# THREE-DIMENSIONAL ALMOST $\alpha$ -PARA-KENMOTSU MANIFOLDS SATISFYING CERTAIN NULLITY CONDITIONS \*

### Ximin Liu and Quanxiang Pan

**Abstract.** In this paper, we study 3-dimensional almost  $\alpha$ -para-Kenmotsu manifolds satisfying special types of nullity conditions depending on smooth functions  $\tilde{\kappa}, \tilde{\mu}$  and  $\tilde{\nu}$ =constant, also we present a local description of the structure of a 3-dimensional almost  $\alpha$ -para-Kenmotsu ( $\tilde{\kappa}, \tilde{\mu}, \tilde{\nu} = const.$ )-manifold ( $M, \tilde{\varphi}, \xi, \eta, \tilde{g}$ ) with  $\tilde{\kappa} + \alpha^2 \neq 0$  such that  $d\tilde{\kappa} \wedge \eta = 0$ .

Keywords: Almost paracontact metric manifold; almost  $\alpha$ -para-Kenmotsu manifold; nullity distribution.

#### 1. Introduction

The aim of this paper is to study the local description of almost  $\alpha$ -para-Kenmotsu manifolds. Kenmotsu manifolds have been introduced and studied by K. Kenmotsu in 1972 [10], and the geometry of almost Kenmotsu manifolds have been investigated in many aspects [5]-[7]. Most of the results contained in [5]-[6] can be easily generalized to the class of almost  $\alpha$ -Kenmotsu manifolds, where  $\alpha$  is a non-zero real number [7]. Many authors have investigated the geometry of contact metric manifolds whose characteristic vector field  $\xi$  belongs to the  $(\kappa, \mu)$ -nullity distribution, i.e. the curvature tensor field satisfies the condition

$$(1.1) R(X,Y)\xi = \kappa(\eta(Y)X - \eta(X)Y) + \mu(\eta(Y)hX - \eta(X)hY),$$

for some real numbers  $\kappa$  and  $\mu$ , where 2h denotes the Lie derivative of  $\varphi$  in the direction of  $\xi$ . This new class of Riemannian manifolds was introduced in [4] as a natural generalization both of the Sasakian condition  $R(X,Y)\xi=\eta(Y)X-\eta(X)Y$  and of those contact metric manifolds satisfying  $R(X,Y)\xi=0$  which were studied by D.E. Blair in [3]. Koufogiorgos and Tsichlias found a new class of 3-dimensional contact metric manifolds that  $\kappa$  and  $\mu$  are non-constant smooth functions[11]. They generalized  $(\kappa,\mu)$ -contact metric manifolds for dimensions greater than three on

Received November 29, 2016; accepted February 03, 2017

<sup>2010</sup> Mathematics Subject Classification. Primary 53C25; Secondary 53D10

<sup>\*</sup>The authors were supported in part by NSFC (No. 11371076 and 11401178)

non-Sasakian manifolds, where the functions  $\kappa$ ,  $\mu$  are constant. Nowadays contact metric  $(\kappa, \mu)$ -space is considered as a very important topic in contact Riemannian geometry. Following these works, P. Dacko and Z. Olszak studied almost cosymplectic  $(\kappa, \mu, \nu)$ -spaces in [12], whose almost cosymplectic structures  $(\varphi, \xi, \eta, g)$  satisfy the condition

$$(1.2) R(X,Y)\xi = \eta(Y)(\kappa I + \mu h + \nu \varphi h)X - \eta(X)(\kappa I + \mu h + \nu \varphi h)Y,$$

for  $\kappa, \mu, \nu \in R_{\eta}(M^{2n+1})$ , where  $R_{\eta}(M^{2n+1})$  is the ring of smooth functions f on  $M^{2n+1}$  for which  $df \wedge \eta = 0$ . Later, [8] studied the generalized almost cosymplectic  $(\kappa, \mu, \nu)$ -spaces, that is: almost  $\alpha$ -cosymplectic  $(\kappa, \mu, \nu)$ -spaces and also pointed out that the nullity condition is invariant under D-homothetic deformation of almost cosymplectic  $(\kappa, \mu, \nu)$ -spaces in all dimensions.

The study of paracontact geometry was initiated by S. Kaneyuki and F.L. Williams in [14] and then it was continued by many other authors in many aspects, for example, a systematic study of paracontact metric manifolds, and some remarkable subclasses like para-Sasakian manifolds, was carried out by S. Zamkovoy [15], a systematic study of almost  $\alpha$ -paracosymplectic manifolds carried by I. K. Erken, P. Dacko and C. Murathan [9], [13]. The importance of paracontact geometry has been pointed out highlighting the interplays with the theory of para-Kähler manifolds and its role in pseudo-Riemannian geometry and mathematical physics. In recent years, many authors turned to the study of paracontact geometry due to an unexpected relationship between  $(\kappa, \mu)$ -contact metric manifold and paracontact geometry was found in [2]. It was proved that any (non-Sasakian)  $(\kappa, \mu)$ -contact metric manifold carries a canonical paracontact metric structure  $(\tilde{\varphi}, \xi, \eta, \tilde{g})$  whose Levi-Civita connection satisfies a condition formally similar to (1.1)

(1.3) 
$$\tilde{R}(X,Y)\xi = \tilde{\kappa}(\eta(Y)X - \eta(X)Y) + \tilde{\mu}(\eta(Y)\tilde{h}X - \eta(X)\tilde{h}Y),$$

where  $2\tilde{h}:=L_{\xi}\tilde{\varphi}$  and, in this case,  $\tilde{\kappa}=(1-\frac{\mu}{2})^2+\kappa-2, \tilde{\mu}=2$ . In [1], the authors showed that while the values of  $\tilde{\kappa}$  and  $\tilde{\mu}$  change the form but (1.3) remains unchanged under D-homothetic deformations. There are differences between a  $(\kappa,\mu)$ -contact metric manifold  $(M,\varphi,\xi,\eta,g)$  and  $(\tilde{\kappa},\tilde{\mu})$ -paracontact metric manifold  $(M,\tilde{\varphi},\xi,\eta,\tilde{g})$ . Namely, unlike in the contact Riemannian case, a  $(\tilde{\kappa},\tilde{\mu})$ -paracontact metric manifold such that  $\tilde{\kappa}=-1$  in general is not para-Sasakian. And there are  $(\tilde{\kappa},\tilde{\mu})$ -paracontact metric manifold such that  $\tilde{h}^2=0$  but with  $\tilde{h}\neq 0$  in [2]. Another important difference with the contact metric manifold is that while for contact metric case  $\kappa\leq 1$ ,  $(\tilde{\kappa},\tilde{\mu})$ -paracontact metric manifold has no restriction for the constants  $\tilde{\kappa}$  and  $\tilde{\mu}$ . There are similar results about almost  $\alpha$ -cosymplectic  $\kappa,\mu,\nu$ -spaces and almost  $\alpha$ -paracosymplectic  $\kappa,\mu,\nu$ -spaces [8] and [9].

Recently, in [16] V. Saltarelli studied 3-dimensional almost Kenmotsu manifolds satisfying certain nullity conditions and gave some complete local descriptions of their structure. Motivated by the unexpected relationship between almost Kenmotsu and para-Kenmotsu manifold, we study almost  $\alpha$ -para-Kenmotsu manifold in this paper and give a complete local description of 3-dimensional almost  $\alpha$ -para-Kenmotsu  $(\kappa, \mu, \nu)$ -spaces.

This paper is organized in the following way. In section 2, some preliminaries and properties about almost  $\alpha$ -para-kenmotsu manifolds are given. In section 3, we give some results concerning almost  $\alpha$ -para-Kenmotsu  $(\tilde{\kappa}, \tilde{\mu}, \tilde{\nu})$ -spaces. In section 4, we will give a local description of the structure of a 3-dimensional almost  $\alpha$ -para-Kenmotsu  $(\tilde{\kappa}, \tilde{\mu}, \tilde{\nu} = const.)$ -space with  $d\tilde{\kappa} \wedge \eta = 0$ . We also construct in  $R^3$  two families of such manifolds depending on  $\tilde{h}$  of  $\mathfrak{h}_1$  or  $\mathfrak{h}_3$  type, and in the last section we give a necessary and sufficient condition for a local structure to be an almost  $\alpha$ -para-Kenmotsu  $(\tilde{\kappa}, \tilde{\mu}, \tilde{\nu} = const.)$ -space with  $d\tilde{\kappa} \wedge \eta = 0$ . All manifolds are assumed to be connected and smooth.

## 2. Preliminaries

In this section, we recall some basic facts about paracontact metric manifolds.

A 2n+1-dimensional smooth manifold M is said to have an almost paracontact structure if it admits a (1,1)-tensor field  $\tilde{\varphi}$ , a vector field  $\xi$  and a 1-form  $\eta$  satisfying the following conditions:

(i) 
$$\tilde{\varphi}^2 = \operatorname{Id} - \eta \otimes \xi$$
,  $\eta(\xi) = 1$ ,

(ii) the tensor field  $\tilde{\varphi}$  induces an almost paracomplex structure on each fiber of  $\mathcal{D} = \text{Ker}(\eta)$ , i.e. the  $\pm 1$ -eigendistributions  $\mathcal{D}^{\pm} := \mathcal{D}_{\tilde{\varphi}}(\pm 1)$  of  $\tilde{\varphi}$  have equal dimension n.

From the definition it follows that  $\tilde{\varphi}(\xi) = 0$ ,  $\eta \circ \tilde{\varphi} = 0$  and  $\operatorname{rank}(\tilde{\varphi}) = 2n$ . When the tensor field  $N_{\tilde{\varphi}} := [\tilde{\varphi}, \tilde{\varphi}] - 2d\eta \otimes \xi$  vanishes identically the almost paracontact manifold is said to be normal. If an almost paracontact manifold admits a pseudo-Riemannian metric  $\tilde{q}$  such that

(2.1) 
$$\tilde{g}(\tilde{\varphi}X, \tilde{\varphi}Y) = -\tilde{g}(X, Y) + \eta(X)\eta(Y)$$

for any vector fields  $X,Y\in\Gamma(TM)$ . Then we say that  $(M^{2n+1},\tilde{\varphi},\xi,\eta,\tilde{g})$  is an almost paracontact metric manifold. Notice that any such a pseudo-Riemannian metric is necessarily of signature (n,n+1). For an almost paracontact metric manifold, there always exists an orthogonal basis  $\{\xi,X_1,\ldots,X_n,Y_1,\ldots,Y_n\}$  such that  $\tilde{g}(X_i,X_j)=\delta_{ij},\tilde{g}(Y_i,Y_j)=-\delta_{ij}$  and  $Y_i=\tilde{\varphi}X_i$ , for any  $i,j\in\{1,\ldots,n\}$ . Such basis is called a  $\varphi$ -basis. The fundamental 2-form  $\tilde{\Phi}$  associate with the structure is defined by  $\tilde{\Phi}(X,Y)=\tilde{g}(X,\tilde{\varphi}Y)$  for all vector fields X,Y on M. The structure is normal if the tensor field  $\mathcal{N}=[\tilde{\varphi},\tilde{\varphi}]+2d\eta\otimes\xi$  vanishes, where  $[\tilde{\varphi},\tilde{\varphi}]$  is the Nijenhuistorsion of  $\tilde{\varphi}$ . For more details, we refer the reader to [15]. According to [9], an almost paracontact metric manifold  $(M,\tilde{\varphi},\xi,\eta,\tilde{g})$  is said to be an almost  $\alpha$ -para-Kenmotsu manifold if

(2.2) 
$$d\eta = 0, \quad d\tilde{\Phi} = 2\alpha\eta \wedge \tilde{\Phi}, \quad \alpha = const. \neq 0.$$

A normal almost  $\alpha$ -para-Kenmotsu manifold is an  $\alpha$ -para-Kenmotsu manifold.

Let  $(M, \tilde{\varphi}, \xi, \eta, \tilde{g})$  be an almost  $\alpha$ -para-Kenmotsu manifold. Since  $d\eta = 0$ , the canonical distribution  $\mathcal{D} = ker(\eta)$  is completely integrable. Each leaf of the foliation, determined by  $\mathcal{D}$ , carries an almost para-Kähler structure (J, <, >)

$$J\bar{X} = \tilde{\varphi}\bar{X}, \quad \langle \bar{X}, \bar{Y} \rangle = \tilde{g}(\bar{X}, \bar{Y}),$$

 $\bar{X}, \bar{Y}$  are vector fields tangent to the leaf. If this structure is para-Kähler, leaf is called a para-Kähler leaf. Furthermore, we have  $L_{\xi}\eta = 0$  and  $[\xi, X] \in \mathcal{D}$  for any  $X \in \mathcal{D}$ . Furthermore, we have  $\tilde{\nabla}_{\xi}\varphi = 0$ , so that  $\tilde{\nabla}_{\xi}\xi = 0$  and  $\tilde{\nabla}_{\xi}X \in \mathcal{D}$  for any  $X \in \mathcal{D}$ . Define  $\tilde{h} = \frac{1}{2}L_{\xi}\tilde{\varphi}$ , we get the following proposition,

**Proposition 2.1.** [9] Let  $(M, \tilde{\varphi}, \xi, \eta, \tilde{g})$  be an almost  $\alpha$ -paracosymplectic manifold, we have the following relations:

$$\tilde{g}(\tilde{h}X,Y) = \tilde{g}(X,\tilde{h}Y), \ \tilde{h}\tilde{\varphi} = -\tilde{\varphi}\tilde{h}, \ \tilde{h}\xi = 0,$$

(2.3) 
$$\tilde{\nabla}\xi = \alpha\tilde{\varphi}^2 + \tilde{\varphi}\tilde{h},$$

(2.4) 
$$\operatorname{tr}(\tilde{h}) = 0, \ \operatorname{tr}(\tilde{\varphi}\tilde{h}) = 0.$$

Moreover, also in [9], it follows that the curvature properties of an almost  $\alpha$ -para-Kenmotsu manifold,

$$(2.5) \ \tilde{R}(X,Y)\xi = \alpha \eta(X)(\alpha Y + \tilde{\varphi}\tilde{h}Y) - \alpha \eta(Y)(\alpha X + \tilde{\varphi}\tilde{h}X) + (\tilde{\nabla}_X \tilde{\varphi}\tilde{h})Y - (\tilde{\nabla}_Y \tilde{\varphi}\tilde{h})X$$

$$(2.6) \qquad (\tilde{\nabla}_X \tilde{\varphi}) Y - (\tilde{\nabla}_{\tilde{\varphi}X} \tilde{\varphi}) \tilde{\varphi} Y = \eta(Y) (\alpha \tilde{\varphi} X - \tilde{h} X) - 2\alpha (\tilde{q}(X, \tilde{\varphi}Y)\xi + \eta(Y)\tilde{\varphi}).$$

Finally, we recall that an almost paracontact metric manifold  $(M, \tilde{\varphi}, \xi, \eta, \tilde{g})$  is said to be  $\eta$ -Einstein if its Ricci tensor satisfies

$$\tilde{Ric} = a\tilde{q} + b\eta \oplus \eta$$
,

or equivalently

where a and b are smooth functions on  $M^{2n+1}$ . A vector field  $X \in T_pM$  is called Killing vector field if  $\mathcal{L}_X \tilde{g} = 0$ , that is,  $\tilde{g}(\tilde{\nabla}_Y X, Z) + \tilde{g}(\tilde{\nabla}_Z X, Y) = 0$ , where  $Y, Z \in T_pM$  are arbitrary vector fields.

In [9], Authors showed that Ricci curvature  $\tilde{S}$  in the direction of  $\xi$  is given by

(2.8) 
$$\tilde{S}(\xi,\xi) = -2n\alpha^2 + \operatorname{tr}\tilde{h}^2.$$

We recall that the curvature tensor of a 3-dimensional pseudo-Riemannian manifold satisfies

$$\begin{array}{rcl} (2.9) & \tilde{R}(X,Y)Z & = & \tilde{g}(Y,Z)\tilde{Q}X - \tilde{g}(X,Z)\tilde{Q}Y + \tilde{g}(\tilde{Q}Y,Z)X - \tilde{g}(\tilde{Q}X,Z)Y \\ & & -\frac{\tau}{2}(\tilde{g}(Y,Z)X - \tilde{g}(X,Z)Y). \end{array}$$

## 3. Almost $\alpha$ -para-Kenmotsu $(\tilde{\kappa}, \tilde{\mu}, \tilde{\nu})$ -spaces

Firstly, let us recall the following theorem which is exactly the same as almost Kenmotsu manifolds [9], where  $\tilde{h} = 0$ , it is certainly  $\tilde{h}^2 = 0$ .

**Theorem 3.1.** Let  $M^{2n+1}$  be an almost  $\alpha$ -para-Kenmotsu manifold with  $\tilde{h}=0$ . Then  $M^{2n+1}$  is locally a warped product  $M_1 \times_{f^2} M_2$ , where  $M_2$  is an almost para-Kähler manifold,  $M_1$  is an open interval with coordinate t, and  $f^2 = we^{2\alpha t}$  for some positive constant w.

Now, we give some properties for later use.

**Lemma 3.1.** Let  $(M^{2n+1}, \tilde{\varphi}, \xi, \eta, \tilde{g})$  be an almost  $\alpha$ -para-Kenmotsu manifold, then, for any orthonormal frame  $X_i$ ,  $i = 1, \dots, 2n + 1$ , the following identities hold:

(3.1) 
$$\sum_{i=1}^{2n+1} \varepsilon_i(\tilde{\nabla}_{X_i}\tilde{\varphi}\tilde{h})X_i = \tilde{Q}\xi + 2n\alpha^2\xi,$$

(3.2) 
$$\sum_{i=1}^{2n+1} \varepsilon_i(\tilde{\nabla}_{X_i}\tilde{\varphi})X_i = 0.$$

*Proof.* Let  $X_i (i = 1, \dots, 2n + 1)$  be an orthonormal frame. For any vector field X, putting  $X = X_i$ , replacing Y by  $\tilde{\varphi}X$  in (2.6), taking the inner product with  $X = X_i$ , by using  $\tilde{h}\xi = \tilde{\varphi}\xi = 0$ ,  $\operatorname{tr}(\tilde{\varphi}\tilde{h}) = 0$ , the symmetry of  $\tilde{\nabla}_{X_i}\tilde{\varphi}\tilde{h}$ , and the skew-symmetry of  $\tilde{\varphi}$  we get

$$\begin{split} &\tilde{g}(\tilde{Q}\xi,\tilde{\varphi}X) \\ &= \sum_{i=1}^{2n+1} \varepsilon_i \tilde{g}(\tilde{R}(X_i,\tilde{\varphi}X)\xi,X_i) \\ &= \sum_{i=1}^{2n+1} \varepsilon_i \{\alpha\eta(X_i)\tilde{g}(\alpha\tilde{\varphi}X - \tilde{\varphi}\tilde{h}\tilde{\varphi}X,X_i) + \tilde{g}((\tilde{\nabla}_{X_i}\tilde{\varphi}\tilde{h})\tilde{\varphi}X,X_i) - \tilde{g}((\tilde{\nabla}_{\tilde{\varphi}X}\tilde{\varphi}\tilde{h})X_i,X_i)\} \\ &= \sum_{i=1}^{2n+1} \varepsilon_i \tilde{g}((\tilde{\nabla}_{X_i}\tilde{\varphi}\tilde{h})\tilde{\varphi}X,X_i). \end{split}$$

Thus the above equality reduces to

$$\tilde{\varphi}\tilde{Q}\xi = \sum_{i=1}^{2n+1} \varepsilon_i \tilde{\varphi}(\tilde{\nabla}_{X_i} \tilde{\varphi}\tilde{h}) X_i,$$

Applying  $\tilde{\varphi}$  to the above equality, using  $\tilde{\varphi}^2 = \operatorname{Id} - \eta \otimes \xi$  and (2.8), combining with (2.4), we get  $\sum_{i=1}^{2n+1} \varepsilon_i \tilde{g}((\tilde{\nabla}_{X_i} \tilde{\varphi} \tilde{h}) X_i, \xi) = \operatorname{tr} \tilde{h}^2$ , it follows that

$$\sum_{i=1}^{2n+1} \varepsilon_i(\tilde{\nabla}_{X_i}\tilde{\varphi}\tilde{h})X_i = \tilde{Q}\xi + 2n\alpha^2\xi.$$

In order to obtain (3.4), we choose a  $\tilde{\varphi}$ -basis  $\{E_i, \tilde{\varphi}E_i, \xi\}$ , using (2.6) and  $\tilde{\nabla}_{\xi}\tilde{\varphi} = 0$ , we get

$$\sum_{i=1}^{2n+1} \varepsilon_i(\tilde{\nabla}_{X_i}\tilde{\varphi})X_i = \sum_{i=1}^n \varepsilon_i(\tilde{\nabla}_{E_i}\tilde{\varphi})E_i - \sum_{i=1}^n \varepsilon_i(\tilde{\nabla}_{\tilde{\varphi}E_i}\tilde{\varphi})\tilde{\varphi}E_i + (\tilde{\nabla}_{\xi}\tilde{\varphi})\xi = 0.$$

The next lemma concerns almost  $\alpha$ -para-Kenmotsu manifolds having the canonical distribution  $\mathcal{D}$  with para-Kähler leaves for which the following formula holds [9]:

(3.3) 
$$(\tilde{\nabla}_X \tilde{\varphi}) Y = \tilde{g}(\alpha \tilde{\varphi} X + \tilde{h} X, Y) \xi - \eta(Y)(\alpha \tilde{\varphi} X + \tilde{h} X).$$

**Lemma 3.2.** Let  $(M^{2n+1}, \tilde{\varphi}, \xi, \eta, \tilde{g})$  be an almost  $\alpha$ -para-Kenmotsu manifold and assume that the distribution  $\mathcal{D}$  has para-Kähler leaves, then, for any orthonormal frame  $X_i, i = 1, \dots, 2n+1$ , we have

(3.4) 
$$\sum_{i=1}^{2n+1} \varepsilon_i(\tilde{\nabla}_{X_i}\tilde{h})X_i = \tilde{\varphi}\tilde{Q}\xi.$$

Proof. Since

$$\tilde{\nabla}_X \tilde{h} \tilde{\varphi} Y = (\tilde{\nabla}_X \tilde{h}) \tilde{\varphi} Y + \tilde{h} (\tilde{\nabla}_X \tilde{\varphi}) Y + \tilde{h} \tilde{\varphi} \tilde{\nabla}_X Y,$$

$$\tilde{\nabla}_X \tilde{\varphi} \tilde{h} Y = \tilde{\varphi} (\tilde{\nabla}_X \tilde{h}) Y + \tilde{\varphi} \tilde{h} (\tilde{\nabla}_X Y) + (\tilde{\nabla}_X \tilde{\varphi}) \tilde{h} Y,$$

By (3.5)-(3.6) and  $\tilde{\varphi}\tilde{h} = -\tilde{h}\tilde{\varphi}$ , we get

$$(\tilde{\nabla}_{X}\tilde{h})\tilde{\varphi}Y + \tilde{\varphi}(\tilde{\nabla}_{X}\tilde{h})Y = -\tilde{h}(\tilde{\nabla}_{X}\tilde{\varphi})Y - (\tilde{\nabla}_{X}\tilde{\varphi})\tilde{h}Y$$

$$= \eta(Y)(\alpha\tilde{h}\tilde{\varphi}X + \tilde{h}^{2}X) - \tilde{q}(\alpha\tilde{\varphi}X + \tilde{h}X, \tilde{h}Y)\xi.$$

Taking  $X=Y=X_i$  in (3.7), summing on i and using  $\operatorname{tr}(\tilde{h}\tilde{\varphi})=0$  and  $\tilde{h}\xi=0$ , we get

(3.8) 
$$\sum_{i=1}^{2n+1} \varepsilon_i \{ (\tilde{\nabla}_{X_i} \tilde{h}) \tilde{\varphi} X_i + \tilde{\varphi} (\tilde{\nabla}_{X_i} \tilde{h}) X_i \} = -(\operatorname{tr} \tilde{h}^2) \xi.$$

By (3.1), and using (3.4) we get

$$\tilde{Q}\xi + 2n\alpha^{2}\xi = \sum_{i=1}^{2n+1} \varepsilon_{i}(\tilde{\nabla}_{X_{i}}\tilde{\varphi}\tilde{h})X_{i} = -\sum_{i=1}^{2n+1} \varepsilon_{i}(\tilde{\nabla}_{X_{i}}\tilde{h}\tilde{\varphi})X_{i}$$

$$= -\sum_{i=1}^{2n+1} \varepsilon_{i}\{(\tilde{\nabla}_{X_{i}}\tilde{h})\tilde{\varphi}X_{i} + \tilde{h}(\tilde{\nabla}_{X_{i}}\tilde{\varphi})X_{i}\}$$

$$= -\sum_{i=1}^{2n+1} \varepsilon_{i}(\tilde{\nabla}_{X_{i}}\tilde{h})\tilde{\varphi}X_{i}.$$

$$(3.9)$$

Substituting (3.3) into (3.8) we obtain

$$\sum_{i=1}^{2n+1} \varepsilon_i \tilde{\varphi}(\tilde{\nabla}_{X_i} \tilde{h}) X_i = \tilde{Q} \xi + (2n\alpha^2 - \operatorname{tr} \tilde{h}^2) \xi,$$

finally, we get the required result acting by  $\tilde{\varphi}$  and using  $\sum_{i=1}^{2n+1} \varepsilon_i \tilde{g}((\tilde{\nabla}_{X_i}\tilde{h})X_i,\xi) = 0$ , which, by direct calculation, follows from the fact that  $\tilde{g}(\tilde{\varphi}\tilde{h}^2X_i,X_i) = 0$  and  $\operatorname{tr}(\tilde{h}\tilde{\varphi}) = 0$ .  $\square$ 

Next we study almost  $\alpha$ -para-Kenmotsu manifolds under assumption that the curvature satisfies  $(\tilde{\kappa}, \tilde{\mu}, \tilde{\nu})$ -nullity condition

(3.10) 
$$\tilde{R}(X,Y)\xi = \eta(Y)BX - \eta(X)BY,$$

where B is Jacobi operator of  $\xi$ , that is to say  $BX = \tilde{R}(X,\xi)\xi = \tilde{\kappa}\tilde{\varphi}^2X + \tilde{\mu}\tilde{h}X + \tilde{\nu}\tilde{\varphi}\tilde{h}X$ , for  $\tilde{\kappa},\tilde{\mu},\tilde{\nu}\in R_{\eta}(M^{2n+1})$ . Particularly  $B\xi=0$ . If  $\tilde{\mu}=0$  or  $\tilde{h}=0$  and  $\tilde{\nu}=0$  or  $\tilde{\varphi}\tilde{h}=0$ , the  $(\tilde{\kappa},\tilde{\mu},\tilde{\nu})$ -nullity distribution is reduced to the well-known  $\tilde{\kappa}$ -nullity distribution  $N(\tilde{\kappa})$ . The  $(\tilde{\kappa},\tilde{\mu},\tilde{\nu})$ -nullity condition (3.10) is obtained by requiring that  $\xi$  belong to some  $N(\tilde{\kappa},\tilde{\mu},\tilde{\nu})$ . If almost  $\alpha$ -para-Kenmotsu manifold satisfies (3.10), then the manifold is said to be an almost  $\alpha$ -para-Kenmotsu  $(\tilde{\kappa},\tilde{\mu},\tilde{\nu})$ -space. We observe that, in an almost  $\alpha$ -para-Kenmotsu manifold, if  $\xi \in N(\tilde{\kappa},\tilde{\mu},\tilde{\nu})$ , (3.10) and (2.5) implies  $\tilde{\varphi}\tilde{h}$  is a Codazzi tensor, that is to say,  $(\tilde{\nabla}_X\tilde{\varphi}\tilde{h})Y - (\tilde{\nabla}_Y\tilde{\varphi}\tilde{h})X = 0$ , for any  $X,Y\in\mathcal{D}$ .

**Proposition 3.1.** [9] Let  $(M^{2n+1}, \tilde{\varphi}, \xi, \eta, \tilde{g})$  be an almost  $\alpha$ -para-Kenmotsu  $(\kappa, \mu, \nu)$ -space, then the following identities hold:

(3.11) 
$$\tilde{h}^2 = (\tilde{\kappa} + \alpha^2)\tilde{\varphi}^2.$$

(3.12) 
$$\tilde{\nabla}_{\xi}\tilde{h} = -(2\alpha + \tilde{\nu})\tilde{h} + \tilde{\mu}\tilde{h}\tilde{\varphi},$$

(3.13) 
$$\xi(\tilde{\kappa}) = -2(2\alpha + \tilde{\nu})(\tilde{\kappa} + \alpha^2),$$

**Lemma 3.3.** Let  $(M^3, \tilde{\varphi}, \xi, \eta, \tilde{g})$  be an almost  $\alpha$ -para-Kenmotsu  $(\tilde{\kappa}, \tilde{\mu}, \tilde{\nu} = const.)$ -spaces, then one has:

(3.15) 
$$\tilde{Q}X = (-\tilde{\kappa} + \frac{\tau}{2})X + (3\tilde{\kappa} - \frac{\tau}{2})\eta(X)\xi + \tilde{\mu}\tilde{h}X + \tilde{\nu}\tilde{\varphi}\tilde{h}X,$$

(3.16) 
$$\tilde{h} \operatorname{grad} \tilde{\mu} + \tilde{\varphi} \tilde{h} \operatorname{grad} \tilde{\nu} = \operatorname{grad} \tilde{\kappa} - \xi(\tilde{\kappa}) \xi,$$

where  $\tilde{Q}$  is the Ricci operator of M.  $\tau$  denotes scalar curvature of M and  $\tilde{l} = \tilde{R}(\cdot,\xi)\xi$ .

*Proof.* Let  $Y = Z = \xi$  in (2.9) and using (3.10), we can easily obtain (3.15). By using the well known formula

(3.17) 
$$\frac{1}{2}grad\tau = \sum_{i=1}^{3} \varepsilon_i(\nabla_{X_i}\tilde{Q})X_i$$

for any orthonormal frames  $X_i$ , i = 1, 2, 3, using (2.2) and (3.15), since  $\operatorname{tr} \tilde{h} = \operatorname{tr} \tilde{h} \tilde{\varphi} = 0$ , we have

$$\frac{1}{2}\operatorname{grad}\tau = \sum_{i=1}^{3} \varepsilon_{i}(\nabla_{X_{i}}Q)X_{i} = \sum_{i=1}^{3} \varepsilon_{i}(\nabla_{X_{i}}QX_{i} - Q\nabla_{X_{i}}X_{i})$$

$$= \sum_{i=1}^{3} \varepsilon_{i}\{\nabla_{X_{i}}[(-\tilde{\kappa} + \frac{\tau}{2})X_{i} + (3\tilde{\kappa} - \frac{\tau}{2})\eta(X_{i})\xi + \tilde{\mu}\tilde{h}X_{i} + \tilde{\nu}\tilde{\varphi}\tilde{h}X_{i}]$$

$$-[(-\tilde{\kappa} + \frac{\tau}{2})\nabla_{X_{i}}X_{i} + (3\tilde{\kappa} - \frac{\tau}{2})\eta(\nabla_{X_{i}}X_{i})\xi + \tilde{\mu}\tilde{h}\nabla_{X_{i}}X_{i} + \tilde{\nu}\tilde{\varphi}\tilde{h}\nabla_{X_{i}}X_{i}]\}$$

$$= \sum_{i=1}^{3} \varepsilon_{i}\{X_{i}(-\tilde{\kappa} + \frac{\tau}{2})X_{i} + X_{i}(3\tilde{\kappa} - \frac{\tau}{2})\eta(X_{i})\xi + X_{i}(\tilde{\mu})\tilde{h}X_{i} + X_{i}(\tilde{\nu})\tilde{\varphi}\tilde{h}X_{i}\}$$

$$+ \sum_{i=1}^{3} \varepsilon_{i}\{\tilde{\mu}(\tilde{\nabla}_{X_{i}}\tilde{h})X_{i} + \tilde{\nu}(\tilde{\nabla}_{X_{i}}\tilde{\varphi}\tilde{h})X_{i}\}$$

$$= -\operatorname{grad}\tilde{\kappa} + \frac{1}{2}\operatorname{grad}\tau + \tilde{h}\operatorname{grad}\tilde{\mu} + \tilde{\varphi}\tilde{h}\operatorname{grad}\tilde{\nu} + [3\xi(\tilde{\kappa}) - \frac{1}{2}\xi(\tau)]\xi$$

$$(3.18) + \sum_{i=1}^{3} \varepsilon_{i}\{\tilde{\mu}(\tilde{\nabla}_{X_{i}}\tilde{h})X_{i} + \tilde{\nu}(\tilde{\nabla}_{X_{i}}\tilde{\varphi}\tilde{h})X_{i}\}.$$

Thus, using (3.1), (3.2) and (3.14) we get

$$\sum_{i=1}^{3} \varepsilon_i(\tilde{\nabla}_{X_i}\tilde{h})X_i = 0,$$

and

$$\sum_{i=1}^{3} \varepsilon_{i} (\tilde{\nabla}_{X_{i}} \tilde{\varphi} \tilde{h}) X_{i} = 2(\tilde{\kappa} + \alpha^{2}) \xi.$$

Using these two equalities in (3.15), one has

$$\xi(\tilde{\kappa})\xi - \operatorname{grad}\tilde{\kappa} + \tilde{h}\operatorname{grad}\tilde{\mu} + \tilde{\varphi}\tilde{h}\operatorname{grad}\tilde{\nu} + \xi(2\tilde{\kappa} - \frac{1}{2}\tau)\xi + 2(\alpha^2 + \tilde{\kappa})\tilde{\nu}\xi = 0.$$

Since the vector field  $\xi(\tilde{\kappa})\xi - \operatorname{grad}\tilde{\kappa} + \tilde{h}\operatorname{grad}\tilde{\mu} + \tilde{\varphi}\tilde{h}\operatorname{grad}\tilde{\nu}$  is orthogonal to  $\xi$ , (3.16) follows.  $\square$ 

**Proposition 3.2.** Let  $(M^3, \tilde{\varphi}, \xi, \eta, \tilde{g})$  be an almost  $\alpha$ -para-Kenmotsu manifold. If M is  $\eta$ -Einstein, then  $\xi \in N(\tilde{\kappa})$  for some function  $\tilde{\kappa}$ .

*Proof.* By (2.7), choosing the  $\tilde{\varphi}$ -basis  $\{\xi, e, \tilde{\varphi}e\}$ , we get  $\tilde{Q}\xi = (a+b)\xi$  and  $\tau = \tilde{g}(\xi, \xi) + \tilde{g}(\tilde{Q}e, e) + \tilde{g}(\tilde{Q}\tilde{\varphi}e, \tilde{\varphi}e) = 3a+b$ . Let  $Z = \xi$  in (??) and using (2.7), we can easily obtain  $\tilde{R}(X,Y)\xi = \frac{a+b}{2}(\eta(Y)X - \eta(X)Y)$ , thus  $\xi \in N(\frac{a+b}{2})$ .  $\square$ 

**Corollary 3.1.** Let  $(M^3, \tilde{\varphi}, \xi, \eta, \tilde{g})$  be an almost  $\alpha$ -para-Kenmotsu manifold. If M is  $\xi \in N(\tilde{\kappa})$ , then M is  $\eta$ -Einstein.

*Proof.* By Lemma 3.3, we get  $\tilde{Q}X = (-\tilde{\kappa} + \frac{\tau}{2})X + (3\tilde{\kappa} - \frac{\tau}{2})\eta(X)\xi$ , it is simply to get that M is  $\eta$ -Einstein.  $\square$ 

If  $\tilde{h}=0$ , by (2.5), we get  $\tilde{R}(X,Y)\xi=-\alpha^2(\eta(Y)X-\eta(X)Y)$ , thus  $\xi\in N(-\alpha^2)$ , by Corollary 3.1, it follows that M is  $\eta$ -Einstein. Therefore, from now on, we will restrict our investigations mainly on the more meaningful case  $\tilde{h}\neq 0$ . I. K. Erken, P. Dacko and C. Murathan analyzed the different possibilities for the tensor field  $\tilde{h}$  in [9]. If  $\tilde{h}$  has

(3.19) 
$$\begin{pmatrix} \tilde{\lambda} & 0 & 0 \\ 0 & -\tilde{\lambda} & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

with respect to a local orthonormal  $\tilde{\varphi}$ -basis  $\{X, \tilde{\varphi}X, \xi\}$ , the authors called the operator  $\tilde{h}$  is of  $\mathfrak{h}_1$  type.

If  $\tilde{h}$  has

$$\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)$$

with respect to a pseudo orthonormal basis  $\{e_1, e_2, e_3\}$ , the authors called the operator  $\tilde{h}$  is of  $\mathfrak{h}_2$  type.

If  $\tilde{h}$  has

(3.20) 
$$\begin{pmatrix} 0 & \tilde{\lambda} & 0 \\ -\tilde{\lambda} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

with respect to a local orthonormal  $\tilde{\varphi}$ -basis  $\{X, \tilde{\varphi}X, \xi\}$ , in this case. the authors called the operator  $\tilde{h}$  is of  $\mathfrak{h}_3$  type.

It follows that  $\tilde{h}^2X=\tilde{\lambda}^2X$  if  $\tilde{h}$  is of  $\mathfrak{h}_1$  type and  $\tilde{h}^2X=-\tilde{\lambda}^2X$  if  $\tilde{h}$  is of  $\mathfrak{h}_3$  type, but  $\tilde{h}^2X=0$  if  $\tilde{h}$  is of  $\mathfrak{h}_2$  type though  $\tilde{h}\neq 0$ , and there are examples of 3-dimensional almost  $\alpha$ -para-Kenmotsu manifold of this case [9]. In this paper, we manly discuss the case  $\tilde{h}^2\neq 0$ , that is,  $\tilde{\kappa}+\alpha^2\neq 0$ .

**Lemma 3.4.** Let  $(M^3, \tilde{\varphi}, \xi, \eta, \tilde{g})$  be an almost  $\alpha$ -para-Kenmotsu  $(\tilde{\kappa}, \tilde{\mu}, \tilde{\nu} = const.)$ space with  $\tilde{h}$  is of  $\mathfrak{h}_1$  type. Then, for any point  $p \in M$ , there exist a neighborhood U of p and a  $\tilde{\varphi}$ -basis  $\{X, \tilde{\varphi}X, \xi\}$  defined on U, such that

(3.21) 
$$\tilde{h}X = \tilde{\lambda}X, \quad \tilde{h}\tilde{\varphi}X = -\tilde{\lambda}\tilde{\varphi}X, \quad \tilde{h}\xi = 0, \quad \tilde{\lambda} = \sqrt{\tilde{\kappa} + \alpha^2}$$

at any point  $q \in U$ . Moreover, setting  $A = X(\tilde{\lambda})$  and  $B = \tilde{\varphi}X(\tilde{\lambda})$  on U the following formulas are true:

(3.22) 
$$\tilde{\nabla}_X \xi = \alpha X + \tilde{\lambda} \tilde{\varphi} X, \quad \tilde{\nabla}_{\tilde{\varphi} X} \xi = \alpha \tilde{\varphi} X - \tilde{\lambda} X,$$

(3.23) 
$$\tilde{\nabla}_{\xi}X = -\frac{\tilde{\mu}}{2}\tilde{\varphi}X, \quad \tilde{\nabla}_{\xi}\tilde{\varphi}X = -\frac{\tilde{\mu}}{2}X,$$

(3.24) 
$$\tilde{\nabla}_X X = \alpha \xi - \frac{B}{2\tilde{\lambda}} \tilde{\varphi} X, \quad \tilde{\nabla}_{\tilde{\varphi} X} \tilde{\varphi} X = -\alpha \xi - \frac{A}{2\tilde{\lambda}} X,$$

(3.25) 
$$\tilde{\nabla}_{\tilde{\varphi}X}X = -\tilde{\lambda}\xi - \frac{A}{2\tilde{\lambda}}\tilde{\varphi}X, \ \tilde{\nabla}_X\tilde{\varphi}X = -\tilde{\lambda}\xi - \frac{B}{2\tilde{\lambda}}X$$

$$(3.26) \qquad [\xi, X] = -\alpha X - (\tilde{\lambda} + \frac{\tilde{\mu}}{2})\tilde{\varphi}X, \ [\xi, \tilde{\varphi}X] = (\tilde{\lambda} - \frac{\tilde{\mu}}{2})X - \alpha \tilde{\varphi}X,$$

$$[X, \tilde{\varphi}X] = -\frac{B}{2\tilde{\lambda}}X + \frac{A}{2\tilde{\lambda}}\tilde{\varphi}X.$$

(3.28) 
$$\tilde{h} \operatorname{grad} \tilde{\mu} = \operatorname{grad} \tilde{\kappa} - \xi(\tilde{\kappa})\xi,$$

*Proof.* By [9] we know that if  $\tilde{h}$  is of  $\mathfrak{h}_1$  type with respect to a  $\tilde{\varphi}$ -basis  $\{X, \tilde{\varphi}X, \xi\}$  such that  $\tilde{h}X = \tilde{\lambda}X$ ,  $\tilde{h}\tilde{\varphi}X = -\tilde{\lambda}\tilde{\varphi}X$ , and by (3.11), we get  $\tilde{\lambda} = \sqrt{\tilde{\kappa} + \alpha^2}$ . Similar as the proof of [16], we get Lemma 3.4.  $\square$ 

Similarly as Lemma 3.4, we get the following Lemma.

**Lemma 3.5.** Let  $(M^3, \tilde{\varphi}, \xi, \eta, \tilde{g})$  be an almost  $\alpha$ -para-Kenmotsu  $(\tilde{\kappa}, \tilde{\mu}, \tilde{\nu} = const.)$ -space with  $\tilde{h}$  is of  $\mathfrak{h}_3$  type. Then, for any point  $p \in M$ , there exist a neighborhood U of p and a  $\tilde{\varphi}$ -basis  $\{X, \tilde{\varphi}X, \xi\}$  defined on U, such that

(3.29) 
$$\tilde{h}X = \tilde{\lambda}\tilde{\varphi}X, \quad \tilde{h}\tilde{\varphi}X = -\tilde{\lambda}X, \quad \tilde{h}\xi = 0, \quad \tilde{\lambda} = \sqrt{-(\tilde{\kappa} + \alpha^2)}$$

at any point  $q \in U$ . Moreover, setting  $A = X(\tilde{\lambda})$  and  $B = \tilde{\varphi}X(\tilde{\lambda})$  on U the following formulas are true:

(3.30) 
$$\tilde{\nabla}_X \xi = (\alpha + \tilde{\lambda})X, \quad \tilde{\nabla}_{\tilde{\varphi}X} \xi = (\alpha - \tilde{\lambda})\tilde{\varphi}X,$$

(3.31) 
$$\tilde{\nabla}_{\xi}X = -\frac{\tilde{\mu}}{2}\tilde{\varphi}X, \quad \tilde{\nabla}_{\xi}\tilde{\varphi}X = -\frac{\tilde{\mu}}{2}X,$$

$$\tilde{\nabla}_X X = (\alpha + \tilde{\lambda})\xi - \frac{B}{2\tilde{\lambda}}\tilde{\varphi}X, \quad \tilde{\nabla}_{\tilde{\varphi}X}\tilde{\varphi}X = (\tilde{\lambda} - \alpha)\xi - \frac{A}{2\tilde{\lambda}}X,$$

(3.33) 
$$\tilde{\nabla}_{\tilde{\varphi}X}X = -\frac{A}{2\tilde{\lambda}}\tilde{\varphi}X, \ \tilde{\nabla}_X\tilde{\varphi}X = -\frac{B}{2\tilde{\lambda}}X$$

$$[\xi,X] = -(\alpha + \tilde{\lambda})X - \frac{\tilde{\mu}}{2}\tilde{\varphi}X, \ [\xi,\tilde{\varphi}X] = -\frac{\tilde{\mu}}{2}X + (\tilde{\lambda} - \alpha)\tilde{\varphi}X,$$

$$[X, \tilde{\varphi}X] = -\frac{B}{2\tilde{\lambda}}X + \frac{A}{2\tilde{\lambda}}\tilde{\varphi}X.$$

$$\tilde{h} \operatorname{grad} \tilde{\mu} = \operatorname{grad} \tilde{\kappa} - \xi(\tilde{\kappa})\xi.$$

# 4. Almost $\alpha$ -para-Kenmotsu $(\tilde{\kappa}, \tilde{\mu}, \tilde{\nu} = const.)$ -space with $d\tilde{\kappa} \wedge \eta = 0$

Locally, an almost  $\alpha$ -para-Kenmotsu ( $\tilde{\kappa}, \tilde{\mu}, \tilde{\nu} = const.$ )-space with  $\tilde{h}$  is of  $\mathfrak{h}_1$  type and  $d\tilde{\kappa} \wedge \eta = 0$  can be described as follows.

**Theorem 4.1.** Let  $(M^3, \tilde{\varphi}, \xi, \eta, \tilde{g})$  be an almost  $\alpha$ -para-Kenmotsu  $(\tilde{\kappa}, \tilde{\mu}, \tilde{\nu} = const.)$ space with  $\tilde{h}$  is of  $\mathfrak{h}_1$  type and  $d\tilde{\kappa} \wedge \eta = 0$ . Then, in a neighbourhood U of every
point  $p \in M$ , there exist coordinates x, y, z and an orthonormal frame  $\{X, \tilde{\varphi}X, \xi\}$  of
eigenvectors of  $\tilde{h}$  with  $\tilde{h}X = \tilde{\lambda}X$ , such that on U  $\tilde{\kappa}, \tilde{\mu}$  only depends on z and

$$X = \frac{\partial}{\partial x}, \ \tilde{\varphi}X = \frac{\partial}{\partial y}, \ \xi = a\frac{\partial}{\partial x} + b\frac{\partial}{\partial y} + \frac{\partial}{\partial z},$$

and the tensor fields  $\tilde{\varphi}, \tilde{g}, \tilde{h}$  are given by the relations:

$$\tilde{g} = \begin{pmatrix} -1 & 0 & a \\ 0 & 1 & -b \\ a & -b & 1 - a^2 + b^2 \end{pmatrix}, \ \tilde{\varphi} = \begin{pmatrix} 0 & 1 & -b \\ 1 & 0 & -a \\ 0 & 0 & 0 \end{pmatrix}, \ \tilde{h} = \begin{pmatrix} \tilde{\lambda} & 0 & -a\tilde{\lambda} \\ 0 & -\tilde{\lambda} & b\tilde{\lambda} \\ 0 & 0 & 0 \end{pmatrix}.$$

where  $a = \alpha x + (\frac{\tilde{\mu}}{2} - \tilde{\lambda})y + f(z)$ ,  $b = (\frac{\tilde{\mu}}{2} + \tilde{\lambda})x - \alpha y - g(z)$ , f(z), g(z) are arbitrary smooth functions of z,  $\alpha$  is a constant value.

*Proof.* The condition  $d\tilde{\kappa} \wedge \eta = 0$  and (3.28) means that  $d\tilde{\mu} \wedge \eta = 0$ , since  $\tilde{h} \neq 0$  and  $\ker \tilde{h} = \operatorname{Span}\{\xi\}$ . Moreover, we have  $E(\tilde{\lambda}) = 0$  for all  $E \in \mathcal{D}$ . By lemma 3.4, we get that for any point  $p \in M$ , there exist a neighborhood U of p and a  $\tilde{\varphi}$ -basis  $\{X, \tilde{\varphi}X, \xi\}$  defined on U, such that  $\tilde{h}X = \tilde{\lambda}X$ ,  $\tilde{h}\tilde{\varphi}X = -\tilde{\lambda}\tilde{\varphi}X$ ,  $\tilde{\lambda} = \sqrt{\tilde{\kappa} + \alpha^2}$ .

Hence  $A = X(\tilde{\lambda}) = B = \tilde{\varphi}X(\tilde{\lambda}) = 0$ , that is to say, by Lemma 3.4, we get that  $[X, \tilde{\varphi}X] = 0$ . So, fixed the point  $p \in M$ , there exist coordinates (x, y, t) on an open neighbourhood V of p such that

$$X = \frac{\partial}{\partial x}, \ \tilde{\varphi}X = \frac{\partial}{\partial y}, \ \xi = a\frac{\partial}{\partial x} + b\frac{\partial}{\partial y} + c\frac{\partial}{\partial t},$$

where a,b and c are smooth functions on V with  $c \neq 0$  everywhere. Since we get  $[X,\xi] \in \mathcal{D}$  and  $[X,\xi] \in \mathcal{D}$  for any  $X \in \mathcal{D}$  by  $d\eta = 0$ , we obtain that  $\frac{\partial c}{\partial x} = 0$  and  $\frac{\partial c}{\partial y} = 0$ . Therefore, if we consider on V the linearly independent vector fields  $X, \tilde{\varphi}X$  and  $Z = c\frac{\partial}{\partial t}$ , we have

$$[X,\tilde{\varphi}X]=0,\ [X,Z]=0,\ [\tilde{\varphi}X,Z]=0.$$

This implies that there exists a coordinate system  $\{U,(x,y,z)\}$  around p in V such that  $X=\frac{\partial}{\partial x},\ \tilde{\varphi}X=\frac{\partial}{\partial y}$  and  $Z=\frac{\partial}{\partial z}.$  Thus, on the open set U we have  $\xi=a\frac{\partial}{\partial x}+b\frac{\partial}{\partial y}+\frac{\partial}{\partial z}.$  From (3.13) and (3.21), we get that  $\xi(\tilde{\lambda})=-(2\alpha+\tilde{\nu})\tilde{\lambda},$  and since  $A=X(\tilde{\lambda})=B=\tilde{\varphi}X(\tilde{\lambda})=0$ , it follows that  $\tilde{\lambda}=ce^{-(2\alpha+\tilde{\nu})z},$  and  $\tilde{\kappa}=\tilde{\lambda}^2-\alpha^2=c^2e^{-2(2\alpha+\tilde{\nu})z}-\alpha^2$  for some real constant c>0. Since  $d\tilde{\mu}\wedge\eta=0$ , we get that  $\tilde{\mu}=\tilde{\mu}(z).$  Next, we need to compute the functions a,b. To this end,

$$[\xi,X] = -\frac{\partial a}{\partial x}\frac{\partial}{\partial x} - \frac{\partial b}{\partial x}\frac{\partial}{\partial y}, \quad [\xi,\tilde{\varphi}X] = -\frac{\partial a}{\partial y}\frac{\partial}{\partial x} - \frac{\partial b}{\partial y}\frac{\partial}{\partial y}$$

And by Lemma 3.4, we obtain

$$[\xi,X] = -\alpha \frac{\partial}{\partial x} - (\tilde{\lambda} + \frac{\tilde{\mu}}{2}) \frac{\partial}{\partial y}, \quad [\xi,\tilde{\varphi}X] = (\tilde{\lambda} - \frac{\tilde{\mu}}{2}) \frac{\partial}{\partial x} - \alpha \frac{\partial}{\partial y},$$

The comparison of these relations with the previous leads to

$$\frac{\partial a}{\partial x} = \alpha, \quad \frac{\partial a}{\partial y} = \frac{\tilde{\mu}}{2} - \tilde{\lambda}, \quad \frac{\partial b}{\partial x} = \tilde{\lambda} + \frac{\tilde{\mu}}{2}, \quad \frac{\partial b}{\partial y} = \alpha.$$

By integration of these system, considering  $\tilde{\lambda}, \tilde{\mu}$  functions depending only on z, we get  $a = \alpha x + (\frac{\tilde{\mu}}{2} - \tilde{\lambda})y + f(z), \ b = (\frac{\tilde{\mu}}{2} + \tilde{\lambda})x - \alpha y - g(z), f(z), g(z)$  are arbitrary smooth functions of z.

We will continue calculate the tensor fields  $\eta, \tilde{\varphi}, \tilde{g}$  and  $\tilde{h}$  with respect to the basis  $\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}$ . The expression of the 1-form  $\eta = dz$  immediately follows from  $\eta(\xi) = 1, \eta(X) = \eta(\tilde{\varphi}X) = 0$ . For the components of  $\tilde{g}_{ij}$  of the pseudo-Riemannian metric, we have

$$\tilde{g}_{11} = \tilde{g}(\frac{\partial}{\partial x}, \frac{\partial}{\partial x}) = \tilde{g}(X, X) = -1, \quad \tilde{g}_{22} = \tilde{g}(\frac{\partial}{\partial y}, \frac{\partial}{\partial y}) = \tilde{g}(\tilde{\varphi}X, \tilde{\varphi}X) = 1,$$

$$\tilde{g}_{33} = \tilde{g}(\frac{\partial}{\partial z}, \frac{\partial}{\partial z}) = \tilde{g}(\xi - a\frac{\partial}{\partial x} - b\frac{\partial}{\partial y}, \xi - a\frac{\partial}{\partial x} - b\frac{\partial}{\partial y}) = 1 - a^2 + b^2.$$

$$\tilde{g}_{12} = \tilde{g}_{21} = \tilde{g}(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}) = \tilde{g}(X, \tilde{\varphi}X) = 0, \quad \tilde{g}_{13} = \tilde{g}(\frac{\partial}{\partial x}, \xi - a\frac{\partial}{\partial x} - b\frac{\partial}{\partial y}) = a,$$

$$\tilde{g}_{23} = \tilde{g}_{32} = \tilde{g}(\frac{\partial}{\partial y}, \xi - a\frac{\partial}{\partial x} - b\frac{\partial}{\partial y}) = -b,$$

thus the matrix form of  $\tilde{g}$  with respect to the basis  $\frac{\partial}{\partial x}$ ,  $\frac{\partial}{\partial y}$ ,  $\frac{\partial}{\partial z}$  is given by

$$\tilde{g} = \begin{pmatrix} -1 & 0 & a \\ 0 & 1 & -b \\ a & -b & 1 - a^2 + b^2 \end{pmatrix}.$$

The components of the tensor field  $\tilde{\varphi}$  are followed by:

$$\tilde{\varphi}(\frac{\partial}{\partial x}) = \frac{\partial}{\partial y}, \quad \tilde{\varphi}(\frac{\partial}{\partial y}) = \tilde{\varphi}^2(\frac{\partial}{\partial x}) = \frac{\partial}{\partial x}, \quad \tilde{\varphi}(\frac{\partial}{\partial z}) = \tilde{\varphi}(\xi - a\frac{\partial}{\partial x} - b\frac{\partial}{\partial y}) = -a\frac{\partial}{\partial y} - b\frac{\partial}{\partial y},$$

thus the matrix form of  $\tilde{\varphi}$  with respect to the basis  $\frac{\partial}{\partial x}$ ,  $\frac{\partial}{\partial y}$ ,  $\frac{\partial}{\partial z}$  is given by

$$\left(\begin{array}{ccc} 0 & 1 & -b \\ 1 & 0 & -a \\ 0 & 0 & 0 \end{array}\right).$$

The components of the tensor field  $\tilde{h}$  with respect to the basis  $\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}$  are given as follows:

$$\tilde{h}(\frac{\partial}{\partial x}) = \tilde{h}(X) = \tilde{\lambda}X = \tilde{\lambda}\frac{\partial}{\partial x}, \ \tilde{h}(\frac{\partial}{\partial y}) = \tilde{h}\tilde{\varphi}X = -\tilde{\lambda}\tilde{\varphi}X = -\tilde{\lambda}\frac{\partial}{\partial y},$$

$$\tilde{h}(\frac{\partial}{\partial z}) = \tilde{h}(\xi - a\frac{\partial}{\partial x} - b\frac{\partial}{\partial y}) = -a\tilde{\lambda}\frac{\partial}{\partial x} + b\tilde{\lambda}\frac{\partial}{\partial y}.$$

Thus the matrix form of  $\tilde{h}$  is given by

$$\left(\begin{array}{ccc} \tilde{\lambda} & 0 & a\tilde{\lambda} \\ 0 & -\tilde{\lambda} & b\tilde{\lambda} \\ 0 & 0 & 0 \end{array}\right).$$

Now we consider the case of  $\tilde{h}$  is of  $\mathfrak{h}_3$  type.

**Theorem 4.2.** Let  $(M^3, \tilde{\varphi}, \xi, \eta, \tilde{g})$  be an almost  $\alpha$ -para-Kenmotsu  $(\tilde{\kappa}, \tilde{\mu}, \tilde{\nu} = const.)$ -space with  $\tilde{h}$  is of  $\mathfrak{h}_3$  type and  $d\tilde{\kappa} \wedge \eta = 0$ . Then, in a neighbourhood U of every point  $p \in M$ , there exist coordinates x, y, z and an orthonormal frame  $\{X, \tilde{\varphi}X, \xi\}$  with  $\tilde{h}X = \tilde{\lambda}\tilde{\varphi}X, \tilde{h}\tilde{\varphi}X = -\tilde{\lambda}X$ , such that on  $U, \tilde{\kappa}, \tilde{\mu}$  only depends on z and

$$X = \frac{\partial}{\partial x}, \ \tilde{\varphi}X = \frac{\partial}{\partial y}, \ \xi = a\frac{\partial}{\partial x} + b\frac{\partial}{\partial y} + \frac{\partial}{\partial z},$$

and the tensor fields  $\tilde{\varphi}, \tilde{g}, \tilde{h}$  are given by the relations:

$$\tilde{g} = \left( \begin{array}{ccc} -1 & 0 & a \\ 0 & 1 & -b \\ a & -b & 1 - a^2 + b^2 \end{array} \right), \ \ \tilde{\varphi} = \left( \begin{array}{ccc} 0 & 1 & -b \\ 1 & 0 & -a \\ 0 & 0 & 0 \end{array} \right), \ \ \tilde{h} = \left( \begin{array}{ccc} 0 & -\tilde{\lambda} & b\tilde{\lambda} \\ \tilde{\lambda} & 0 & -a\tilde{\lambda} \\ 0 & 0 & 0 \end{array} \right).$$

where  $a = (\alpha + \tilde{\lambda})x + \frac{\tilde{\mu}}{2}y + f(z)$ ,  $b = \frac{\tilde{\mu}}{2}x + (\alpha - \tilde{\lambda})y + g(z)$ , f(z), g(z) are arbitrary smooth functions of z.

Proof. The condition  $d\tilde{\kappa} \wedge \eta = 0$  and (3.28) means that  $d\tilde{\mu} \wedge \eta = 0$ , since  $\tilde{h} \neq 0$  and  $\ker \tilde{h} = \operatorname{Span}\{\xi\}$ . Moreover, we have  $E(\tilde{\lambda}) = 0$  for all  $E \in \mathcal{D}$ . By lemma 3.5, we get that for any point  $p \in M$ , there exist a neighborhood U of p and a  $\tilde{\varphi}$ -basis  $\{X, \tilde{\varphi}X, \xi\}$  defined on U, such that  $\tilde{h}X = \tilde{\lambda}\tilde{\varphi}X$ ,  $\tilde{h}\tilde{\varphi}X = -\tilde{\lambda}X$ ,  $\tilde{\lambda} = \sqrt{-(\tilde{\kappa} + \alpha^2)}$ . Hence  $A = X(\tilde{\lambda}) = B = \tilde{\varphi}X(\tilde{\lambda}) = 0$ , that is to say, by Lemma 3.5, we get that  $[X, \tilde{\varphi}X] = 0$ . So, fixed the point  $p \in M$ , there exist coordinates (x, y, t) on an open neighbourhood V of p such that

$$X = \frac{\partial}{\partial x}, \ \tilde{\varphi}X = \frac{\partial}{\partial y}, \ \xi = a\frac{\partial}{\partial x} + b\frac{\partial}{\partial y} + c\frac{\partial}{\partial t},$$

where a,b and c are smooth functions on V with  $c \neq 0$  everywhere. Since we get  $[X,\xi] \in \mathcal{D}$  and  $[X,\xi] \in \mathcal{D}$  for any  $X \in \mathcal{D}$  by  $d\eta = 0$ , we obtain that  $\frac{\partial c}{\partial x} = 0$  and  $\frac{\partial c}{\partial y} = 0$ . Therefore, if we consider on V the linearly independent vector field  $X, \tilde{\varphi}X$  and  $Z = c\frac{\partial}{\partial t}$ , we have

$$[X, \tilde{\varphi}X] = 0, \ [X, Z] = 0, \ [\tilde{\varphi}X, Z] = 0.$$

This implies that there exists a coordinate system  $\{U,(x,y,z)\}$  around p in V such that  $X=\frac{\partial}{\partial x},\ \tilde{\varphi}X=\frac{\partial}{\partial y}$  and  $Z=\frac{\partial}{\partial z}.$  Thus, on the open set U we have  $\xi=a\frac{\partial}{\partial x}+b\frac{\partial}{\partial y}+\frac{\partial}{\partial z}.$  From (3.13) and (3.21), we get that  $\xi(\tilde{\lambda})=-(2\alpha+\tilde{\nu})\tilde{\lambda},$  and since  $A=X(\tilde{\lambda})=B=\tilde{\varphi}X(\tilde{\lambda})=0$ , it follows that  $\tilde{\lambda}=ce^{-(2\alpha+\tilde{\nu})z},$  and  $\tilde{\kappa}=-\tilde{\lambda}^2-\alpha^2=-c^2e^{-2(2\alpha+\tilde{\nu})z}-\alpha^2$  for some real constant c>0. Since  $d\tilde{\mu}\wedge\eta=0$ , we get that  $\tilde{\mu}=\tilde{\mu}(z).$  Next, we need to compute the functions a,b. To this end,

$$[X,\xi] = \frac{\partial a}{\partial x} \frac{\partial}{\partial x} + \frac{\partial b}{\partial x} \frac{\partial}{\partial y}, \quad [\tilde{\varphi}X,\xi] = \frac{\partial a}{\partial y} \frac{\partial}{\partial x} + \frac{\partial b}{\partial y} \frac{\partial}{\partial y}$$

And by Lemma 3.5, we obtain

$$[X,\xi] = (\alpha + \tilde{\lambda})\frac{\partial}{\partial x} + \frac{\tilde{\mu}}{2}\frac{\partial}{\partial y}, \quad [\tilde{\varphi}X,\xi] = \frac{\tilde{\mu}}{2}\frac{\partial}{\partial x} + (\alpha - \tilde{\lambda})\frac{\partial}{\partial y}.$$

The comparison of these relations with the previous leads to

(4.2) 
$$\frac{\partial a}{\partial x} = \alpha + \tilde{\lambda}, \quad \frac{\partial a}{\partial y} = \frac{\tilde{\mu}}{2}, \quad \frac{\partial b}{\partial x} = \frac{\tilde{\mu}}{2}, \quad \frac{\partial b}{\partial y} = \alpha - \tilde{\lambda}.$$

By integration of these system, considering  $\tilde{\lambda}$ ,  $\tilde{\mu}$  functions depending only on z, we get  $a = (\alpha + \tilde{\lambda})x + \frac{\tilde{\mu}}{2}y + f(z)$ ,  $b = \frac{\tilde{\mu}}{2}x - (\alpha - \tilde{\lambda})y - g(z)$ , f(z), g(z) are arbitrary smooth functions of z.

We will continue calculate the tensor fields  $\eta, \tilde{\varphi}, \tilde{g}$  and  $\tilde{h}$  with respect to the basis  $\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}$ . The expression of the 1-form  $\eta = dz$  immediately follows from  $\eta(\xi) = 1, \eta(X) = \eta(\tilde{\varphi}X) = 0$ . For the components of  $\tilde{g}_{ij}$  of the pseudo-Riemannian metric and the components of the tensor field  $\tilde{\varphi}$ , the proof is the same with that of Theorem 4.1, we omit here. The components of the tensor field  $\tilde{h}$  with respect to the basis  $\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}$  are given as follows:

$$\tilde{h}(\frac{\partial}{\partial x}) = \tilde{h}(X) = \tilde{\lambda} \tilde{\varphi} X = \tilde{\lambda} \frac{\partial}{\partial y}, \ \tilde{h}(\frac{\partial}{\partial y}) = \tilde{h} \tilde{\varphi} X = -\tilde{\lambda} X = -\tilde{\lambda} \frac{\partial}{\partial x},$$

$$\tilde{h}(\frac{\partial}{\partial z}) = \tilde{h}(\xi - a\frac{\partial}{\partial x} - b\frac{\partial}{\partial y}) = b\tilde{\lambda}\frac{\partial}{\partial x} - a\tilde{\lambda}\frac{\partial}{\partial y}.$$

Thus the matrix form of  $\tilde{h}$  is given by

$$\left(\begin{array}{ccc} 0 & \tilde{\lambda} & b\tilde{\lambda} \\ -\tilde{\lambda} & 0 & -a\tilde{\lambda} \\ 0 & 0 & 0 \end{array}\right).$$

Theorem 4.1 and Theorem 4.2 allow us to obtain a complete local classification of 3-dimensional almost  $\alpha$ -para-Kenmotsu ( $\tilde{\kappa}, \tilde{\mu}, \tilde{\nu} = const.$ )-spaces with  $\tilde{h}$  is of  $\mathfrak{h}_1$  type or  $\mathfrak{h}_3$  type and  $d\tilde{\kappa} \wedge \eta = 0$ . In fact, we can construct in  $\mathbb{R}^3$  almost  $\alpha$ -para-Kenmotsu ( $\tilde{\kappa}, \tilde{\mu}, \tilde{\nu} = const.$ )-space for each of them as follows.

Let M be the open submanifold of  $\mathbb{R}^3$  defined by  $M:=\{(x,y,z)\in\mathbb{R}^3\}$  and

$$\tilde{\lambda} = ce^{-(2\alpha + \tilde{\nu})z}, \tilde{\mu}, f, g: M \to \mathbb{R}$$

be four smooth functions of z, where  $\alpha, c, \tilde{\nu}$  are constant functions. Let us denote again by x, y, z the coordinates induced on M by the standard ones on  $\mathbb{R}^3$ . We consider on M

$$\xi = a \frac{\partial}{\partial x} + b \frac{\partial}{\partial y} + \frac{\partial}{\partial z}, \quad \eta = dz,$$

the pseudo-Riemannian metric  $\tilde{g}$ , the tensor fields  $\tilde{\varphi}$  and  $\tilde{h}$  with respect to the basis  $\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}$  are given by the relations:

$$\tilde{g} = \begin{pmatrix} -1 & 0 & a \\ 0 & 1 & -b \\ a & -b & 1 - a^2 + b^2 \end{pmatrix}, \ \tilde{\varphi} = \begin{pmatrix} 0 & 1 & -b \\ 1 & 0 & -a \\ 0 & 0 & 0 \end{pmatrix}, \ \tilde{h} = \begin{pmatrix} \tilde{\lambda} & 0 & -a\tilde{\lambda} \\ 0 & -\tilde{\lambda} & b\tilde{\lambda} \\ 0 & 0 & 0 \end{pmatrix}.$$

where  $a=\alpha x+(\frac{\tilde{\mu}}{2}-\tilde{\lambda})y+f(z),\ b=(\frac{\tilde{\mu}}{2}+\tilde{\lambda})x-\alpha y+g(z),\alpha$  is a constant value. It is easy to check that  $(M,\tilde{\varphi},\xi,\eta,\tilde{g})$  ia an almost paracontact metric manifold. Since  $d\eta=0$  and  $\Phi=-\frac{1}{2}dx\wedge dy+\frac{b}{2}dx\wedge dz-\frac{a}{2}dy\wedge dz$ , thus we get  $d\Phi=-\alpha dx\wedge dy\wedge dz=2\alpha\eta\wedge\Phi$ , that is to say,  $(M,\tilde{\varphi},\xi,\eta,\tilde{g})$  ia an almost  $\alpha$ -para-Kenmotsu manifold and that  $\{X=\frac{\partial}{\partial x},\tilde{\varphi}X=\frac{\partial}{\partial y},\xi\}$  makes up a global  $\tilde{\varphi}$ -basis on M. Moreover, by direct computation, we get

$$[X, \tilde{\varphi}X] = 0, \quad [X, \xi] = \alpha X + (\tilde{\lambda} + \frac{\tilde{\mu}}{2})\tilde{\varphi}X, \quad [\tilde{\varphi}X, \xi] = (\frac{\tilde{\mu}}{2} - \tilde{\lambda})X + \alpha \tilde{\varphi}X.$$

and

$$\tilde{h}(X) = \tilde{h}(\frac{\partial}{\partial x}) = \tilde{\lambda}\frac{\partial}{\partial x} = \tilde{\lambda}X, \ \tilde{h}\tilde{\varphi}X = \tilde{h}(\frac{\partial}{\partial y}) = -\tilde{\lambda}\frac{\partial}{\partial y} = -\tilde{\lambda}\tilde{\varphi}X, \ \tilde{h}\xi = 0.$$

In this case  $\tilde{h}$  is of  $\mathfrak{h}_1$  type with respect to the  $\tilde{\varphi}$ -basis  $\{X, \tilde{\varphi}X, \xi\}$ . By the well-known formula

$$2\tilde{g}(\tilde{\nabla}_Z W, T)$$

$$= Z\tilde{g}(W, T) + W\tilde{g}(T, Z) - T\tilde{g}(Z, W) - \tilde{g}(Z, [W, T]) + \tilde{g}(W, [T, Z]) + \tilde{g}(T, [Z, W])$$

and by (2.3), we obtain the following identities

$$\begin{split} \tilde{\nabla}_X \xi &= \alpha X + \tilde{\lambda} \tilde{\varphi} X, \quad \tilde{\nabla}_{\tilde{\varphi} X} \xi = \alpha \tilde{\varphi} X - \tilde{\lambda} X, \quad \tilde{\nabla}_{\xi} X = -\frac{\tilde{\mu}}{2} \tilde{\varphi} X, \quad \tilde{\nabla}_{\xi} \tilde{\varphi} X = -\frac{\tilde{\mu}}{2} X, \\ \tilde{\nabla}_X X &= \alpha \xi, \quad \tilde{\nabla}_{\tilde{\varphi} X} \tilde{\varphi} X = -\alpha \xi, \quad \tilde{\nabla}_{\tilde{\varphi} X} X = -\tilde{\lambda} \xi, \quad \tilde{\nabla}_X \tilde{\varphi} X = -\tilde{\lambda} \xi. \end{split}$$

By direct calculation we obtain

$$\tilde{R}(X,\xi)\xi = (\tilde{\lambda}^2 - \alpha^2)X + \tilde{\mu}\tilde{h}X + \tilde{\nu}\tilde{\varphi}\tilde{h}X,$$

$$\tilde{R}(\tilde{\varphi}X,\xi)\xi = (\tilde{\lambda}^2 - \alpha^2)\tilde{\varphi}X + \tilde{\mu}\tilde{h}\tilde{\varphi}X + \tilde{\nu}\tilde{\varphi}\tilde{h}\tilde{\varphi}X,$$

$$\tilde{R}(X, \tilde{\varphi}X)\xi = 0.$$

Therefore, for any Z, W on M, it holds

$$\tilde{R}(Z,W)\xi = (\tilde{\kappa}I + \tilde{\mu}\tilde{h} + \tilde{\nu}\tilde{\varphi}\tilde{h})(\eta(W)Z - \eta(Z)W),$$

and since  $\tilde{\kappa} = \tilde{\lambda}^2 - \alpha^2 = c^2 e^{-2(2\alpha + \tilde{\nu})z} - \alpha^2$ , it satisfies  $d\tilde{\kappa} \wedge \eta = 0$ . In this way, we construct an almost  $\alpha$ -para-Kenmotsu  $(\tilde{\kappa}, \tilde{\mu}, \tilde{\nu} = const.)$ -space with  $\tilde{h}$  is of  $\mathfrak{h}_1$  type and  $d\tilde{\kappa} \wedge \eta = 0$ .

If we consider on M

$$\xi = a \frac{\partial}{\partial x} + b \frac{\partial}{\partial y} + \frac{\partial}{\partial z}, \quad \eta = dz,$$

the pseudo-Riemannian metric  $\tilde{g}$ , the tensor fields  $\tilde{\varphi}$  and  $\tilde{h}$  with respect to the basis  $\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}$  are given by the relations:

$$\tilde{g} = \left( \begin{array}{ccc} -1 & 0 & a \\ 0 & 1 & -b \\ a & -b & 1 - a^2 + b^2 \end{array} \right), \ \tilde{\varphi} = \left( \begin{array}{ccc} 0 & 1 & -b \\ 1 & 0 & -a \\ 0 & 0 & 0 \end{array} \right), \ \tilde{h} = \left( \begin{array}{ccc} \tilde{\lambda} & 0 & -a\tilde{\lambda} \\ 0 & -\tilde{\lambda} & b\tilde{\lambda} \\ 0 & 0 & 0 \end{array} \right).$$

where  $a=(\alpha+\tilde{\lambda})x+\frac{\tilde{\mu}}{2}y+f(z),\ b=\frac{\tilde{\mu}}{2}x+(\alpha-\tilde{\lambda})y+g(z),\alpha$  is a constant value. It is also easy to check that  $(M,\tilde{\varphi},\xi,\eta,\tilde{g})$  is an almost  $\alpha$ -para-Kenmotsu manifold and that  $\{X=\frac{\partial}{\partial x},\tilde{\varphi}X=\frac{\partial}{\partial y},\xi\}$  makes up a global  $\tilde{\varphi}$ -basis on M. Moreover, by direct calculation, we get

$$[X, \tilde{\varphi}X] = 0, \quad [X, \xi] = (\alpha + \tilde{\lambda})X + \frac{\tilde{\mu}}{2}\tilde{\varphi}X, \quad [\tilde{\varphi}X, \xi] = \frac{\tilde{\mu}}{2}X + (\alpha - \tilde{\lambda})\tilde{\varphi}X.$$

and

$$\tilde{h}(X) = \tilde{h}(\frac{\partial}{\partial x}) = \tilde{\lambda}\frac{\partial}{\partial y} = \tilde{\lambda}\tilde{\varphi}X, \ \tilde{h}\tilde{\varphi}X = \tilde{h}(\frac{\partial}{\partial y}) = -\tilde{\lambda}\frac{\partial}{\partial x} = -\tilde{\lambda}X, \ \tilde{h}\xi = 0.$$

In this case  $\tilde{h}$  is of  $\mathfrak{h}_3$  type with respect to the  $\tilde{\varphi}$ -basis  $\{X, \tilde{\varphi}X, \xi\}$ .

By the well-known Koszul's formula and by (2.3), we obtain the following identities

$$\tilde{\nabla}_X \xi = (\alpha + \tilde{\lambda}) X, \quad \tilde{\nabla}_{\tilde{\varphi}X} \xi = (\alpha - \tilde{\lambda}) \tilde{\varphi} X, \quad \tilde{\nabla}_{\xi} X = -\frac{\tilde{\mu}}{2} \tilde{\varphi} X, \quad \tilde{\nabla}_{\xi} \tilde{\varphi} X = -\frac{\tilde{\mu}}{2} X,$$

$$\tilde{\nabla}_X X = (\alpha + \tilde{\lambda})\xi, \quad \tilde{\nabla}_{\tilde{\varphi}X} \tilde{\varphi}X = (\tilde{\lambda} - \alpha)\xi, \quad \tilde{\nabla}_{\tilde{\varphi}X} X = 0, \quad \tilde{\nabla}_X \tilde{\varphi}X = 0.$$

After long but direct calculation we obtain

$$\tilde{R}(X,\xi)\xi = -(\tilde{\lambda}^2 + \alpha^2)X + \tilde{\mu}\tilde{h}X + \tilde{\nu}\tilde{\varphi}\tilde{h}X,$$

$$\tilde{R}(\tilde{\varphi}X,\xi)\xi = -(\tilde{\lambda}^2 + \alpha^2)\tilde{\varphi}X + \tilde{\mu}\tilde{h}\tilde{\varphi}X + \tilde{\nu}\tilde{\varphi}\tilde{h}\tilde{\varphi}X,$$

$$\tilde{R}(X, \tilde{\varphi}X)\xi = 0.$$

therefore, for any Z, W on M, it holds

$$\tilde{R}(Z,W)\xi = (\tilde{\kappa}I + \tilde{\mu}\tilde{h} + \tilde{\nu}\tilde{\varphi}\tilde{h})(\eta(W)Z - \eta(Z)W),$$

And since  $\tilde{\kappa} = -(\tilde{\lambda}^2 + \alpha^2) = -c^2 e^{-2(2\alpha + \tilde{\nu})z} - \alpha^2$ , it satisfies  $d\tilde{\kappa} \wedge \eta = 0$ . In this way, we construct an almost  $\alpha$ -para-Kenmotsu  $(\tilde{\kappa}, \tilde{\mu}, \tilde{\nu} = const.)$ -space with  $\tilde{h}$  is of  $\mathfrak{h}_3$  type and  $d\tilde{\kappa} \wedge \eta = 0$ .

#### 5. Further Characterizations

**Proposition 5.1.** Let  $(M^3, \tilde{\varphi}, \xi, \eta, \tilde{g})$  be an almost  $\alpha$ -para-Kenmotsu  $(\tilde{\kappa}, \tilde{\mu}, \tilde{\nu} = const.)$ -space with  $\tilde{h}^2 \neq 0$  and  $d\tilde{\kappa} \wedge \eta = 0$ . Then the leaves of the canonical foliation of M are flat para-Kähler manifolds.

Proof. Let M' be a leaf of  $\mathcal D$  and (J,<,>) be the induced almost para-Hermitain structure. M' is a para-Kähler manifold since it is almost para-Kähler manifold of dimension 2. In order to prove the flatness of (M',<,>), we consider the Weingarten operator A of M', if  $\tilde{h}$  is of  $\mathfrak{h}_1$  type, then  $AX = -\alpha X - \tilde{\varphi}\tilde{h}X = -(\alpha X + \tilde{\lambda}\tilde{\varphi}X)$  for a unit timelike vector field X such that  $\tilde{h}X = \tilde{\lambda}X$  and using the Gauss equation, the sectional curvature K' of <, > is given by  $K'(X,\tilde{\varphi}X) = K(X,\tilde{\varphi}X) - (\alpha^2 + \tilde{\lambda}^2)$ . By Lemma 3.4, we obtain  $\tilde{R}(X,\tilde{\varphi}X)\tilde{\varphi}X = -(\alpha^2 + \tilde{\lambda}^2)X$ , thus  $K(X,\tilde{\varphi}X) = -(\alpha^2 + \tilde{\lambda}^2)\tilde{g}(X,X) = \alpha^2 + \tilde{\lambda}^2$ . Therefore, we get  $K'(X,\tilde{\varphi}X) = 0$ . If  $\tilde{h}$  is of  $\mathfrak{h}_3$  type, then  $AX = -\alpha X - \tilde{\varphi}\tilde{h}X = -(\alpha + \tilde{\lambda})X$  for the unit timelike vector field X such that  $\tilde{h}X = \tilde{\lambda}\tilde{\varphi}X$ , and using the Gauss equation, the sectional curvature K' of <, > is given by  $K'(X,\tilde{\varphi}X) = K(X,\tilde{\varphi}X) + \tilde{\lambda}^2 - \alpha^2$ . By Lemma 3.5, we obtain  $K(X,\tilde{\varphi}X) = \tilde{R}(X,\tilde{\varphi}X,\tilde{\varphi}X,X) = \alpha^2 - \tilde{\lambda}^2$ . Therefore, we get  $K'(X,\tilde{\varphi}X) = 0$ .  $\square$ 

Remark 5.1. This conclusion is in accord with Corollary 3 of [9].

**Proposition 5.2.** Let  $(M^3, \tilde{\varphi}, \xi, \eta, \tilde{g})$  be an almost  $\alpha$ -para-Kenmotsu  $(\tilde{\kappa}, \tilde{\mu}, \tilde{\nu} = const.)$ -space. If  $\tilde{h}$  is of  $\mathfrak{h}_1$  type, then

(5.1) 
$$\mathcal{L}_{\xi}\tilde{h} = -(2\alpha + \tilde{\nu})\tilde{h} + \tilde{\mu}\tilde{h}\tilde{\varphi} - 2\tilde{\lambda}^{2}\tilde{\varphi}.$$

If  $\tilde{h}$  is of  $\mathfrak{h}_3$  type, then

(5.2) 
$$\mathcal{L}_{\xi}\tilde{h} = -(2\alpha + \tilde{\nu})\tilde{h} + \tilde{\mu}\tilde{h}\tilde{\varphi} + 2\tilde{\lambda}^{2}\tilde{\varphi}.$$

*Proof.* By (2.3) and (3.12), it is easy to get that

$$\mathcal{L}_{\xi}\tilde{h} = \tilde{\nabla}_{\xi}\tilde{h} + \tilde{h}(\tilde{\nabla}\xi) - (\tilde{\nabla}\xi)\tilde{h} = -(2\alpha + \tilde{\nu})\tilde{h} + \tilde{\mu}\tilde{h}\tilde{\varphi} - 2\tilde{h}^2\tilde{\varphi}.$$

Hence, If  $\tilde{h}$  is of  $\mathfrak{h}_1$  type,  $\tilde{h}^2X = \tilde{\lambda}^2X$ , If  $\tilde{h}$  is of  $\mathfrak{h}_3$  type,  $\tilde{h}^2X = -\tilde{\lambda}^2X$ , the relations (5.1) and (5.2) are easily obtained.  $\square$ 

Now we give the following further characterization.

**Theorem 5.1.** Let  $(M^3, \tilde{\varphi}, \xi, \eta, \tilde{g})$  be an almost paracontact metric manifold  $\tilde{h}^2 \neq 0$ , and  $\tilde{\kappa}, \tilde{\mu}$  are smooth functions on M such that  $d\tilde{\kappa} \wedge \eta = 0$ . Then,  $M^3$  is an almost  $\alpha$ -para-Kenmotsu  $(\tilde{\kappa}, \tilde{\mu}, \tilde{\nu} = const.)$ -space if and only if for any point  $p \in M$ , there exists an open neighbourhood U of p with coordinates  $x_1, x_2, t$  such that  $\tilde{\kappa}$  and  $\tilde{\mu}$ 

depend only on t and the tensor fields of the structure are expressed in the following way:

$$(5.3) \ \tilde{\varphi} = \sum_{i,j=1}^{2} \tilde{\varphi}_{j}^{i} dx_{j} \otimes \frac{\partial}{\partial x_{i}}, \ \xi = \frac{\partial}{\partial t}, \ \eta = dt, \ \tilde{g} = dt \otimes dt + \sum_{i,j=1}^{2} \tilde{g}_{ij} dx_{i} \otimes dx_{j},$$

where  $\tilde{\varphi}_{j}^{i}, \tilde{g}_{ij}$  are functions only of t; The fundamental 2-form  $\Phi$  is given by

$$\Phi = e^{2t} dx_1 \wedge dx_2,$$

and the non-zero components  $\tilde{h}^i_j, \tilde{B}^i_j$  in U of  $\tilde{h}$  and  $B := \tilde{\varphi}\tilde{h}$ , respectively, are functions of t satisfying the condition  $\sum_k B^i_k B^k_j = e^{-2(2\alpha + \tilde{\nu})t} \delta^i_j$  and the following system of differential equations:

(5.5) 
$$\frac{d\tilde{\varphi}_{j}^{i}}{dt} = 2\tilde{h}_{j}^{i}, \ \frac{d\tilde{h}_{j}^{i}}{dt} = \mp 2\tilde{\lambda}^{2}\tilde{\varphi}_{j}^{i} - (2\alpha + \tilde{\nu})\tilde{h}_{j}^{i} - \tilde{\mu}\tilde{B}_{j}^{i},$$
$$\frac{d\tilde{B}_{j}^{i}}{dt} = -(2\alpha + \tilde{\nu})\tilde{B}_{j}^{i} - \tilde{\mu}\tilde{h}_{j}^{i},$$

where  $\tilde{\lambda} = e^{-(2\alpha + \tilde{\nu})t}$ , and it takes " – " if  $\tilde{h}$  is of  $\mathfrak{h}_1$  type, it takes " + " if  $\tilde{h}$  is of  $\mathfrak{h}_3$  type.

Proof. Suppose that M carries a structure locally represented as in (5.3)-(5.5). Obviously  $d\eta=0$  and  $d\Phi=2\eta\wedge\Phi$  are followed by (5.3)-(5.4), therefore, M is an almost  $\alpha$ -para-Kenmotsu manifold. Now we need to prove that M satisfies the  $(\tilde{\kappa},\tilde{\mu},\tilde{\nu}=const.)$ -nullity condition. Notice that  $X_1=\frac{\partial}{\partial x_1}$  and  $X_2=\frac{\partial}{\partial x_2}$  are Killing vector fields and thus we get  $\tilde{g}(\tilde{\nabla}_{X_i}X_j,X_k)=0$  for any  $i,j,k\in\{1,2\}$ . Since the distribution orthogonal to  $\xi=\frac{\partial}{\partial t}$  is spanned by  $X_1$  and  $X_2$ , it follows that  $\tilde{\nabla}_{X_i}X_j\in[\xi]$  for all  $i,j\in\{1,2\}$ . Consequently, for the Levi-Civita connection  $\tilde{\nabla}$  determined by  $\tilde{g}$ , we obtain

$$(5.6)\tilde{\nabla}_{X_i}X_j = \tilde{\nabla}_{X_i}X_i = -\tilde{g}(X_i, \alpha X_j + BX_j)\xi, \quad \tilde{\nabla}_{\xi}X_i = \tilde{\nabla}_{X_i}\xi = \alpha X_i + BX_i.$$

Using (5.5) and (5.6) and by direct computations, we get

$$\tilde{R}(X_i, X_i)\xi = 0,$$

and

$$\tilde{R}(X_i,\xi)\xi = -\tilde{\nabla}_{\xi}\tilde{\nabla}_{X_i}\xi = -\alpha(\alpha X_i + BX_i) - \left[\frac{dB_i^k}{dt}X_k + B_i^k\tilde{\nabla}_{\xi}X_i\right]$$

$$= -\alpha^2 X_i - 2\alpha BX_i + (2\alpha + \tilde{\nu})BX_i + \tilde{\mu}\tilde{h}X_i - B^2X_i$$

$$= (\tilde{h}^2 - \alpha^2 I)X_i + \tilde{\mu}\tilde{h}X_i + \tilde{\nu}\tilde{\varphi}\tilde{h}X_i.$$

If  $\tilde{h}$  is of  $\mathfrak{h}_1$  type,  $\tilde{R}(X_i,\xi)\xi = (\tilde{\lambda}^2 - \alpha^2)X_i + \tilde{\mu}\tilde{h}X_i + \tilde{\nu}\tilde{\varphi}\tilde{h}X_i$ . Thus,  $M^3$  is an almost  $\alpha$ -para-Kenmotsu  $(\tilde{\kappa},\tilde{\mu},\tilde{\nu}=const.)$ -space, where  $\tilde{\kappa}=\tilde{\lambda}^2-\alpha^2$ . If  $\tilde{h}$  is of  $\mathfrak{h}_3$  type,

 $\tilde{R}(X_i,\xi)\xi = -(\tilde{\lambda}^2 + \alpha^2)X_i + \tilde{\mu}\tilde{h}X_i + \tilde{\nu}\tilde{\varphi}\tilde{h}X_i$ . Thus,  $M^3$  is an almost  $\alpha$ -para-Kenmotsu  $(\tilde{\kappa},\tilde{\mu},\tilde{\nu}=const.)$ -space, where  $\tilde{\kappa}=-(\tilde{\lambda}^2+\alpha^2)$ .

Suppose  $M^3$  is an almost  $\alpha$ -para-Kenmotsu ( $\tilde{\kappa}, \tilde{\mu}, \tilde{\nu} = const.$ )-space, we have (5.3)-(5.5) as similar as the proof of Theorem 6.1 in [16], we omit here.  $\square$ 

#### REFERENCES

- B. C. Montano and I. K. Erken: Nullity conditions in paracontact geometry. Diff. Geom. Appl. 30 (2012), 665-693.
- 2. B. C. Montano and L. D. Terlizzi: Geometric structures associated to a contact metric  $(\kappa, \mu)$ -space. Pacific J. Math. **246** (2010) 257-292.
- 3. D. E. Blair: Two remarks on contact metric structures. Tôhoku Math. J. 29 (1977), 319-324.
- 4. D. E. Blair, T. Koufogiorgos and B. J. Papantoniou: Contact metric manifolds satisfying a nullity condition. Israel J. Math. 91 (1995), no. 1-3, 189C214.
- G. DILEO and A. M. PASTORE: Almost Kenmotsu manifolds and local symmetry
   Bull. Belg. math. Soc. Simon Stevin. 14 (2007), 343-354.
- G. DILEO and A. M. PASTORE: Almost Kenmotsu manifolds and nullity distributions. J.Geom. 93 (2009), 46-61.
- 7. G. DILEO: On the geometry of almost contact metric manifolds of Kenmotsu type . Differential Geom. Appl. **29**(2011) 558-564.
- 8. H. ÖZTÜRK, N. AKTAN RM AND C. MURATHAN: Almost  $\alpha$ -cosymplectic  $(\kappa, \mu, \nu)$ -spaces. arXiv:1007.0527v1[math.DG]
- 9. I. K. Erken, P. Dacko and C. Murathan: Almost a-paracosymplectic manifolds. J. Geom. Phys. 88 (2015), 30-51.
- 10. K. Kenmotsu: A class of almost contact Riemannian manifolds. Tôhoku Math. J.  ${\bf 24}~(1972),~93\text{-}103.$
- 11. T. KOUFOGIORGOS and C. TSICHLIAS: On the existence of a new class of contact metric manifolds. Canadian Math. Bull. 43(2000), 440-447.
- 12. P. DACKO and Z. OLSZAK: On almost cosymplectic  $(\kappa, \mu, \nu)$ -spaces. Banach Center Publ., **69** 2005, 211-220.
- P. Dacko: On almost para-cosymplectic manifolds. Tsukuba J. Math. 28 (2004), 193-213.
- 14. S. Kaneyuki RM and F. Williams: Almost paracontact and parahodge structures on manifolds. Nagoya Math. J. **99**(1985), 173-187.
- 15. S. Zamkovoy: Canonical connections on paracontact manifolds. Ann.Glob. Anal. Geom. **36**(2009), 37-60.
- $16.~V.~Saltarelli:~Three-dimensional~almost~Kenmotsu~manifolds~satisfying~certain~nullity~conditions~.~Bull.~Malays.~Math.~Sci.~Soc.~{\bf 38} (2015),~437-459.$

Ximin Liu School of Mathematical Sciences Dalian University of Technology Dalian 116024, China ximinliu@dlut.edu.cn

Quanxiang Pan School of Mathematical Sciences Dalian University of Technology Dalian 116024, China panquanxiang@dlut.edu.cn