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THREE-DIMENSIONAL ALMOST α-PARA-KENMOTSU
MANIFOLDS SATISFYING CERTAIN NULLITY CONDITIONS ∗

Ximin Liu and Quanxiang Pan

Abstract. In this paper, we study 3-dimensional almost α-para-Kenmotsu manifolds
satisfying special types of nullity conditions depending on smooth functions κ̃, µ̃ and
ν̃=constant, also we present a local description of the structure of a 3-dimensional
almost α-para-Kenmotsu (κ̃, µ̃, ν̃ = const.)-manifold (M, ϕ̃, ξ, η, g̃) with κ̃ + α2 6= 0
such that dκ̃ ∧ η = 0.
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1. Introduction

The aim of this paper is to study the local description of almost α-para-Kenmotsu
manifolds. Kenmotsu manifolds have been introduced and studied by K. Kenmotsu
in 1972 [10], and the geometry of almost Kenmotsu manifolds have been investi-
gated in many aspects [5]-[7]. Most of the results contained in [5]-[6] can be easily
generalized to the class of almost α-Kenmotsu manifolds, where α is a non-zero real
number [7]. Many authors have investigated the geometry of contact metric man-
ifolds whose characteristic vector field ξ belongs to the (κ, µ)-nullity distribution,
i.e. the curvature tensor field satisfies the condition

(1.1) R(X,Y )ξ = κ(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY ),

for some real numbers κ and µ, where 2h denotes the Lie derivative of ϕ in the direc-
tion of ξ. This new class of Riemannian manifolds was introduced in [4] as a natural
generalization both of the Sasakian condition R(X,Y )ξ = η(Y )X − η(X)Y and of
those contact metric manifolds satisfying R(X,Y )ξ = 0 which were studied by D.E.
Blair in [3]. Koufogiorgos and Tsichlias found a new class of 3-dimensional con-
tact metric manifolds that κ and µ are non-constant smooth functions[11]. They
generalized (κ, µ)-contact metric manifolds for dimensions greater than three on
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non-Sasakian manifolds, where the functions κ, µ are constant. Nowadays contact
metric (κ, µ)-space is considered as a very important topic in contact Riemannian
geometry. Following these works, P. Dacko and Z. Olszak studied almost cosymplec-
tic (κ, µ, ν)-spaces in [12], whose almost cosymplectic structures (ϕ, ξ, η, g) satisfy
the condition

(1.2) R(X,Y )ξ = η(Y )(κI + µh+ νϕh)X − η(X)(κI + µh+ νϕh)Y,

for κ, µ, ν ∈ Rη(M
2n+1), where Rη(M

2n+1) is the ring of smooth functions f on
M2n+1 for which df ∧ η = 0. Later, [8] studied the generalized almost cosymplectic
(κ, µ, ν)-spaces, that is: almost α-cosymplectic (κ, µ, ν)-spaces and also pointed out
that the nullity condition is invariant under D-homothetic deformation of almost
cosymplectic (κ, µ, ν)-spaces in all dimensions.

The study of paracontact geometry was initiated by S. Kaneyuki and F.L.
Williams in [14] and then it was continued by many other authors in many aspects,
for example, a systematic study of paracontact metric manifolds, and some remark-
able subclasses like para-Sasakian manifolds, was carried out by S. Zamkovoy [15],
a systematic study of almost α-paracosymplectic manifolds carried by I. K. Erken,
P. Dacko and C. Murathan [9], [13].The importance of paracontact geometry has
been pointed out highlighting the interplays with the theory of para-Kähler man-
ifolds and its role in pseudo-Riemannian geometry and mathematical physics. In
recent years, many authors turned to the study of paracontact geometry due to an
unexpected relationship between (κ, µ)-contact metric manifold and paracontact
geometry was found in [2]. It was proved that any (non-Sasakian) (κ, µ)-contact
metric manifold carries a canonical paracontact metric structure (ϕ̃, ξ, η, g̃) whose
Levi-Civita connection satisfies a condition formally similar to (1.1)

(1.3) R̃(X,Y )ξ = κ̃(η(Y )X − η(X)Y ) + µ̃(η(Y )h̃X − η(X)h̃Y ),

where 2h̃ := Lξϕ̃ and, in this case, κ̃ = (1 − µ
2 )

2 + κ − 2, µ̃ = 2. In [1], the au-
thors showed that while the values of κ̃ and µ̃ change the form but (1.3) remains
unchanged under D-homothetic deformations. There are differences between a
(κ, µ)-contact metric manifold (M,ϕ, ξ, η, g) and (κ̃, µ̃)-paracontact metric manifold
(M, ϕ̃, ξ, η, g̃). Namely, unlike in the contact Riemannian case, a (κ̃, µ̃)-paracontact
metric manifold such that κ̃ = −1 in general is not para-Sasakian. And there are
(κ̃, µ̃)-paracontact metric manifold such that h̃2 = 0 but with h̃ 6= 0 in [2]. Another
important difference with the contact metric manifold is that while for contact met-
ric case κ ≤ 1, (κ̃, µ̃)-paracontact metric manifold has no resriction for the constants
κ̃ and µ̃. There are similar results about almost α-cosymplectic κ, µ, ν-spaces and
almost α-paracosymplectic κ, µ, ν-spaces [8] and [9].

Recently, in [16] V. Saltarelli studied 3-dimensional almost Kenmotsu manifolds
satisfying certain nullity conditions and gave some complete local descriptions of
their structure. Motivated by the unexpected relationship between almost Ken-
motsu and para-Kenmotsu manifold, we study almost α-para-Kenmotsu manifold
in this paper and give a complete local description of 3-dimensional almost α-para-
Kenmotsu (κ, µ, ν)-spaces.
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This paper is organized in the following way. In section 2, some preliminaries
and properties about almost α-para-kenmotsu manifolds are given. In section 3, we
give some results concerning almost α-para-Kenmotsu (κ̃, µ̃, ν̃)-spaces. In section 4,
we will give a local description of the structure of a 3-dimensional almost α-para-
Kenmotsu (κ̃, µ̃, ν̃ = const.)-space with dκ̃ ∧ η = 0. We also construct in R3 two
families of such manifolds depending on h̃ of h1 or h3 type, and in the last section
we give a necessary and sufficient condition for a local structure to be an almost α-
para-Kenmotsu (κ̃, µ̃, ν̃ = const.)-space with dκ̃∧η = 0. All manifolds are assumed
to be connected and smooth.

2. Preliminaries

In this section, we recall some basic facts about paracontact metric manifolds.

A 2n+1-dimensional smooth manifold M is said to have an almost paracontact
structure if it admits a (1, 1)-tensor field ϕ̃, a vector field ξ and a 1-form η satisfying
the following conditions:

(i) ϕ̃2 = Id− η ⊗ ξ, η(ξ) = 1,

(ii) the tensor field ϕ̃ induces an almost paracomplex structure on each fiber
of D =Ker(η), i.e. the ±1−eigendistributions D± := Dϕ̃(±1) of ϕ̃ have equal
dimension n.

From the definition it follows that ϕ̃(ξ) = 0, η ◦ ϕ̃ = 0 and rank(ϕ̃) = 2n. When
the tensor field Nϕ̃ := [ϕ̃, ϕ̃]− 2dη ⊗ ξ vanishes identically the almost paracontact
manifold is said to be normal. If an almost paracontact manifold admits a pseudo-
Riemannian metric g̃ such that

(2.1) g̃(ϕ̃X, ϕ̃Y ) = −g̃(X,Y ) + η(X)η(Y )

for any vector fields X,Y ∈ Γ(TM). Then we say that (M2n+1, ϕ̃, ξ, η, g̃) is an
almost paracontact metric manifold. Notice that any such a pseudo-Riemannian
metric is necessarily of signature (n, n + 1). For an almost paracontact metric
manifold, there always exists an orthogonal basis {ξ,X1, . . . , Xn, Y1, . . . , Yn} such
that g̃(Xi, Xj) = δij , g̃(Yi, Yj) = −δij and Yi = ϕ̃Xi, for any i, j ∈ {1, . . . , n}. Such
basis is called a ϕ-basis. The fundamental 2-form Φ̃ associate with the structure
is defined by Φ̃(X,Y ) = g̃(X, ϕ̃Y ) for all vector fields X,Y on M . The structure
is normal if the tensor field N = [ϕ̃, ϕ̃] + 2dη ⊗ ξ vanishes, where [ϕ̃, ϕ̃] is the
Nijenhuistorsion of ϕ̃. For more details, we refer the reader to [15]. According
to [9], an almost paracontact metric manifold(M, ϕ̃, ξ, η, g̃) is said to be an almost
α-para-Kenmotsu manifold if

(2.2) dη = 0, dΦ̃ = 2αη ∧ Φ̃, α = const. 6= 0.

A normal almost α-para-Kenmotsu manifold is an α-para-Kenmotsu manifold.

Let (M, ϕ̃, ξ, η, g̃) be an almost α-para-Kenmotsu manifold. Since dη = 0, the
canonical distribution D = ker(η) is completely integrable. Each leaf of the folia-
tion, determined by D, carries an almost para-Kähler structure (J,<,>)

JX̄ = ϕ̃X̄, < X̄, Ȳ >= g̃(X̄, Ȳ ),
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X̄, Ȳ are vector fields tangent to the leaf. If this structure is para-Kähler, leaf is
called a para-Kähler leaf. Furthermore, we have Lξη = 0 and [ξ,X ] ∈ D for any

X ∈ D. Furthermore, we have ∇̃ξϕ = 0, so that ∇̃ξξ = 0 and ∇̃ξX ∈ D for any

X ∈ D. Define h̃ = 1
2Lξϕ̃, we get the following proposition,

Proposition 2.1. [9] Let (M, ϕ̃, ξ, η, g̃) be an almost α-paracosymplectic manifold,
we have the following relations:

g̃(h̃X, Y ) = g̃(X, h̃Y ), h̃ϕ̃ = −ϕ̃h̃, h̃ξ = 0,

(2.3) ∇̃ξ = αϕ̃2 + ϕ̃h̃,

(2.4) tr(h̃) = 0, tr(ϕ̃h̃) = 0.

Moreover, also in [9], it follows that the curvature properties of an almost α-para-
Kenmotsu manifold,

(2.5) R̃(X,Y )ξ = αη(X)(αY +ϕ̃h̃Y )−αη(Y )(αX+ϕ̃h̃X)+(∇̃Xϕ̃h̃)Y −(∇̃Y ϕ̃h̃)X

(2.6) (∇̃X ϕ̃)Y − (∇̃ϕ̃X ϕ̃)ϕ̃Y = η(Y )(αϕ̃X − h̃X)− 2α(g̃(X, ϕ̃Y )ξ + η(Y )ϕ̃).

Finally, we recall that an almost paracontact metric manifold (M, ϕ̃, ξ, η, g̃) is said
to be η-Einstein if its Ricci tensor satisfies

R̃ic = ag̃ + bη ⊕ η,

or equivalently

(2.7) Q̃ = aI + bη ⊗ ξ,

where a and b are smooth functions on M2n+1. A vector field X ∈ TpM is called

Killing vector field if LX g̃ = 0, that is, g̃(∇̃Y X,Z) + g̃(∇̃ZX,Y ) = 0, where Y, Z ∈
TpM are arbitrary vector fields.

In [9], Authors showed that Ricci curvature S̃ in the direction of ξ is given by

(2.8) S̃(ξ, ξ) = −2nα2 + trh̃2.

We recall that the curvature tensor of a 3-dimensional pseudo-Riemannian man-
ifold satisfies

R̃(X,Y )Z = g̃(Y, Z)Q̃X − g̃(X,Z)Q̃Y + g̃(Q̃Y, Z)X − g̃(Q̃X,Z)Y(2.9)

−τ

2
(g̃(Y, Z)X − g̃(X,Z)Y ).
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3. Almost α-para-Kenmotsu (κ̃, µ̃, ν̃)-spaces

Firstly, let us recall the following theorem which is exactly the same as almost
Kenmotsu manifolds [9], where h̃ = 0, it is certainly h̃2 = 0.

Theorem 3.1. Let M2n+1 be an almost α-para-Kenmotsu manifold with h̃ = 0.
Then M2n+1 is locally a warped product M1 ×f2 M2, where M2 is an almost para-
Kähler manifold, M1 is an open interval with coordinate t, and f2 = we2αt for some
positive constant w.

Now, we give some properties for later use.

Lemma 3.1. Let (M2n+1, ϕ̃, ξ, η, g̃) be an almost α-para-Kenmotsu manifold, then,
for any orthonormal frame Xi, i = 1, · · · , 2n+ 1, the following identities hold:

(3.1)

2n+1
∑

i=1

εi(∇̃Xi
ϕ̃h̃)Xi = Q̃ξ + 2nα2ξ,

(3.2)
2n+1
∑

i=1

εi(∇̃Xi
ϕ̃)Xi = 0.

Proof. Let Xi(i = 1, · · · , 2n + 1) be an orthonormal frame. For any vector field
X , putting X = Xi, replacing Y by ϕ̃X in (2.6), taking the inner product with
X = Xi, by using h̃ξ = ϕ̃ξ = 0, tr(ϕ̃h̃) = 0, the symmetry of ∇̃Xi

ϕ̃h̃, and the
skew-symmetry of ϕ̃ we get

g̃(Q̃ξ, ϕ̃X)

=
2n+1
∑

i=1

εig̃(R̃(Xi, ϕ̃X)ξ,Xi)

=
2n+1
∑

i=1

εi{αη(Xi)g̃(αϕ̃X − ϕ̃h̃ϕ̃X,Xi)+g̃((∇̃Xi
ϕ̃h̃)ϕ̃X,Xi)− g̃((∇̃ϕ̃X ϕ̃h̃)Xi, Xi)}

=
2n+1
∑

i=1

εig̃((∇̃Xi
ϕ̃h̃)ϕ̃X,Xi).

Thus the above equality reduces to

ϕ̃Q̃ξ =

2n+1
∑

i=1

εiϕ̃(∇̃Xi
ϕ̃h̃)Xi,

Applying ϕ̃ to the above equality, using ϕ̃2 = Id− η ⊗ ξ and (2.8), combining with

(2.4), we get
∑2n+1

i=1 εig̃((∇̃Xi
ϕ̃h̃)Xi, ξ) = trh̃2, it follows that

2n+1
∑

i=1

εi(∇̃Xi
ϕ̃h̃)Xi = Q̃ξ + 2nα2ξ.
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In order to obtain (3.4), we choose a ϕ̃-basis {Ei, ϕ̃Ei, ξ},using (2.6) and ∇̃ξϕ̃ = 0,
we get

2n+1
∑

i=1

εi(∇̃Xi
ϕ̃)Xi =

n
∑

i=1

εi(∇̃Ei
ϕ̃)Ei −

n
∑

i=1

εi(∇̃ϕ̃Ei
ϕ̃)ϕ̃Ei + (∇̃ξϕ̃)ξ = 0.

The next lemma concerns almost α-para-Kenmotsu manifolds having the canonical
distribution D with para-Kähler leaves for which the following formula holds [9]:

(3.3) (∇̃X ϕ̃)Y = g̃(αϕ̃X + h̃X, Y )ξ − η(Y )(αϕ̃X + h̃X).

Lemma 3.2. Let (M2n+1, ϕ̃, ξ, η, g̃) be an almost α-para-Kenmotsu manifold and
assume that the distribution D has para-Kähler leaves, then, for any orthonormal
frame Xi, i = 1, · · · , 2n+ 1, we have

(3.4)

2n+1
∑

i=1

εi(∇̃Xi
h̃)Xi = ϕ̃Q̃ξ.

Proof. Since

(3.5) ∇̃X h̃ϕ̃Y = (∇̃X h̃)ϕ̃Y + h̃(∇̃X ϕ̃)Y + h̃ϕ̃∇̃XY,

(3.6) ∇̃X ϕ̃h̃Y = ϕ̃(∇̃X h̃)Y + ϕ̃h̃(∇̃XY ) + (∇̃X ϕ̃)h̃Y,

By (3.5)-(3.6) and ϕ̃h̃ = −h̃ϕ̃, we get

(∇̃X h̃)ϕ̃Y + ϕ̃(∇̃X h̃)Y = −h̃(∇̃X ϕ̃)Y − (∇̃X ϕ̃)h̃Y

= η(Y )(αh̃ϕ̃X + h̃2X)− g̃(αϕ̃X + h̃X, h̃Y )ξ.(3.7)

Taking X = Y = Xi in (3.7), summing on i and using tr(h̃ϕ̃) = 0 and h̃ξ = 0, we
get

(3.8)

2n+1
∑

i=1

εi{(∇̃Xi
h̃)ϕ̃Xi + ϕ̃(∇̃Xi

h̃)Xi} = −(trh̃2)ξ.

By (3.1), and using (3.4) we get

Q̃ξ + 2nα2ξ =

2n+1
∑

i=1

εi(∇̃Xi
ϕ̃h̃)Xi = −

2n+1
∑

i=1

εi(∇̃Xi
h̃ϕ̃)Xi

= −
2n+1
∑

i=1

εi{(∇̃Xi
h̃)ϕ̃Xi + h̃(∇̃Xi

ϕ̃)Xi}

= −
2n+1
∑

i=1

εi(∇̃Xi
h̃)ϕ̃Xi.(3.9)
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Substituting (3.3) into (3.8) we obtain

2n+1
∑

i=1

εiϕ̃(∇̃Xi
h̃)Xi = Q̃ξ + (2nα2 − trh̃2)ξ,

finally, we get the required result acting by ϕ̃ and using
∑2n+1

i=1 εig̃((∇̃Xi
h̃)Xi, ξ) =

0, which, by direct calculation, follows from the fact that g̃(ϕ̃h̃2Xi, Xi) = 0 and
tr(h̃ϕ̃) = 0.

Next we study almost α-para-Kenmotsu manifolds under assumption that the cur-
vature satisfies (κ̃, µ̃, ν̃)-nullity condition

(3.10) R̃(X,Y )ξ = η(Y )BX − η(X)BY,

where B is Jacobi operator of ξ, that is to say BX = R̃(X, ξ)ξ = κ̃ϕ̃2X + µ̃h̃X +
ν̃ϕ̃h̃X, for κ̃, µ̃, ν̃ ∈ Rη(M

2n+1). Particularly Bξ = 0. If µ̃ = 0 or h̃ = 0 and ν̃ = 0

or ϕ̃h̃ = 0, the (κ̃, µ̃, ν̃)-nullity distribution is reduced to the well-known κ̃-nullity
distribution N(κ̃). The (κ̃, µ̃, ν̃)-nullity condition (3.10) is obtained by requiring
that ξ belong to some N(κ̃, µ̃, ν̃). If almost α-para-Kenmotsu manifold satisfies
(3.10), then the manifold is said to be an almost α-para-Kenmotsu (κ̃, µ̃, ν̃)-space.
We observe that, in an almost α-para-Kenmotsu manifold, if ξ ∈ N(κ̃, µ̃, ν̃), (3.10)
and (2.5) implies ϕ̃h̃ is a Codazzi tensor, that is to say, (∇̃X ϕ̃h̃)Y − (∇̃Y ϕ̃h̃)X = 0,
for any X,Y ∈ D.

Proposition 3.1. [9] Let (M2n+1, ϕ̃, ξ, η, g̃) be an almost α-para-Kenmotsu (κ, µ, ν)-
space, then the following identities hold:

(3.11) h̃2 = (κ̃+ α2)ϕ̃2,

(3.12) ∇̃ξh̃ = −(2α+ ν̃)h̃+ µ̃h̃ϕ̃,

(3.13) ξ(κ̃) = −2(2α+ ν̃)(κ̃+ α2),

(3.14) Q̃ξ = 2nκ̃ξ.

Lemma 3.3. Let (M3, ϕ̃, ξ, η, g̃) be an almost α-para-Kenmotsu (κ̃, µ̃, ν̃=const.)-
spaces, then one has:

(3.15) Q̃X = (−κ̃+
τ

2
)X + (3κ̃− τ

2
)η(X)ξ + µ̃h̃X + ν̃ϕ̃h̃X,

(3.16) h̃gradµ̃+ ϕ̃h̃gradν̃ = gradκ̃− ξ(κ̃)ξ,

where Q̃ is the Ricci operator of M . τ denotes scalar curvature of M and l̃ =
R̃(·, ξ)ξ.
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Proof. Let Y = Z = ξ in (2.9) and using (3.10), we can easily obtain (3.15).

By using the well known formula

(3.17)
1

2
gradτ =

3
∑

i=1

εi(∇Xi
Q̃)Xi

for any orthonormal framesXi, i = 1, 2, 3, using (2.2) and (3.15), since trh̃ = trh̃ϕ̃ =
0, we have

1

2
gradτ =

3
∑

i=1

εi(∇Xi
Q)Xi =

3
∑

i=1

εi(∇Xi
QXi −Q∇Xi

Xi)

=
3

∑

i=1

εi{∇Xi
[(−κ̃+

τ

2
)Xi + (3κ̃− τ

2
)η(Xi)ξ + µ̃h̃Xi + ν̃ϕ̃h̃Xi]

−[(−κ̃+
τ

2
)∇Xi

Xi + (3κ̃− τ

2
)η(∇Xi

Xi)ξ + µ̃h̃∇Xi
Xi + ν̃ϕ̃h̃∇Xi

Xi]}

=

3
∑

i=1

εi{Xi(−κ̃+
τ

2
)Xi +Xi(3κ̃− τ

2
)η(Xi)ξ +Xi(µ̃)h̃Xi +Xi(ν̃)ϕ̃h̃Xi}

+

3
∑

i=1

εi{µ̃(∇̃Xi
h̃)Xi + ν̃(∇̃Xi

ϕ̃h̃)Xi}

= −gradκ̃+
1

2
gradτ + h̃gradµ̃+ ϕ̃h̃gradν̃ + [3ξ(κ̃)− 1

2
ξ(τ)]ξ

+
3

∑

i=1

εi{µ̃(∇̃Xi
h̃)Xi + ν̃(∇̃Xi

ϕ̃h̃)Xi}.(3.18)

Thus, using (3.1), (3.2) and (3.14) we get

3
∑

i=1

εi(∇̃Xi
h̃)Xi = 0,

and
3

∑

i=1

εi(∇̃Xi
ϕ̃h̃)Xi = 2(κ̃+ α2)ξ.

Using these two equalities in (3.15), one has

ξ(κ̃)ξ − gradκ̃+ h̃gradµ̃+ ϕ̃h̃gradν̃ + ξ(2κ̃− 1

2
τ)ξ + 2(α2 + κ̃)ν̃ξ = 0.

Since the vector field ξ(κ̃)ξ − gradκ̃+ h̃gradµ̃+ ϕ̃h̃gradν̃ is orthogonal to ξ, (3.16)
follows.
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Proposition 3.2. Let (M3, ϕ̃, ξ, η, g̃) be an almost α-para-Kenmotsu manifold. If
M is η-Einstein, then ξ ∈ N(κ̃) for some function κ̃.

Proof. By (2.7), choosing the ϕ̃-basis {ξ, e, ϕ̃e}, we get Q̃ξ = (a + b)ξ and τ =
g̃(ξ, ξ) + g̃(Q̃e, e) + g̃(Q̃ϕ̃e, ϕ̃e) = 3a+ b. Let Z = ξ in (??) and using (2.7), we can
easily obtain R̃(X,Y )ξ = a+b

2 (η(Y )X − η(X)Y ), thus ξ ∈ N(a+b
2 ).

Corollary 3.1. Let (M3, ϕ̃, ξ, η, g̃) be an almost α-para-Kenmotsu manifold. If M
is ξ ∈ N(κ̃), then M is η-Einstein.

Proof. By Lemma 3.3, we get Q̃X = (−κ̃ + τ
2 )X + (3κ̃− τ

2 )η(X)ξ, it is simply to
get that M is η-Einstein.

If h̃ = 0, by (2.5), we get R̃(X,Y )ξ = −α2(η(Y )X − η(X)Y ), thus ξ ∈ N(−α2),
by Corollary 3.1, it follows that M is η-Einstein. Therefore, from now on, we will
restrict our investigations mainly on the more meaningful case h̃ 6= 0. I. K. Erken,
P. Dacko and C. Murathan analyzed the different possibilities for the tensor field h̃

in [9]. If h̃ has





λ̃ 0 0

0 −λ̃ 0
0 0 0



(3.19)

with respect to a local orthonormal ϕ̃-basis {X, ϕ̃X, ξ}, the authors called the op-
erator h̃ is of h1 type.

If h̃ has




0 0 0
1 0 0
0 0 0





with respect to a pseudo orthonormal basis {e1, e2, e3}, the authors called the op-
erator h̃ is of h2 type.

If h̃ has





0 λ̃ 0

−λ̃ 0 0
0 0 0



(3.20)

with respect to a local orthonormal ϕ̃-basis {X, ϕ̃X, ξ}, in this case. the authors
called the operator h̃ is of h3 type.

It follows that h̃2X = λ̃2X if h̃ is of h1 type and h̃2X = −λ̃2X if h̃ is of h3
type, but h̃2X = 0 if h̃ is of h2 type though h̃ 6= 0, and there are examples of
3-dimensional almost α-para-Kenmotsu manifold of this case [9]. In this paper, we
manly discuss the case h̃2 6= 0, that is, κ̃+ α2 6= 0.
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Lemma 3.4. Let (M3, ϕ̃, ξ, η, g̃) be an almost α-para-Kenmotsu (κ̃, µ̃, ν̃ = const.)-
space with h̃ is of h1 type. Then, for any point p ∈ M , there exist a neighborhood
U of p and a ϕ̃-basis {X, ϕ̃X, ξ} defined on U , such that

(3.21) h̃X = λ̃X, h̃ϕ̃X = −λ̃ϕ̃X, h̃ξ = 0, λ̃ =
√

κ̃+ α2

at any point q ∈ U . Moreover, setting A = X(λ̃) and B = ϕ̃X(λ̃) on U the following
formulas are true:

(3.22) ∇̃Xξ = αX + λ̃ϕ̃X, ∇̃ϕ̃Xξ = αϕ̃X − λ̃X,

(3.23) ∇̃ξX = − µ̃

2
ϕ̃X, ∇̃ξϕ̃X = − µ̃

2
X,

(3.24) ∇̃XX = αξ − B

2λ̃
ϕ̃X, ∇̃ϕ̃X ϕ̃X = −αξ − A

2λ̃
X,

(3.25) ∇̃ϕ̃XX = −λ̃ξ − A

2λ̃
ϕ̃X, ∇̃X ϕ̃X = −λ̃ξ − B

2λ̃
X

(3.26) [ξ,X ] = −αX − (λ̃+
µ̃

2
)ϕ̃X, [ξ, ϕ̃X ] = (λ̃− µ̃

2
)X − αϕ̃X,

(3.27) [X, ϕ̃X ] = − B

2λ̃
X +

A

2λ̃
ϕ̃X.

(3.28) h̃gradµ̃ = gradκ̃− ξ(κ̃)ξ,

Proof. By [9] we know that if h̃ is of h1 type with respect to a ϕ̃-basis {X, ϕ̃X, ξ}
such that h̃X = λ̃X, h̃ϕ̃X = −λ̃ϕ̃X, and by (3.11), we get λ̃ =

√
κ̃+ α2. Similar

as the proof of [16], we get Lemma 3.4.

Similarly as Lemma 3.4, we get the following Lemma.

Lemma 3.5. Let (M3, ϕ̃, ξ, η, g̃) be an almost α-para-Kenmotsu (κ̃, µ̃, ν̃ = const.)-
space with h̃ is of h3 type. Then, for any point p ∈ M , there exist a neighborhood
U of p and a ϕ̃-basis {X, ϕ̃X, ξ} defined on U , such that

(3.29) h̃X = λ̃ϕ̃X, h̃ϕ̃X = −λ̃X, h̃ξ = 0, λ̃ =
√

−(κ̃+ α2)

at any point q ∈ U . Moreover, setting A = X(λ̃) and B = ϕ̃X(λ̃) on U the following
formulas are true:

(3.30) ∇̃Xξ = (α+ λ̃)X, ∇̃ϕ̃Xξ = (α − λ̃)ϕ̃X,
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(3.31) ∇̃ξX = − µ̃

2
ϕ̃X, ∇̃ξϕ̃X = − µ̃

2
X,

(3.32) ∇̃XX = (α+ λ̃)ξ − B

2λ̃
ϕ̃X, ∇̃ϕ̃X ϕ̃X = (λ̃− α)ξ − A

2λ̃
X,

(3.33) ∇̃ϕ̃XX = − A

2λ̃
ϕ̃X, ∇̃X ϕ̃X = − B

2λ̃
X

(3.34) [ξ,X ] = −(α+ λ̃)X − µ̃

2
ϕ̃X, [ξ, ϕ̃X ] = − µ̃

2
X + (λ̃ − α)ϕ̃X,

(3.35) [X, ϕ̃X ] = − B

2λ̃
X +

A

2λ̃
ϕ̃X.

(3.36) h̃gradµ̃ = gradκ̃− ξ(κ̃)ξ.

4. Almost α-para-Kenmotsu (κ̃, µ̃, ν̃ = const.)-space with dκ̃ ∧ η = 0

Locally, an almost α-para-Kenmotsu (κ̃, µ̃, ν̃ = const.)-space with h̃ is of h1 type
and dκ̃ ∧ η = 0 can be described as follows.

Theorem 4.1. Let (M3, ϕ̃, ξ, η, g̃) be an almost α-para-Kenmotsu (κ̃, µ̃, ν̃ = const.)-
space with h̃ is of h1 type and dκ̃ ∧ η = 0. Then, in a neighbourhood U of every
point p ∈ M , there exist coordinates x,y,z and an orthonormal frame {X, ϕ̃X, ξ} of
eigenvectors of h̃ with h̃X = λ̃X, such that on U κ̃, µ̃ only depends on z and

X =
∂

∂x
, ϕ̃X =

∂

∂y
, ξ = a

∂

∂x
+ b

∂

∂y
+

∂

∂z
,

and the tensor fields ϕ̃, g̃, h̃ are given by the relations:

g̃ =





−1 0 a

0 1 −b

a −b 1− a2 + b2



 , ϕ̃ =





0 1 −b

1 0 −a

0 0 0



 , h̃ =





λ̃ 0 −aλ̃

0 −λ̃ bλ̃

0 0 0



 .

where a = αx+ ( µ̃2 − λ̃)y + f(z), b = ( µ̃2 + λ̃)x− αy − g(z), f(z), g(z) are arbitrary
smooth functions of z, α is a constant value.

Proof. The condition dκ̃ ∧ η = 0 and (3.28) means that dµ̃ ∧ η = 0, since h̃ 6= 0
and kerh̃ = Span{ξ}. Moreover, we have E(λ̃) = 0 for all E ∈ D. By lemma 3.4,
we get that for any point p ∈ M , there exist a neighborhood U of p and a ϕ̃-basis
{X, ϕ̃X, ξ} defined on U , such that h̃X = λ̃X, h̃ϕ̃X = −λ̃ϕ̃X, λ̃ =

√
κ̃+ α2.
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Hence A = X(λ̃) = B = ϕ̃X(λ̃) = 0, that is to say, by Lemma 3.4, we get that
[X, ϕ̃X ] = 0. So, fixed the point p ∈ M , there exist coordinates (x, y, t) on an open
neighbourhood V of p such that

X =
∂

∂x
, ϕ̃X =

∂

∂y
, ξ = a

∂

∂x
+ b

∂

∂y
+ c

∂

∂t
,

where a, b and c are smooth functions on V with c 6= 0 everywhere. Since we get
[X, ξ] ∈ D and [X, ξ] ∈ D for any X ∈ D by dη = 0, we obtain that ∂c

∂x
= 0 and

∂c
∂y

= 0. Therefore, if we consider on V the linearly independent vector fields X, ϕ̃X

and Z = c ∂
∂t
, we have

[X, ϕ̃X ] = 0, [X,Z] = 0, [ϕ̃X, Z] = 0.

This implies that there exists a coordinate system {U, (x, y, z)} around p in V

such that X = ∂
∂x

, ϕ̃X = ∂
∂y

and Z = ∂
∂z
.Thus, on the open set U we have

ξ = a ∂
∂x

+ b ∂
∂y

+ ∂
∂z
. From (3.13) and (3.21), we get that ξ(λ̃) = −(2α + ν̃)λ̃,

and since A = X(λ̃) = B = ϕ̃X(λ̃) = 0, it follows that λ̃ = ce−(2α+ν̃)z, and
κ̃ = λ̃2 −α2 = c2e−2(2α+ν̃)z −α2 for some real constant c > 0. Since dµ̃∧ η = 0, we
get that µ̃ = µ̃(z). Next, we need to compute the functions a, b. To this end,

[ξ,X ] = −∂a

∂x

∂

∂x
− ∂b

∂x

∂

∂y
, [ξ, ϕ̃X ] = −∂a

∂y

∂

∂x
− ∂b

∂y

∂

∂y

And by Lemma 3.4, we obtain

[ξ,X ] = −α
∂

∂x
− (λ̃+

µ̃

2
)
∂

∂y
, [ξ, ϕ̃X ] = (λ̃− µ̃

2
)
∂

∂x
− α

∂

∂y
,

The comparison of these relations with the previous leads to

(4.1)
∂a

∂x
= α,

∂a

∂y
=

µ̃

2
− λ̃,

∂b

∂x
= λ̃+

µ̃

2
,

∂b

∂y
= α.

By integration of these system, considering λ̃, µ̃ functions depending only on z, we
get a = αx + ( µ̃2 − λ̃)y + f(z), b = ( µ̃2 + λ̃)x − αy − g(z), f(z), g(z) are arbitrary
smooth functions of z.

We will continue calculate the tensor fields η, ϕ̃, g̃ and h̃ with respect to the
basis ∂

∂x
, ∂
∂y

, ∂
∂z
. The expression of the 1-form η = dz immediately follows from

η(ξ) = 1, η(X) = η(ϕ̃X) = 0. For the components of g̃ij of the pseudo-Riemannian
metric, we have

g̃11 = g̃(
∂

∂x
,
∂

∂x
) = g̃(X,X) = −1, g̃22 = g̃(

∂

∂y
,
∂

∂y
) = g̃(ϕ̃X, ϕ̃X) = 1,

g̃33 = g̃(
∂

∂z
,
∂

∂z
) = g̃(ξ − a

∂

∂x
− b

∂

∂y
, ξ − a

∂

∂x
− b

∂

∂y
) = 1− a2 + b2.
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g̃12 = g̃21 = g̃(
∂

∂x
,
∂

∂y
) = g̃(X, ϕ̃X) = 0, g̃13 = g̃31 = g̃(

∂

∂x
, ξ − a

∂

∂x
− b

∂

∂y
) = a,

g̃23 = g̃32 = g̃(
∂

∂y
, ξ − a

∂

∂x
− b

∂

∂y
) = −b,

thus the matrix form of g̃ with respect to the basis ∂
∂x

, ∂
∂y

, ∂
∂z

is given by

g̃ =





−1 0 a

0 1 −b

a −b 1− a2 + b2



 .

The components of the tensor field ϕ̃ are followed by:

ϕ̃(
∂

∂x
) =

∂

∂y
, ϕ̃(

∂

∂y
) = ϕ̃2(

∂

∂x
) =

∂

∂x
, ϕ̃(

∂

∂z
) = ϕ̃(ξ − a

∂

∂x
− b

∂

∂y
) = −a

∂

∂y
− b

∂

∂y
,

thus the matrix form of ϕ̃ with respect to the basis ∂
∂x

, ∂
∂y

, ∂
∂z

is given by





0 1 −b

1 0 −a

0 0 0



 .

The components of the tensor field h̃ with respect to the basis ∂
∂x

, ∂
∂y

, ∂
∂z

are given
as follows:

h̃(
∂

∂x
) = h̃(X) = λ̃X = λ̃

∂

∂x
, h̃(

∂

∂y
) = h̃ϕ̃X = −λ̃ϕ̃X = −λ̃

∂

∂y
,

h̃(
∂

∂z
) = h̃(ξ − a

∂

∂x
− b

∂

∂y
) = −aλ̃

∂

∂x
+ bλ̃

∂

∂y
.

Thus the matrix form of h̃ is given by




λ̃ 0 aλ̃

0 −λ̃ bλ̃

0 0 0



 .

Now we consider the case of h̃ is of h3 type.

Theorem 4.2. Let (M3, ϕ̃, ξ, η, g̃) be an almost α-para-Kenmotsu (κ̃, µ̃, ν̃ = const.)-
space with h̃ is of h3 type and dκ̃ ∧ η = 0. Then, in a neighbourhood U of every
point p ∈ M , there exist coordinates x,y,z and an orthonormal frame {X, ϕ̃X, ξ}
with h̃X = λ̃ϕ̃X, h̃ϕ̃X = −λ̃X, such that on U κ̃, µ̃ only depends on z and

X =
∂

∂x
, ϕ̃X =

∂

∂y
, ξ = a

∂

∂x
+ b

∂

∂y
+

∂

∂z
,
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and the tensor fields ϕ̃, g̃, h̃ are given by the relations:

g̃ =





−1 0 a

0 1 −b

a −b 1− a2 + b2



 , ϕ̃ =





0 1 −b

1 0 −a

0 0 0



 , h̃ =





0 −λ̃ bλ̃

λ̃ 0 −aλ̃

0 0 0



 .

where a = (α+ λ̃)x+ µ̃
2 y+ f(z), b = µ̃

2x+ (α− λ̃)y + g(z), f(z), g(z) are arbitrary
smooth functions of z.

Proof. The condition dκ̃ ∧ η = 0 and (3.28) means that dµ̃ ∧ η = 0, since h̃ 6= 0
and kerh̃ = Span{ξ}. Moreover, we have E(λ̃) = 0 for all E ∈ D. By lemma 3.5,
we get that for any point p ∈ M , there exist a neighborhood U of p and a ϕ̃-basis
{X, ϕ̃X, ξ} defined on U , such that h̃X = λ̃ϕ̃X, h̃ϕ̃X = −λ̃X, λ̃ =

√

−(κ̃+ α2).

Hence A = X(λ̃) = B = ϕ̃X(λ̃) = 0, that is to say, by Lemma 3.5, we get that
[X, ϕ̃X ] = 0. So, fixed the point p ∈ M , there exist coordinates (x, y, t) on an open
neighbourhood V of p such that

X =
∂

∂x
, ϕ̃X =

∂

∂y
, ξ = a

∂

∂x
+ b

∂

∂y
+ c

∂

∂t
,

where a, b and c are smooth functions on V with c 6= 0 everywhere. Since we get
[X, ξ] ∈ D and [X, ξ] ∈ D for any X ∈ D by dη = 0, we obtain that ∂c

∂x
= 0 and

∂c
∂y

= 0. Therefore, if we consider on V the linearly independent vector field X, ϕ̃X

and Z = c ∂
∂t
, we have

[X, ϕ̃X ] = 0, [X,Z] = 0, [ϕ̃X, Z] = 0.

This implies that there exists a coordinate system {U, (x, y, z)} around p in V

such that X = ∂
∂x

, ϕ̃X = ∂
∂y

and Z = ∂
∂z
.Thus, on the open set U we have

ξ = a ∂
∂x

+ b ∂
∂y

+ ∂
∂z
. From (3.13) and (3.21), we get that ξ(λ̃) = −(2α + ν̃)λ̃,

and since A = X(λ̃) = B = ϕ̃X(λ̃) = 0, it follows that λ̃ = ce−(2α+ν̃)z, and
κ̃ = −λ̃2 −α2 = −c2e−2(2α+ν̃)z −α2 for some real constant c > 0. Since dµ̃∧ η = 0,
we get that µ̃ = µ̃(z). Next, we need to compute the functions a, b. To this end,

[X, ξ] =
∂a

∂x

∂

∂x
+

∂b

∂x

∂

∂y
, [ϕ̃X, ξ] =

∂a

∂y

∂

∂x
+

∂b

∂y

∂

∂y

And by Lemma 3.5, we obtain

[X, ξ] = (α + λ̃)
∂

∂x
+

µ̃

2

∂

∂y
, [ϕ̃X, ξ] =

µ̃

2

∂

∂x
+ (α− λ̃)

∂

∂y
.

The comparison of these relations with the previous leads to

(4.2)
∂a

∂x
= α+ λ̃,

∂a

∂y
=

µ̃

2
,

∂b

∂x
=

µ̃

2
,

∂b

∂y
= α− λ̃.
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By integration of these system, considering λ̃, µ̃ functions depending only on z, we
get a = (α + λ̃)x + µ̃

2 y + f(z), b = µ̃
2x − (α − λ̃)y − g(z), f(z), g(z) are arbitrary

smooth functions of z.

We will continue calculate the tensor fields η, ϕ̃, g̃ and h̃ with respect to the
basis ∂

∂x
, ∂
∂y

, ∂
∂z
. The expression of the 1-form η = dz immediately follows from

η(ξ) = 1, η(X) = η(ϕ̃X) = 0. For the components of g̃ij of the pseudo-Riemannian
metric and the components of the tensor field ϕ̃, the proof is the same with that of
Theorem 4.1, we omit here. The components of the tensor field h̃ with respect to
the basis ∂

∂x
, ∂
∂y

, ∂
∂z

are given as follows:

h̃(
∂

∂x
) = h̃(X) = λ̃ϕ̃X = λ̃

∂

∂y
, h̃(

∂

∂y
) = h̃ϕ̃X = −λ̃X = −λ̃

∂

∂x
,

h̃(
∂

∂z
) = h̃(ξ − a

∂

∂x
− b

∂

∂y
) = bλ̃

∂

∂x
− aλ̃

∂

∂y
.

Thus the matrix form of h̃ is given by





0 λ̃ bλ̃

−λ̃ 0 −aλ̃

0 0 0



 .

Theorem 4.1 and Theorem 4.2 allow us to obtain a complete local classification of
3-dimensional almost α-para-Kenmotsu (κ̃, µ̃, ν̃ = const.)-spaces with h̃ is of h1 type
or h3 type and dκ̃∧η = 0. In fact, we can construct in R

3 almost α-para-Kenmotsu
(κ̃, µ̃, ν̃ = const.)-space for each of them as follows.

Let M be the open submanifold of R3 defined by M := {(x, y, z) ∈ R
3} and

λ̃ = ce−(2α+ν̃)z, µ̃, f, g : M → R

be four smooth functions of z, where α, c, ν̃ are constant functions. Let us denote
again by x, y, z the coordinates induced on M by the standard ones on R

3. We
consider on M

ξ = a
∂

∂x
+ b

∂

∂y
+

∂

∂z
, η = dz,

the pseudo-Riemannian metric g̃, the tensor fields ϕ̃ and h̃ with respect to the basis
∂
∂x

, ∂
∂y

, ∂
∂z

are given by the relations:

g̃ =





−1 0 a

0 1 −b

a −b 1− a2 + b2



 , ϕ̃ =





0 1 −b

1 0 −a

0 0 0



 , h̃ =





λ̃ 0 −aλ̃

0 −λ̃ bλ̃

0 0 0



 .
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where a = αx+( µ̃2 − λ̃)y+ f(z), b = ( µ̃2 + λ̃)x−αy+ g(z), α is a constant value. It
is easy to check that (M, ϕ̃, ξ, η, g̃) ia an almost paracontact metric manifold. Since
dη = 0 and Φ = − 1

2dx∧dy+ b
2dx∧dz− a

2dy∧dz, thus we get dΦ = −αdx∧dy∧dz =
2αη ∧ Φ, that is to say, (M, ϕ̃, ξ, η, g̃) ia an almost α-para-Kenmotsu manifold and
that {X = ∂

∂x
, ϕ̃X = ∂

∂y
, ξ} makes up a global ϕ̃-basis on M . Moreover, by direct

computation, we get

[X, ϕ̃X ] = 0, [X, ξ] = αX + (λ̃+
µ̃

2
)ϕ̃X, [ϕ̃X, ξ] = (

µ̃

2
− λ̃)X + αϕ̃X.

and

h̃(X) = h̃(
∂

∂x
) = λ̃

∂

∂x
= λ̃X, h̃ϕ̃X = h̃(

∂

∂y
) = −λ̃

∂

∂y
= −λ̃ϕ̃X, h̃ξ = 0.

In this case h̃ is of h1 type with respect to the ϕ̃-basis {X, ϕ̃X, ξ}. By the well-known
formula

2g̃(∇̃ZW,T )

= Zg̃(W,T ) +Wg̃(T, Z)− T g̃(Z,W )− g̃(Z, [W,T ]) + g̃(W, [T, Z]) + g̃(T, [Z,W ])

and by (2.3), we obtain the following identities

∇̃Xξ = αX + λ̃ϕ̃X, ∇̃ϕ̃Xξ = αϕ̃X − λ̃X, ∇̃ξX = − µ̃

2
ϕ̃X, ∇̃ξϕ̃X = − µ̃

2
X,

∇̃XX = αξ, ∇̃ϕ̃X ϕ̃X = −αξ, ∇̃ϕ̃XX = −λ̃ξ, ∇̃X ϕ̃X = −λ̃ξ.

By direct calculation we obtain

R̃(X, ξ)ξ = (λ̃2 − α2)X + µ̃h̃X + ν̃ϕ̃h̃X,

R̃(ϕ̃X, ξ)ξ = (λ̃2 − α2)ϕ̃X + µ̃h̃ϕ̃X + ν̃ϕ̃h̃ϕ̃X,

R̃(X, ϕ̃X)ξ = 0.

Therefore, for any Z,W on M , it holds

R̃(Z,W )ξ = (κ̃I + µ̃h̃+ ν̃ϕ̃h̃)(η(W )Z − η(Z)W ),

and since κ̃ = λ̃2 − α2 = c2e−2(2α+ν̃)z − α2, it satisfies dκ̃ ∧ η = 0. In this way, we
construct an almost α-para-Kenmotsu (κ̃, µ̃, ν̃ = const.)-space with h̃ is of h1 type
and dκ̃ ∧ η = 0.

If we consider on M

ξ = a
∂

∂x
+ b

∂

∂y
+

∂

∂z
, η = dz,
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the pseudo-Riemannian metric g̃, the tensor fields ϕ̃ and h̃ with respect to the basis
∂
∂x

, ∂
∂y

, ∂
∂z

are given by the relations:

g̃ =





−1 0 a

0 1 −b

a −b 1− a2 + b2



 , ϕ̃ =





0 1 −b

1 0 −a

0 0 0



 , h̃ =





λ̃ 0 −aλ̃

0 −λ̃ bλ̃

0 0 0



 .

where a = (α + λ̃)x + µ̃
2 y + f(z), b = µ̃

2x + (α − λ̃)y + g(z), α is a constant value.
It is also easy to check that (M, ϕ̃, ξ, η, g̃) is an almost α-para-Kenmotsu manifold
and that {X = ∂

∂x
, ϕ̃X = ∂

∂y
, ξ} makes up a global ϕ̃-basis on M . Moreover, by

direct calculation, we get

[X, ϕ̃X ] = 0, [X, ξ] = (α + λ̃)X +
µ̃

2
ϕ̃X, [ϕ̃X, ξ] =

µ̃

2
X + (α− λ̃)ϕ̃X.

and

h̃(X) = h̃(
∂

∂x
) = λ̃

∂

∂y
= λ̃ϕ̃X, h̃ϕ̃X = h̃(

∂

∂y
) = −λ̃

∂

∂x
= −λ̃X, h̃ξ = 0.

In this case h̃ is of h3 type with respect to the ϕ̃-basis {X, ϕ̃X, ξ}.
By the well-known Koszul,s formula and by (2.3), we obtain the following iden-

tities

∇̃Xξ = (α + λ̃)X, ∇̃ϕ̃Xξ = (α− λ̃)ϕ̃X, ∇̃ξX = − µ̃

2
ϕ̃X, ∇̃ξϕ̃X = − µ̃

2
X,

∇̃XX = (α+ λ̃)ξ, ∇̃ϕ̃X ϕ̃X = (λ̃− α)ξ, ∇̃ϕ̃XX = 0, ∇̃X ϕ̃X = 0.

After long but direct calculation we obtain

R̃(X, ξ)ξ = −(λ̃2 + α2)X + µ̃h̃X + ν̃ϕ̃h̃X,

R̃(ϕ̃X, ξ)ξ = −(λ̃2 + α2)ϕ̃X + µ̃h̃ϕ̃X + ν̃ϕ̃h̃ϕ̃X,

R̃(X, ϕ̃X)ξ = 0.

therefore, for any Z,W on M , it holds

R̃(Z,W )ξ = (κ̃I + µ̃h̃+ ν̃ϕ̃h̃)(η(W )Z − η(Z)W ),

And since κ̃ = −(λ̃2 + α2) = −c2e−2(2α+ν̃)z − α2, it satisfies dκ̃ ∧ η = 0. In this
way, we construct an almost α-para-Kenmotsu (κ̃, µ̃, ν̃ = const.)-space with h̃ is of
h3 type and dκ̃ ∧ η = 0.
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5. Further Characterizations

Proposition 5.1. Let (M3, ϕ̃, ξ, η, g̃) be an almost α-para-Kenmotsu (κ̃, µ̃, ν̃ =
const.)-space with h̃2 6= 0 and dκ̃∧ η = 0. Then the leaves of the canonical foliation
of M are flat para-Kähler manifolds.

Proof. Let M ′ be a leaf of D and (J,<,>) be the induced almost para-Hermitain
structure. M ′ is a para-Kähler manifold since it is almost para-Kähler manifold of
dimension 2. In order to prove the flatness of (M ′, <,>), we consider the Weingarten
operator A of M ′, if h̃ is of h1 type, then AX = −αX − ϕ̃h̃X = −(αX + λ̃ϕ̃X) for
a unit timelike vector field X such that h̃X = λ̃X and using the Gauss equation,
the sectional curvature K ′ of <,> is given by K ′(X, ϕ̃X) = K(X, ϕ̃X)− (α2+ λ̃2).
By Lemma 3.4, we obtain R̃(X, ϕ̃X)ϕ̃X = −(α2+ λ̃2)X , thus K(X, ϕ̃X) = −(α2+
λ̃2)g̃(X,X) = α2 + λ̃2. Therefore, we get K ′(X, ϕ̃X) = 0. If h̃ is of h3 type,
then AX = −αX − ϕ̃h̃X = −(α + λ̃)X for the unit timelike vector field X such
that h̃X = λ̃ϕ̃X , and using the Gauss equation, the sectional curvature K ′ of
<,> is given by K ′(X, ϕ̃X) = K(X, ϕ̃X) + λ̃2 − α2. By Lemma 3.5, we obtain
K(X, ϕ̃X) = R̃(X, ϕ̃X, ϕ̃X,X) = α2 − λ̃2. Therefore, we get K ′(X, ϕ̃X) = 0.

Remark 5.1. This conclusion is in accord with Corollary 3 of [9].

Proposition 5.2. Let (M3, ϕ̃, ξ, η, g̃) be an almost α-para-Kenmotsu (κ̃, µ̃, ν̃ =
const.)-space. If h̃ is of h1 type, then

Lξh̃ = −(2α+ ν̃)h̃+ µ̃h̃ϕ̃− 2λ̃2ϕ̃.(5.1)

If h̃ is of h3 type, then

Lξh̃ = −(2α+ ν̃)h̃+ µ̃h̃ϕ̃+ 2λ̃2ϕ̃.(5.2)

Proof. By (2.3) and (3.12), it is easy to get that

Lξh̃ = ∇̃ξh̃+ h̃(∇̃ξ)− (∇̃ξ)h̃ = −(2α+ ν̃)h̃+ µ̃h̃ϕ̃− 2h̃2ϕ̃.

Hence, If h̃ is of h1 type, h̃2X = λ̃2X , If h̃ is of h3 type, h̃2X = −λ̃2X , the relations
(5.1) and (5.2) are easily obtained.

Now we give the following further characterization.

Theorem 5.1. Let (M3, ϕ̃, ξ, η, g̃) be an almost paracontact metric manifold h̃2 6=
0, and κ̃, µ̃ are smooth functions on M such that dκ̃∧η = 0. Then, M3 is an almost
α-para-Kenmotsu (κ̃, µ̃, ν̃ = const.)-space if and only if for any point p ∈ M , there
exists an open neighbourhood U of p with coordinates x1, x2, t such that κ̃ and µ̃
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depend only on t and the tensor fields of the structure are expressed in the following
way:

ϕ̃ =
2

∑

i,j=1

ϕ̃i
jdxj ⊗

∂

∂xi

, ξ =
∂

∂t
, η = dt, g̃ = dt⊗ dt+

2
∑

i,j=1

g̃ijdxi ⊗ dxj ,(5.3)

where ϕ̃i
j , g̃ij are functions only of t; The fundamental 2-form Φ is given by

Φ = e2tdx1 ∧ dx2,(5.4)

and the non-zero components h̃i
j, B̃

i
j in U of h̃ and B := ϕ̃h̃, respectively, are

functions of t satisfying the condition
∑

k B
i
kB

k
j = e−2(2α+ν̃)tδij and the following

system of differential equations:

dϕ̃i
j

dt
= 2h̃i

j,
dh̃i

j

dt
= ∓2λ̃2ϕ̃i

j − (2α+ ν̃)h̃i
j − µ̃B̃i

j ,(5.5)

dB̃i
j

dt
= −(2α+ ν̃)B̃i

j − µ̃h̃i
j ,

where λ̃ = e−(2α+ν̃)t, and it takes ”− ” if h̃ is of h1 type, it takes ” + ” if h̃ is of h3
type.

Proof. Suppose that M carries a structure locally represented as in (5.3)-(5.5).
Obviously dη = 0 and dΦ = 2η ∧ Φ are followed by (5.3)-(5.4), therefore, M is
an almost α-para-Kenmotsu manifold. Now we need to prove that M satisfies the
(κ̃, µ̃, ν̃ = const.)-nullity condition. Notice that X1 = ∂

∂x1

and X2 = ∂
∂x2

are

Killing vector fields and thus we get g̃(∇̃Xi
Xj, Xk) = 0 for any i, j, k ∈ {1, 2}. Since

the distribution orthogonal to ξ = ∂
∂t

is spanned by X1 and X2, it follows that

∇̃Xi
Xj ∈ [ξ] for all i, j ∈ {1, 2}. Consequently, for the Levi-Civita connection ∇̃

determined by g̃, we obtain

∇̃Xi
Xj = ∇̃Xj

Xi = −g̃(Xi, αXj +BXj)ξ, ∇̃ξXi = ∇̃Xi
ξ = αXi +BXi.(5.6)

Using (5.5) and (5.6) and by direct computations, we get

R̃(Xi, Xj)ξ = 0,

and

R̃(Xi, ξ)ξ = −∇̃ξ∇̃Xi
ξ = −α(αXi +BXi)− [

dBk
i

dt
Xk +Bk

i ∇̃ξXi]

= −α2Xi − 2αBXi + (2α+ ν̃)BXi + µ̃h̃Xi −B2Xi

= (h̃2 − α2I)Xi + µ̃h̃Xi + ν̃ϕ̃h̃Xi.

If h̃ is of h1 type, R̃(Xi, ξ)ξ = (λ̃2 −α2)Xi+ µ̃h̃Xi+ ν̃ϕ̃h̃Xi. Thus, M
3 is an almost

α-para-Kenmotsu (κ̃, µ̃, ν̃ = const.)-space, where κ̃ = λ̃2 − α2. If h̃ is of h3 type,
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R̃(Xi, ξ)ξ = −(λ̃2+α2)Xi+µ̃h̃Xi+ν̃ϕ̃h̃Xi. Thus, M
3 is an almost α-para-Kenmotsu

(κ̃, µ̃, ν̃ = const.)-space, where κ̃ = −(λ̃2 + α2).

Suppose M3 is an almost α-para-Kenmotsu (κ̃, µ̃, ν̃ = const.)-space, we have
(5.3)-(5.5) as similar as the proof of Theorem 6.1 in [16], we omit here.
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