is a homogeneous Sasakian manifold of constant ϕ -sectional curvature. If c=0, M is the product of a line or circle with a Kaehler manifold of constant holomorphic curvature. If c<0, M is a warped product space $\mathbb{R}\times_f C^n$. In [13] Kenmotsu abstracted the differential geometric properties of the third case. In particular the almost contact metric structure in this case satisfies

$$(\nabla_X \phi) Y = g(\phi X, Y) \xi - \eta(Y) \phi X$$

and an almost contact metric manifold satisfying this condition is called a Kenmotsu manifold ([11],[13]). Again one has the more general notion of a β -Kenmotsu structure [11] which may be defined by

(1.1)
$$(\nabla_X \phi) Y = \beta(g(\phi X, Y)\xi - \eta(Y)\phi X)$$

where β is a non-zero constant. From the condition one may readily deduce that

$$\nabla_X \xi = \beta(X - \eta(X)\xi).$$

Received April 03, 2014.; Accepted Jun 14, 2014. 2010 Mathematics Subject Classification. 53c15, 53c25.

Kenmotsu manifolds appear as examples of β -Kenmotsu manifolds, with $\beta = 1$. β -Kenmotsu manifolds have been studied by several authors such as Matamba [26], Janssens, and Vanhecke [11] and many others.

In the classification of Gray and Hervella [9] of almost Hermitian manifolds there appears a class, W_4 , of Hermitian manifolds which are closely related to locally conformally Kaehler manifolds. An almost contact metric structure (ϕ, ξ, η, g) on M is trans-Sasakian [19] if $(M \times R, J, G)$ belongs to the class W_4 , where J is the almost complex structure on $M \times R$ defined by

J (X, $f\frac{d}{df}$) = (ϕX - $f\xi$, $\eta(X)\frac{d}{dt}$), for all vector fields X on M, f is a smooth function on M × \mathbb{R} and G is the product metric on M× \mathbb{R} . This may be expressed by the condition [5]

$$(1.3) \qquad (\nabla_X \phi) Y = \alpha(q(X, Y)\xi - \eta(Y)X) + \beta(q(\phi X, Y)\xi - \eta(Y)\phi X)$$

for smooth functions α and β on M. Hence we say that the trans-Sasakian structure is of type (α,β) . In particular, it is normal and it generalizes both α -Sasakian and β -Kenmotsu structures. From the formula one easily obtains

(1.4)
$$\nabla_X \xi = -\alpha(\phi X) + \beta(X - \eta(X)\xi).$$

Hence a trans-Sasakian structure of type (α, β) with $\alpha, \beta \in \mathbb{R}$ and $\alpha = 0$ is a β -Kenmotsu structure. The relation between trans-Sasakian, α -Sasakian and β -Kenmotsu structures was recently discussed by Marrero [15].

Proposition1.1(Marrero[15]): A trans-Sasakian manifold of dimension ≥ 5 is either *α*-Sasakian, *β*-Kenmotsu or Cosymplectic.

Let M_1 and M_2 be almost contact metric manifolds with structure tensors $(\phi_i, \xi_i, \eta_i, g_i)$, i = 1, 2. Define an almost complex structure J on $M_1 \times M_2$ by

(1.5)
$$J(X_1, X_2) = (\phi_1 X_1 - e^{-2\mu} \eta_2(X_2) \xi_1, \phi_2 X_2 + e^{2\mu} \eta_1(X_1) \xi_2),$$

where μ is a function on $M_1 \times M_2$. Let \widetilde{g} be the Riemannian metric on $M_1 \times M_2$ defined by

$$\widetilde{q}((X_1, X_2), (Y_1, Y_2)) = e^{2\rho} q_1(X_1, Y_1) + e^{2\tau} q_2(X_2, Y_2),$$

where ρ and τ are function on $M_1 \times M_2$. Blair and Oubina [5] proved that if $(M_1 \times M_2, J, \widetilde{g})$ is Kaehlerian, then M_2 is β - Kenmotsu if and only if $\xi_1 \tau = 0$ and $grad^2 \tau = -\beta \xi_2$.

Kenmotsu manifolds have been studied by several authors such as G.Pitis ([21],[22]), Jun, De and Pathak [12], De and Pathak ([8], [6]), Binh, Tamassy, De and Tarafdar [1], Sulgar, Özgür, and De [23] and many others.

Let (M^n, g) , n > 3, be a Riemannian manifold. The notion of the quasi-conformal curvature tensor was introduced by Yano and Sawaki [28]. According to them a quasi-conformal curvature tensor is defined by

$$C^{*}(X, Y)Z = aR(X, Y)Z + b[S(Y, Z)X - S(X, Z)Y + g(Y, Z)QX - g(X, Z)QY] - \frac{r}{n}[\frac{a}{n-1} + 2b][g(Y, Z)X - g(X, Z)Y],$$
(1.7)

where *a* and *b* are constants, *S* is the Ricci tensor, *Q* is the Ricci operator defined by S(X, Y) = g(QX, Y) and *r* is the scalar curvature of the manifold M^n . If a = 1 and $b = -\frac{1}{n-2}$, then (1.7) takes the form

$$C^{*}(X, Y)Z = R(X, Y)Z - \frac{1}{n-2}[S(Y, Z)X - S(X, Z)Y + g(Y, Z)QX - g(X, Z)QY] + \frac{r}{(n-1)(n-2)}[g(Y, Z)X - g(X, Z)Y]$$

$$= C(X, Y)Z,$$

where C is the conformal curvature tensor [27]. In [7], De and Matsuyama studied a quasi-conformally flat Riemannian manifold satisfying a certain condition on the Ricci tensor. From Theorem 5 of [7], it can be proved that a 4-dimensional quasi-conformally flat semi-Riemannian manifold is the Robertson-Walker space time. Robertson-Walker spacetime is the warped product $I \times_f M^*$, where M^* is a space of constant curvature and I is an open interval [16]. Thus quasi-conformal curvature tensor has some importance in general theory of relativity also. From (1.7), we obtain

$$(\nabla_{W}C^{*})(X,Y)Z = a(\nabla_{W}R)(X,Y)Z + b[(\nabla_{W}S)(Y,Z)X - (\nabla_{W}S)(X,Z)Y + g(Y,Z)(\nabla_{W}Q)(X) - g(X,Z)(\nabla_{W}Q)(Y)]$$

$$(1.8) \qquad -\frac{dr(W)}{n} \left[\frac{a}{n-1} + 2b\right] \left[g(Y,Z)X - g(X,Z)Y\right],$$

where $\boldsymbol{\nabla}$ denotes the Levi-Civita connection . If the condition

$$(1.9) \nabla R = 0$$

holds on M, then M is called locally symmetric. A β -Kenmotsu manifold is said to be locally ϕ -symmetric if

(1.10)
$$\phi^{2}((\nabla_{X}R)(Y,Z)W) = 0,$$

for all vector fields X, Y, Z, W orthogonal to ξ . This notion was introduced for Sasakian manifolds by Takahashi [24]. Later in [4], Blair, Koufogiorgos and Sharma studied locally ϕ -symmetric contact metric manifolds.

In (1.10), if X, Y, Z and W are not horizontal vectors then we call the manifold globally ϕ -symmetric.

In this paper, we define locally ϕ -quasiconformally symmetric and globally ϕ -quasiconformally symmetric contact metric manifolds. A contact metric manifold (M,g) is called locally ϕ -quasiconformally symmetric if the condition

(1.11)
$$\phi^{2}((\nabla_{X}C^{*})(Y,Z)W) = 0$$

holds on M, where X, Y, Z and W are horizontal vectors. If X, Y, Z and W are arbitrary vectors then the manifold is called globally ϕ -quasiconformally symmetric. Quasi-conformal curvature tensor have been studied by several authors such

as Yano and Sawaki [28], Ghosh and De [10], De and Matsuyama [7], Ozgur and de [20] and many others. Motivated by the above studies in the present paper we like to study ϕ -quasi-conformally symmetric β -Kenmotsu manifolds.

In a Riemannian manifold a tensor α of **second order** is said to be **parallel** if

$$\nabla \alpha = \mathbf{0}$$
,

where ∇ denotes the operator of covariant differentiation with respect to the metric tensor q.

In 1926 H. Levy [14] proved that a second order symmetric parallel non-singular tensor on a space of constant curvature is a constant multiple of the metric tensor. In recent papers R. Sharma [18], generalized Levy's result and also studied a second order parallel tensor on Kaehler space of constant holomorphic sectional curvature as well as on contact manifolds.

A Ricci soliton is a generalization of an Einstein metric. We recall the notion of Ricci soliton according to [17]. On the manifold M, a **Ricci soliton** is a triple (g, V, λ) with g, a Riemannian metric, V a vector field and λ a real scalar such that

$$\pounds_{V}q + 2S + 2\lambda q = 0,$$

where £ is a Lie derivative. The Ricci soliton is said to be shrinking, steady and expanding according as λ is negative, zero and positive.

A Kenmotsu manifold M of dimension n > 2 is called an **Einstein manifold** if the Ricci tensor S can be expressed as

$$(1.13) S(X, Y) = \lambda q(X, Y),$$

where λ is a constant and also called an η -**Einstein manifold** if

(1.14)
$$S(X, Y) = aq(X, Y) + b\eta(X)\eta(Y),$$

where a and b are smooth functions on the manifold.

The paper is organized as follows:

In section 1, we give a brief account of β -Kenmotsu manifolds. After preliminaries, in the next section , we study globally ϕ -quasi-conformally symmetric β -Kenmotsu manifolds. We prove that if a β -Kenmotsu manifold is globally ϕ -quasi-conformally symmetric, then the manifold is an Einstein manifold. We also show that a globally ϕ -quasi-conformally symmetric β -Kenmotsu manifold is globally ϕ -symmetric. In Section 4, we study 3-dimensional locally ϕ -quasi-conformally symmetric β -Kenmotsu manifolds. We prove that a 3-dimensional β -Kenmotsu manifold is locally ϕ -quasiconformally symmetric if and only if the scalar curvature r is constant if $a+b\neq 0$ and $r\neq -6\beta$. In the next section we prove that a parallel symmetric (0,2) tensor field in a 3-dimensional non-cosympletic β -Kenmotsu manifold is a

constant multiple of the associated metric tensor. In section 6, I prove that in a 3-dimensional non-cosymplectic β -Kenmotsu manifold, the Ricci soliton (g, ξ, λ) is shrinking and the manifold is an η -Einstein manifold. We also give some examples of 3-dimensional β -Kenmotsu manifolds.

2. Priliminaries

Let M be a connected almost contact metric manifold with an almost contact metric structure (ϕ, ξ, η, g) , that is, ϕ is an (1,1) tensor field, ξ is a vector field, η is a 1-form and g is a compatible Riemannian metric such that

(2.1)
$$\phi^{2}(X) = -X + \eta(X)\xi, \eta(\xi) = 1, \phi\xi = 0, \eta\phi = 0$$

$$(2.2) g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y)$$

$$(2.3) g(X,\xi) = \eta(X)$$

for all $X, Y \in T(M)([2],[3])$.

If an almost contact metric manifold satisfies

(2.4)
$$(\nabla_X \phi) Y = \beta(g(\phi X, Y)\xi - \eta(Y)\phi X),$$

then M is called a β -Kenmotsu manifold, where ∇ is the Levi-Civita connection of g. From the above equation it follows that

$$(2.5) \nabla_X \xi = \beta(X - \eta(X)\xi),$$

and

(2.6)
$$(\nabla_X \eta) Y = \beta(g(X, Y) - \eta(X)\eta(Y)).$$

Moreover, the curvature tensor *R* and the Ricci tensor *S* satisfy

(2.7)
$$R(X, Y)\xi = \beta(\eta(X)Y - \eta(Y)X)$$

and

$$(2.8) S(X,\xi) = -\beta(n-1)\eta(X).$$

3. Globally ϕ -quasiconformally symmetric β -Kenmotsu manifolds

Definition 3.1: A β -Kenmotsu manifold M is said to be globally ϕ -quasiconformally symmetric if the quasi-conformal curvature tensor C^* satisfies

(3.1)
$$\phi^{2}((\nabla_{X}C^{*})(Y,Z)W) = 0,$$

for all vector fields X, Y, $Z \in \chi(M)$.

Let us suppose that M is a globally ϕ -quasiconformally symmetric β -Kenmotsu manifold. Then by definition

(3.2)
$$\phi^{2}((\nabla_{W}C^{*})(X,Y)Z) = 0,$$

Using (2.1) we have

$$(3.3) \qquad -\left(\nabla_{W}C^{*}\right)\left(X,Y\right)Z + \eta\left(\left(\nabla_{W}C^{*}\right)\left(X,Y\right)Z\right)\xi = 0.$$

From (1.8) it follows that

$$-ag\left(\left(\nabla_{W}R\right)\left(X,Y\right)Z,U\right)-bg(X,U)\left(\nabla_{W}S\right)\left(Y,Z\right)+bg(Y,U)\left(\nabla_{W}S\right)\left(X,Z\right)\\-bg(Y,Z)g\left(\left(\nabla_{W}Q\right)X,U\right)+bg(X,Z)g\left(\left(\nabla_{W}Q\right)Y,U\right)\\+\frac{1}{n}dr(W)\left[\frac{a}{n-1}+2b\right]\left(g(Y,Z)g(X,U)-g(X,Z)g(Y,U)\right)\\+a\eta\left(\left(\nabla_{W}R\right)\left(X,Y\right)Z\right)\eta(U)+b\left(\nabla_{W}S\right)\left(Y,Z\right)\eta(U)\eta(X)-b\left(\nabla_{W}S\right)\left(X,Z\right)\eta(U)\eta(Y)\\+bg(Y,Z)\eta\left(\left(\nabla_{W}Q\right)X\right)\eta(U)-bg(X,Z)\eta\left(\left(\nabla_{W}Q\right)Y\right)\eta(U)$$

(3.4)
$$-\frac{1}{n}dr(W)\left[\frac{a}{n-1} + 2b\right] (g(Y,Z)\eta(X) - g(X,Z)\eta(Y)) \eta(U) = 0.$$

Putting $X = U = e_i$, where $\{e_i\}$, (i = 1, 2, ..., n) is an orthonormal basis of the tangent space at each point of the manifold, and taking summation over i, we get

$$-(a+nb-2b) (\nabla_{W}S) (Y,Z) - \{bg ((\nabla_{W}Q) e_{i}, e_{i}) - \frac{n-1}{n} dr(W) \left(\frac{a}{n-1} + 2b\right) - b\eta ((\nabla_{W}Q) e_{i}) \eta (e_{i}) + \frac{1}{n} dr(W) \left(\frac{a}{n-1} + 2b\right) \}g(Y,Z) + bg ((\nabla_{W}Q) Y,Z) + a\eta ((\nabla_{W}R) (e_{i}, Y)Z) \eta(e_{i}) - b (\nabla_{W}S) (\xi, Z)\eta(Y) - b\eta ((\nabla_{W}Q) Y) \eta(Z)$$

(3.5)
$$+ \frac{1}{n} dr(W) \left(\frac{a}{n-1} + 2b \right) \eta(Y) \eta(Z) = 0.$$

Putting $Z = \xi$, we obtain

$$-(a+nb-2b) (\nabla_{W}S) (Y,\xi) - \eta(Y)\{bdr(W) - \frac{n-1}{n}dr(W)\left(\frac{a}{n-1} + 2b\right) - b\eta ((\nabla_{W}Q) e_{i}) \eta(e_{i}) + \frac{1}{n}dr(W)\left(\frac{a}{n-1} + 2b\right)\} + a\eta ((\nabla_{W}R) (e_{i}, Y)\xi) \eta(e_{i})$$

$$-b (\nabla_{W}S) (\xi,\xi)\eta(Y) + \frac{1}{n}dr(W)\left(\frac{a}{n-1} + 2b\right)\eta(Y) = 0.$$
(3.6)

Now

(3.7)
$$\eta((\nabla_W Q) e_i) \eta(e_i) = g((\nabla_W Q) e_i, \xi) \eta(e_i)$$
$$= \eta((\nabla_W Q) \xi) = g(Q \phi X, \xi)$$
$$= S(\phi X, \xi) = 0.$$

(3.8)
$$\eta\left((\nabla_{W}R)\left(e_{i}, Y\right)\xi\right)\eta(e_{i}) = g\left((\nabla_{W}R)\left(e_{i}, Y\right)\xi, \xi\right)g(e_{i}, \xi).$$

$$g\left((\nabla_{W}R)\left(e_{i}, Y\right)\xi, \xi\right) = g\left(\nabla_{W}R(e_{i}, Y)\xi, \xi\right) - g\left(R(\nabla_{W}e_{i}, Y)\xi, \xi\right) - q\left(R(e_{i}, \nabla_{W}Y)\xi, \xi\right) - q\left(R(e_{i}, Y)\nabla_{W}\xi, \xi\right).$$

Since $\{e_i\}$ is an orthonormal basis $\nabla_X e_i = 0$ and using (2.7) we find

$$g(R(e_i, \nabla_W Y)\xi, \xi) = \beta(g(\eta(e_i)\nabla_W Y - \eta(\nabla_W Y)e_i, \xi))$$

$$= \beta(\eta(e_i)\eta(\nabla_W Y) - \eta(\nabla_W Y)\eta(e_i))$$

$$= 0.$$

As

$$(3.9) q(R(e_i, Y)\xi, \xi) + q(R(\xi, \xi) Y, e_i) = 0$$

we have

$$(3.10) q(\nabla_W R(e_i, Y)\xi, \xi) + q(R(e_i, Y)\xi, \nabla_W \xi) = 0.$$

Using this we get

By the use of (3.7), (3.8) and (3.11), from (3.6) we obtain

(3.12)
$$(\nabla_W S) (Y, \xi) = \frac{1}{n} dr(W) \eta(Y),$$

since $a + (n-2)b \neq 0$. Because if a + (n-2)b = 0 then from (1.7), it follows that $C^* = aC$. So we can not take a + (n-2)b = 0. Putting $Y = \xi$ in (3.12) we get dr(W) = 0. This implies r is constant. So from (3.12), we have

 $q\left((\nabla_W R)\left(e_i,\,Y\right)\xi,\,\xi\right)=0.$

$$(3.13) \qquad (\nabla_W S) (Y, \xi) = 0.$$

Using (2.8), this implies

$$(3.14) S(Y, W) = \lambda g(Y, W),$$

where $\lambda = -\beta(n-1)$. Hence we can state the following:

Theorem 3.1. If a β -Kenmotsu manifold is globally ϕ -quasiconformally symmetric, then the manifold is an Einstein manifold.

Next suppose $S(X, Y) = \lambda q(X, Y)$, i.e. $QX = \lambda X$. Then from (1.7) we have

$$(3.15) C^*(X, Y)Z = aR(X, Y)Z + \left[2b\lambda - \frac{r}{n}\left(\frac{a}{n-1} + 2b\right)\right] \left[g(Y, Z)X - g(X, Z)Y\right],$$

which gives us

$$(3.16) \qquad (\nabla_W C^*) (X, Y) Z = a (\nabla_W R) (X, Y) Z.$$

Applying ϕ^2 on both sides of the above equation we have

$$\phi^{2}\left(\nabla_{W}C^{*}\right)\left(X,Y\right)Z=a\phi^{2}\left(\nabla_{W}R\right)\left(X,Y\right)Z.$$

Hence we can state:

Theorem 3.2. A globally ϕ -quasiconformally symmetric β -Kenmotsu manifold is globally ϕ -symmetric.

Remark 3.1. Since a globally ϕ -symmetric β -Kenmotsu manifold is always a globally ϕ -quasiconformally symmetric manifold, from Theorem 3.2 we conclude that on a β -Kenmotsu manifold, globally ϕ -symmetry and globally ϕ -quasiconformally symmetry are equivalent.

4. 3-dimensional locally ϕ -quasiconformally symmetric β -Kenmotsu manifolds

Let us consider a 3-dimensional β -Kenmotsu manifold. It is known that the conformal curvature tensor vanishes identically in the 3-dimensional Riemannian manifold. Thus we find

$$R(X, Y)Z = g(Y, Z)QX - g(X, Z)QY + S(Y, Z)X - S(X, Z)Y - \frac{r}{2}[g(Y, Z)X - g(X, Z)Y],$$
(4.1)

where Q is the Ricci operator, that is, g(QX, Y) = S(X, Y) and r is the scalar curvature of the manifold.

Putting $Z = \xi$ in (4.1) and using (2.8) we have

(4.2)
$$\eta(Y)QX - \eta(X)QY = (\frac{r}{2} + \beta)[\eta(Y)X - \eta(X)Y].$$

Putting $Y = \xi$ in (4.2) and using (2.1) and (2.8), we get

(4.3)
$$QX = \frac{1}{2}[(r+2\beta)X - (r+6\beta)\eta(X)\xi],$$

that is,

(4.4)
$$S(X, Y) = \frac{1}{2} [(r + 2\beta)g(X, Y) - (r + 6\beta)\eta(X)\eta(Y)].$$

Using (4.3) in (4.1), we get

$$R(X,Y)Z = (\frac{r+4\beta}{2})[g(Y,Z)X - g(X,Z)Y] - (\frac{r+6\beta}{2})[g(Y,Z)\eta(X)\xi - g(X,Z)\eta(Y)\xi + \eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y].$$
(4.5)

Putting (4.3), (4.4) and (4.5) into (1.7) we have

$$C^{*}(X, Y)Z = (a+b)(r+6\beta) \left[\frac{1}{3} \{ g(Y,Z)X - g(X,Z)Y \} - \frac{1}{2} \{ g(Y,Z)\eta(X)\xi - g(X,Z)\eta(Y)\xi + \eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y \} \right].$$
(4.6)

Thus we have

Lemma 4.1. Let M be a 3-dimensional β -Kenmotsu manifold. If a + b = 0 or $r = -6\beta$, then the quasi-conformal curvature tensor vanishes identically.

Next, we assume that $a + b \neq 0$ or $r \neq -6\beta$. Taking the covariant differentiation of (4.6), we get

$$(\nabla_{W}C^{*})(X,Y)Z = \frac{dr(W)}{3}(a+b)\{g(Y,Z)X - g(X,Z)Y\}$$

$$-\frac{dr(W)}{2}(a+b)\{g(Y,Z)\eta(X)\xi$$

$$-g(X,Z)\eta(Y)\xi + \eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y\}$$

$$-\frac{1}{2}(r+6\beta)(a+b)[g(Y,Z)(\nabla_{W}\eta)(X)\xi - g(X,Z)(\nabla_{W}\eta)(Y)\xi$$

$$+g(Y,Z)\eta(X)\nabla_{W}\xi - g(X,Z)\eta(Y)\nabla_{W}\xi$$

$$+g(Y,\nabla_{W}\xi)\eta(Z)X + g(Z,\nabla_{W}\xi)\eta(Y)X$$

$$-g(X,\nabla_{W}\xi)\eta(Z)Y - g(Z,\nabla_{W}\xi)\eta(X)Y].$$

If the vector fields X, Y and Z are horizontal, then the above equation is rewritten as follows:

$$(\nabla_{W}C^{*})(X,Y)Z = \frac{dr(W)}{3}(a+b)\{g(Y,Z)X - g(X,Z)Y\}$$

$$-\frac{1}{2}(r+6\beta)(a+b)[g(Y,Z)(\nabla_{W}\eta)(X)\xi - g(X,Z)(\nabla_{W}\eta)(Y)\xi].$$

Operating ϕ^2 to the above equation, then we find

(4.8)
$$\phi^{2}((\nabla_{W}C^{*})(X,Y)Z) = -\frac{dr(W)}{3}(a+b)\{g(Y,Z)X - g(X,Z)Y\}.$$

Hence we conclude the following theorem:

Theorem 4.1. A 3-dimensional β -Kenmotsu manifold is locally ϕ -quasiconformally symmetric if and only if the scalar curvature r is constant if $a + b \neq 0$ and $r \neq -6\beta$.

If $\beta = 1$, then the manifold reduces to a Kenmotsu manifold. Thus from the above theorem we get the following:

Corollary 4.1. A 3-dimensional Kenmotsu manifold is locally ϕ -quasiconformally symmetric if and only if the scalar curvature r is constant if $a + b \neq 0$ and $r \neq -6$.

5. Second order parallel tensor

Let us consider a parallel symmetric (0,2)-tensor δ on a 3-dimensional β -Kenmotsu manifold M.

Then, by $\nabla \delta = \mathbf{0}$, we have

(5.1)
$$\delta(R(U, V)X, Y) + \delta(X, R(U, V)Y) = 0,$$

where U, V, X and Y are arbitrary vectors fields on M. As δ is symmetric, putting $U = X = Y = \xi$ in (5.1), we obtain

(5.2)
$$\delta(\xi, R(\xi, X)\xi) = 0.$$

Now applying (2.7) in (5.2) we have

(5.3)
$$\beta \delta(Y, \xi) - \beta \eta(Y) \delta(\xi, \xi) = 0.$$

Differentiating (5.3) covariantly along X we find

$$\beta\{\delta(\nabla_X Y, \xi) + \delta(Y, \nabla_X \xi)\} - \beta\{g(\nabla_X Y, \xi) + g(Y, \nabla_X \xi)\}\delta(\xi, \xi) - 2\beta g(Y, \xi)\delta(\nabla_X \xi, \xi) = 0.$$
(5.4)

Putting $Y = \nabla_X Y$ in (5.2) we get

(5.5)
$$\beta\{\delta(\nabla_X Y, \xi) - \beta\eta(\nabla_X Y)\delta(\xi, \xi)\} = 0.$$

From (5.4) and (5.5) we have

$$\beta\delta(Y, \nabla_X \xi) - \beta g(Y, \nabla_X \xi) \delta(\xi, \xi) - 2\beta g(Y, \xi) \delta(\nabla_X \xi, \xi) = 0,$$

which implies that

$$\beta^2 \{ \delta(Y, X) - g(Y, X) \delta(\xi, \xi) \} = 0.$$

This implies either

(5.6)
$$\delta(Y, X) = \delta(\xi, \xi)g(Y, X), \quad \text{or,} \quad \beta = 0.$$

Since δ and g are parallel tensor fields, $\lambda = \delta(\xi, \xi)$ is constant on U. By the parallelity of δ and g it must be $\delta = \lambda g$ on whole of M. Thus we have the following:

Theorem 5.1. A parallel symmetric (0,2) tensor in a 3-dimensional non-cosympletic β -Kenmotsu manifold is a constant multiple of the associated metric tensor.

6. Ricci solitons

Suppose a 3-dimensional *β*-Kenmotsu manifold admits a Ricci soliton defined by (1.12). It is well known that $\nabla q = 0$. Since λ in the Ricci soliton equation

(1.12) is a constant, so $\nabla \lambda g = 0$. Thus $\pounds_V g + 2S$ is parallel. Hence using the previous theorem we have $\pounds_V g + 2S$ is a constant multiple of metric tensors g, that is, $\pounds_V g + 2S = ag$, where a is constant. Hence $\pounds_V g + 2S + 2\lambda g$ reduces to $(a + 2\lambda)g$, that implies $\lambda = -a/2$. So we have the following:

Theorem 6.1. In a 3-dimensional non-cosymplectic β -Kenmotsu manifold, the Ricci soliton (g, V, λ) is shrinking or expanding according as a is positive or negative.

Now in particular we investigate the case $V = \xi$. Then (1.12) reduces to

$$\mathfrak{f}_{\xi}g + 2S + 2\lambda g = 0.$$

Using (2.5) in a 3-dimensional β -Kenmotsu manifold we have

(6.2)
$$\mathfrak{t}_{\mathcal{E}}q(Y,Z) = 2\beta(q(Y,Z) - \eta(Y)\eta(Z)).$$

Then using (6.1) in (6.2) we get $\lambda = -S(\xi, \xi) = \beta(n-1)$. Also from (6.1) it follows that the manifold is an η -Einstein manifold. Thus we have

Corollary 6.1. In a 3-dimensional non-cosymplectic β -Kenmotsu manifold, the Ricci soliton (g, ξ, λ) is shrinking and the manifold is an η -Einstein manifold.

7. Example of a 3-dimensional β - Kenmotsu manifold

Example 7.1: We consider the 3-dimensional manifold $M = \{(x, y, z) \in \mathbb{R}^3, z \neq 0\}$, where (x, y, z) are standard co-ordinate of \mathbb{R}^3 .

The vector fields

$$e_1 = e^z \frac{\partial}{\partial x}$$
, $e_2 = e_z (\frac{\partial}{\partial x} + \frac{\partial}{\partial y})$, $e_3 = \alpha \frac{\partial}{\partial z}$

are linearly independent at each point of M, where α is constant.

Let *q* be the Riemannian metric defined by

$$g(e_1, e_1) = g(e_2, e_2) = g(e_3, e_3) = 1$$

$$q(e_1, e_3) = q(e_1, e_2) = q(e_2, e_3) = 0,$$

Let η be the 1-form defined by $\eta(Z) = g(Z, e_3)$ for any $Z \in \chi(M)$.

Let ϕ be the (1, 1) tensor field defined by

$$\phi(e_1) = -e_2, \quad \phi(e_2) = e_1, \quad \phi(e_3) = 0.$$

Then using the linearity of ϕ and g, we have

$$\eta(e_3) = 1,$$

$$\phi^2 Z = -Z + \eta(Z)e_3,$$

$$g(\phi Z, \phi W) = g(Z, W) - \eta(Z)\eta(W),$$

for any Z, $W \in \chi(M)$.

Then for $e_3 = \xi$, the structure (ϕ, ξ, η, g) defines an almost contact metric structure on M.

Let ∇ be the Levi-Civita connection with respect to metric g. Then we have $[e_1, e_2] = 0$, $[e_1, e_3] = -\alpha e_1$ and $[e_2, e_3] = -\alpha e_2$.

Taking $e_3 = \xi$ and using Koszul formula for the Riemannian metric g, we can easily calculate

$$\nabla_{e_1} e_1 = \alpha e_3, \quad \nabla_{e_1} e_2 = 0, \quad \nabla_{e_1} e_3 = -\alpha e_1,$$

$$\nabla_{e_2} e_1 = 0, \quad \nabla_{e_2} e_2 = -\alpha e_3, \quad \nabla_{e_2} e_3 = -\alpha e_2,$$

$$\nabla_{e_3} e_1 = 0, \quad \nabla_{e_3} e_2 = 0, \quad \nabla_{e_3} e_3 = 0.$$
(7.1)

We see that the structure (ϕ, ξ, η, g) satisfies the formula (2.5) for $\beta = -\alpha$. Hence the manifold is a β -Kenmotsu manifold with $\beta = \text{constant}$.

Example 7.2: We consider the 3-dimensional manifold $M = \{(x, y, z) \in \mathbb{R}^3, z \neq 0\}$, where (x, y, z) are standard co-ordinate of \mathbb{R}^3 .

The vector fields

$$e_1=z\frac{\partial}{\partial x}, \quad e_2=z\frac{\partial}{\partial y}, \quad e_3=z\frac{\partial}{\partial z}$$

are linearly independent at each point of *M*.

Let *q* be the Riemannian metric defined by

$$g(e_1, e_1) = g(e_2, e_2) = g(e_3, e_3) = 1$$

$$q(e_1, e_3) = q(e_1, e_2) = q(e_2, e_3) = 0,$$

that is, the form of the metric becomes

$$g = \frac{dx^2 + dy^2 + dz^2}{z^2}.$$

Let η be the 1-form defined by $\eta(Z) = g(Z, e_3)$ for any $Z \in \chi(M)$.

Let ϕ be the (1, 1) tensor field defined by

$$\phi(e_1) = -e_2, \quad \phi(e_2) = e_1, \quad \phi(e_3) = 0.$$

Then using the linearity of ϕ and g, we have

$$\eta(e_3) = 1,$$

$$\phi^2 Z = -Z + \eta(Z)e_3,$$

$$g(\phi Z, \phi W) = g(Z, W) - \eta(Z)\eta(W),$$

for any $Z, W \in \chi(M)$.

Then for $e_3=\xi$, the structure (ϕ,ξ,η,g) defines an almost contact metric structure on M.

Let ∇ be the Levi-Civita connection with respect to metric g. Then we have

$$[e_{1}, e_{3}] = e_{1}e_{3} - e_{3}e_{1}$$

$$= z\frac{\partial}{\partial x}(z\frac{\partial}{\partial z}) - z\frac{\partial}{\partial z}(z\frac{\partial}{\partial x})$$

$$= z^{2}\frac{\partial^{2}}{\partial x\partial z} - z^{2}\frac{\partial^{2}}{\partial z\partial x} - z\frac{\partial}{\partial x}$$

$$= -e_{1}.$$

$$(7.2)$$

Similarly, $[e_1, e_2] = 0$ and $[e_2, e_3] = -e_2$.

The Riemannian connection ∇ of the metric g is given by

$$2g(\nabla_X Y, Z) = Xg(Y, Z) + Yg(Z, X) - Zg(X, Y) - g(X, [Y, Z]) - g(Y, [X, Z]) + g(Z, [X, Y]),$$

which known as Koszul's formula.

Using (7.3) we have

(7.4)
$$2g(\nabla_{e_1}e_3, e_1) = -2g(e_1, e_1)$$
$$= 2g(-e_1, e_1).$$

Again by (7.3)

(7.5)
$$2g(\nabla_{e_1}e_3, e_2) = 0 = 2g(-e_1, e_2)$$

and

$$(7.6) 2g(\nabla_{e_1}e_3, e_3) = 0 = 2g(-e_1, e_3).$$

From (7.4), (7.5) and (7.6) we obtain

$$2g(\nabla_{e_1}e_3,X)=2g(-e_1,X),$$

for all $X \in \chi(M)$.

Thus

$$\nabla_{e_1}e_3=-e_1.$$

Therefore, (7.3) further yields

$$\nabla_{e_1} e_1 = e_3, \quad \nabla_{e_1} e_2 = 0, \quad \nabla_{e_1} e_3 = -e_1,$$

$$\nabla_{e_2} e_1 = 0, \quad \nabla_{e_2} e_2 = e_3, \quad \nabla_{e_2} e_3 = -e_2,$$

$$\nabla_{e_3} e_1 = 0, \quad \nabla_{e_3} e_2 = 0, \quad \nabla_{e_3} e_3 = 0.$$
(7.7)

(7.7) tells us that the manifold satisfies (2.5) for $\beta = -1$ and $\xi = e_3$. Hence the manifold is a β -Kenmotsu manifold with β =constant.

It is known that

(7.8)
$$R(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z.$$

With the help of the above results and using (7.8), it can be easily verified that

$$R(e_1, e_2)e_3 = 0$$
, $R(e_2, e_3)e_3 = -e_2$, $R(e_1, e_3)e_3 = -e_1$, $R(e_1, e_2)e_2 = -e_1$, $R(e_2, e_3)e_2 = e_3$, $R(e_1, e_3)e_2 = 0$, $R(e_1, e_2)e_1 = e_2$, $R(e_2, e_3)e_1 = 0$, $R(e_1, e_3)e_1 = e_3$.

From the above expressions of the curvature tensor we obtain

$$S(e_1, e_1) = g(R(e_1, e_2)e_2, e_1) + g(R(e_1, e_3)e_3, e_1)$$

$$= -2.$$
(7.9)

Similarly we have

$$S(e_2, e_2) = S(e_3, e_3) = -2.$$

Therefore,

$$r = S(e_1, e_1) + S(e_2, e_2) + S(e_3, e_3) = -6.$$

Thus the scalar curvature *r* is constant. Hence Theorem 4.1 is verified.

REFERENCES

- 1. T.Q. Binh, L. Tamassy, U.C. De and M. Tarafdar: Some remarks on almost Kenmotsu manifolds, Math. Pannonica. 13 (2002), 31-39.
- D.E. Blair: Contact manifolds in Riemannian geometry, Lecture Note in Mathematics, Vol.509, Springer-Verlag, Berlin-New York, 1976.
- 3. D.E. Blair: *R*iemannian geometry of contact and symplectic manifolds, Progress in Mathematics, Vol. 203, Birkhauser Boston, Inc., Boston, 2002.
- 4. D.E. Blair, T. Koufogiorgos and Sharma, R: A classification of 3-dimensional contact metric manifolds with $\varphi Q = Q \varphi$, Kodai Math. J. **13** (1990), 391-401.

- D.E. Blair, and J.A. Oubina: Conformal and related changes of metric on the product of two almost contact metric manifolds, Publ. Mat. 34 (1990), 199-207.
- 6. U.C. DE : On ϕ -symmetric Kenmotsu manifolds, International Electronic Journal of Geometry, 1(2008), 33-38.
- U.C. De and Y. Matsuyama: Quasiconformally flat manifolds satisfying certain condition on the Ricci tensor, SUT J. Math. 42 (2006), 295-303.
- 8. U.C. De and G. Pathak: On 3-dimensional Kenmotsu manifold, Indian J. pure appl. Math., 35 (2004), 159-165.
- 9. A. Gray and L.M. Hervella: The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Math. Pura Appl., (4) 123 (1980), 35 58.
- 10. S. Ghosh and U.C. De: *On* ϕ -quasiconformally symmetric (k, μ)-contact metric manifolds, Lobachevskii J. Math., **31**(2010), 367-375.
- 11. D. Janssens and L. Vanhecke: Almost contact structures and curvature tensors, Kodai Math. J. 4 (1981), 1 27.
- J.B. Jun, U.C. De and G. Pathak: On Kenmotsu manifold, J. Korean Math. Soc. 42 (2005), 435-445.
- 13. K. Kenmotsu: A class of almost contact Riemannian manifolds, Tohoku Math. J. **24** (1972), 93-103.
- 14. H. Levy: Symmetric tensors of the second order whose covariant derivatives vanish, Annals of Maths., 27 (1926), 91-98.
- 15. J.C. Marrero: The local structure of trans-Sasakian manifolds, Ann. Mat. Pura Appl,162(1992),77 86.
- B. O'Neill: Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
- R. Sharma: Certain results on K-contact and (k, μ)-contact manifolds, J. Geom. 89 (2008), 138-147.
- 18. R. Sharma: Second order parallel tensor in real and complex space forms, International J. Math. and Math. Sci., 12 (1989), 787-790.
- 19. J.A. Oubina: New classes of almost contact metric structures, publicationes Mathematicae Debrecen 32 (1985), 21 38.
- 20. C. Özgür and U.C. DE: *On* the quasi-conformal curvature tensor of a Kenmotsu manifold, Mathematica Pannonica 17/2 (2006), 221-228.
- 21. G. Pitis: A remark on Kenmotsu manifolds. Bul. Univ. Brasov Ser. C, 30 (1988), 31-32.
- 22. G. Pitis: Geometry of Kenmotsu manifolds. Brasov, (2007).
- 23. S. Sulgar, C. Özgür and U.C. De: quarter-symmetric metric connection in a Kenmotsu manifold, SUT Journal of mathematics, 44 (2008), 297 306.
- 24. T. Takahashi: Sasakian ϕ -symmetric spaces, Tôhoku Math. J. (2) **29** (1977), 91-113.
- 25. S. Tanno: The automorphism groups of almost contact Riemannian manifolds, TohokuMath. J. 21 (1969),21 38.
- 26. T. Tshikuna-Matamba: A note on nearly α -Kenmotsu submersions, Riv. Mat. Univ. Parma 7 (2007). 159 171.
- 27. K. Yano and M. Kon: Structures on manifolds, Series in Pure Mathematics, 3. World Scientific Publishing Co., Singapore, 1984.

28. K. Yano and S. Sawaki: $\it Riemannian$ manifolds admitting a conformal transformation group, J. Differential Geometry 2(1968) 161-184.

Krishnendu De Konnagar High School(H.S.) 68 G.T. Road (West),Konnagar,Hooghly, Pin.712235, West Bengal, India. krishnendu_de@yahoo.com