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THREE-DIMENSIONAL ALMOST a-PARA-KENMOTSU
MANIFOLDS SATISFYING CERTAIN NULLITY CONDITIONS *

Ximin Liu and Quanxiang Pan

Abstract. In this paper, we study 3-dimensional almost a-para-Kenmotsu manifolds
satisfying special types of nullity conditions depending on smooth functions &, fi and
U=constant, also we present a local description of the structure of a 3-dimensional
almost ca-para-Kenmotsu (&, fi,# = const.)-manifold (M, ®,€,7,§) with & +a® # 0
such that dc A n = 0.
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1. Introduction

The aim of this paper is to study the local description of almost a-para-Kenmotsu
manifolds. Kenmotsu manifolds have been introduced and studied by K. Kenmotsu
in 1972 [10], and the geometry of almost Kenmotsu manifolds have been investi-
gated in many aspects [5]-[7]. Most of the results contained in [5]-[6] can be easily
generalized to the class of almost a-Kenmotsu manifolds, where « is a non-zero real
number [7]. Many authors have investigated the geometry of contact metric man-
ifolds whose characteristic vector field ¢ belongs to the (k, u)-nullity distribution,
i.e. the curvature tensor field satisfies the condition

(1.1) R(X,Y)=r(n(Y)X —n(X)Y) + pu(n(Y)hX — n(X)hY),

for some real numbers x and p, where 2h denotes the Lie derivative of ¢ in the direc-
tion of £. This new class of Riemannian manifolds was introduced in [4] as a natural
generalization both of the Sasakian condition R(X,Y)¢ = n(Y)X —n(X)Y and of
those contact metric manifolds satisfying R(X,Y )¢ = 0 which were studied by D.E.
Blair in [3]. Koufogiorgos and Tsichlias found a new class of 3-dimensional con-
tact metric manifolds that x and p are non-constant smooth functions[11]. They
generalized (k, p)-contact metric manifolds for dimensions greater than three on
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non-Sasakian manifolds, where the functions x, 4 are constant. Nowadays contact
metric (k, p)-space is considered as a very important topic in contact Riemannian
geometry. Following these works, P. Dacko and Z. Olszak studied almost cosymplec-
tic (k, p, v)-spaces in [12], whose almost cosymplectic structures (¢, &, 7, g) satisfy
the condition

(1.2) R(X,Y) =n(Y) (kI + ph + vph) X —n(X) (kI + ph + veh)Y,

for ki, p,v € R,y(M?" 1), where R,(M?" ') is the ring of smooth functions f on
M?"+! for which df An = 0. Later, [8] studied the generalized almost cosymplectic
(k, p, v)-spaces, that is: almost a-cosymplectic (k, i, v)-spaces and also pointed out
that the nullity condition is invariant under D-homothetic deformation of almost
cosymplectic (&, pt, v)-spaces in all dimensions.

The study of paracontact geometry was initiated by S. Kaneyuki and F.L.
Williams in [14] and then it was continued by many other authors in many aspects,
for example, a systematic study of paracontact metric manifolds, and some remark-
able subclasses like para-Sasakian manifolds, was carried out by S. Zamkovoy [15],
a systematic study of almost a-paracosymplectic manifolds carried by I. K. Erken,
P. Dacko and C. Murathan [9], [13].The importance of paracontact geometry has
been pointed out highlighting the interplays with the theory of para-K&hler man-
ifolds and its role in pseudo-Riemannian geometry and mathematical physics. In
recent years, many authors turned to the study of paracontact geometry due to an
unexpected relationship between (k, u)-contact metric manifold and paracontact
geometry was found in [2]. It was proved that any (non-Sasakian) (k, u)-contact
metric manifold carries a canonical paracontact metric structure (@, &€, 7, §) whose
Levi-Civita connection satisfies a condition formally similar to (1.1)

(1.3) R(X,Y) =R(n(Y)X = n(X)Y) + i(n(Y)hX — n(X)hY),

where 2h := Le and, in this case, & = (1 — £)? + K —2,4 =2 In [1], the au-
thors showed that while the values of & and fi change the form but (1.3) remains
unchanged under D-homothetic deformations. There are differences between a
(K, pv)-contact metric manifold (M, ¢, &, 7, g) and (&, ji)-paracontact metric manifold
(M, ¢,&,m,g). Namely, unlike in the contact Riemannian case, a (R, fi)-paracontact
metric manifold such that # = —1 in general is not para-Sasakian. And there are
(%, fi)-paracontact metric manifold such that 7% = 0 but with & # 0 in [2]. Another
important difference with the contact metric manifold is that while for contact met-
ric case k < 1, (&, fi)-paracontact metric manifold has no resriction for the constants
% and fi. There are similar results about almost a-cosymplectic x, u, v-spaces and
almost a-paracosymplectic k, u, v-spaces [8] and [9].

Recently, in [16] V. Saltarelli studied 3-dimensional almost Kenmotsu manifolds
satisfying certain nullity conditions and gave some complete local descriptions of
their structure. Motivated by the unexpected relationship between almost Ken-
motsu and para-Kenmotsu manifold, we study almost a-para-Kenmotsu manifold
in this paper and give a complete local description of 3-dimensional almost a-para-
Kenmotsu (k, i, v)-spaces.
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This paper is organized in the following way. In section 2, some preliminaries
and properties about almost a-para-kenmotsu manifolds are given. In section 3, we
give some results concerning almost a-para-Kenmotsu (&, fi, 7)-spaces. In section 4,
we will give a local description of the structure of a 3-dimensional almost a-para-
Kenmotsu (7, i, 7 = const.)-space with di A = 0. We also construct in R?® two
families of such manifolds depending on h of b1 or b3 type, and in the last section
we give a necessary and sufficient condition for a local structure to be an almost a-
para-Kenmotsu (&, i, 7 = const.)-space with d& An = 0. All manifolds are assumed
to be connected and smooth.

2. Preliminaries
In this section, we recall some basic facts about paracontact metric manifolds.

A 2n + 1-dimensional smooth manifold M is said to have an almost paracontact
structure if it admits a (1, 1)-tensor field @, a vector field £ and a 1-form 7 satisfying
the following conditions:

(7i) the tensor field ¢ induces an almost paracomplex structure on each fiber
of D =Ker(n), i.e. the £1—eigendistributions D* := Dgs(£1) of ¢ have equal
dimension n.

From the definition it follows that ¢(£) =0, no @ = 0 and rank(p) = 2n. When
the tensor field Ny := [@, ¢] — 2dn ® & vanishes identically the almost paracontact
manifold is said to be normal. If an almost paracontact manifold admits a pseudo-
Riemannian metric g such that

(2.1) G(PX,pY) = —g(X,Y) +n(X)n(Y)

for any vector fields X,Y € I'(TM). Then we say that (Mt & € n,5) is an
almost paracontact metric manifold. Notice that any such a pseudo-Riemannian
metric is necessarily of signature (n,n + 1). For an almost paracontact metric
manifold, there always exists an orthogonal basis {¢, X1,...,X,,,Y1,...,Y,} such
that §(X;, X;) = 045, 9(Y3,Y;) = —0;; and Y; = ¢X;, for any i,j € {1,...,n}. Such
basis is called a @-basis. The fundamental 2-form @ associate with the structure
is defined by ®(X,Y) = §(X,@Y) for all vector fields X,Y on M. The structure
is normal if the tensor field N = [, @] + 2dn @ & vanishes, where [p, @] is the
Nijenhuistorsion of ¢. For more details, we refer the reader to [15]. According
to [9], an almost paracontact metric manifold(M, @, &, 7, g) is said to be an almost
a-para-Kenmotsu manifold if

(2.2) dn=0, d®=2anA®, a=const.+#0.

A normal almost a-para-Kenmotsu manifold is an a-para-Kenmotsu manifold.

Let (M,$,€,1n,g) be an almost a-para-Kenmotsu manifold. Since dn = 0, the
canonical distribution D = ker(n) is completely integrable. Each leaf of the folia-
tion, determined by D, carries an almost para-Kéhler structure (J, <, >)

JX = ¢X, <X,V >=§X,7),
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X,Y are vector fields tangent to the leaf. If this structure is para-Kéhler, leaf is
called a para-Kéahler leaf. Furthermore, we have L¢n = 0 and [§, X] € D for any
X € D. Furthermore, we have @gp = 0, so that @55 =0 and @gX € D for any
X € D. Define h = %Lg@, we get the following proposition,

Proposition 2.1. [9] Let (M, $,&,n, ) be an almost a-paracosymplectic manifold,
we have the following relations:

(2.3) VEé = a@® + gh,

(2.4) tr(h) =0, tr(¢h) =0.

Moreover, also in [9], it follows that the curvature properties of an almost a-para-
Kenmotsu manifold,

(2.5) R(X,Y)¢ = an(X)(aY +@hY)—an(Y)(aX +@hX)+(Vx@gh)Y —(Vy@h) X

(26)  (Vx@)Y = (Vex@)pY = n(Y)(apX — hX) = 2a(3(X, 3Y)é + n(Y)d).

Finally, we recall that an almost paracontact metric manifold (M, @, €, 7, §) is said
to be n-Einstein if its Ricci tensor satisfies

Ric=ag+ by &,

or equivalently

(2.7) Q=al+E,

where a and b are smooth functions on M?"*1. A vector field X € T, M is called
Killing vector field if £x§ = 0, that is, §(Vy X, Z) + §(VzX,Y) =0, where Y, Z €
T,M are arbitrary vector fields.

In [9], Authors showed that Ricci curvature S in the direction of £ is given by
(2.8) S(€,€) = —2na® + trh?.

We recall that the curvature tensor of a 3-dimensional pseudo-Riemannian man-
ifold satisfies

(29) RX,Y)Z = §(V,2)QX — §(X,Z)QY +§(QY, Z)X — §(QX,2)Y

—5 (@Y. 2)X — (X, 2)Y).
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3. Almost a-para-Kenmotsu (&, i, 7)-spaces

Firstly, let us recall the following theorem which is exactly the same as almost
Kenmotsu manifolds [9], where h = 0, it is certainly h? = 0.

Theorem 3.1. Let M2+ be an almost a-para-Kenmotsu manifold with h = 0.
Then M2+ s locally a warped product M, X 2 Mo, where My is an almost para-
Kdéhler manifold, My is an open interval with coordinate t, and f? = we?* for some
positive constant w.

Now, we give some properties for later use.

Lemma 3.1. Let (M?"*1 3 € n,§) be an almost a-para-Kenmotsu manifold, then,

for any orthonormal frame X;,i=1,--- ,2n+ 1, the following identities hold:
2n+1 B _ ~
(3.1) > ei(Vx,gh)X; = Q¢ + 2na’¢,
i=1
2n-+1 ~
(3.2) > a(Vx.@)Xi =0.
i=1
Proof. Let X,;(i = 1,---,2n + 1) be an orthonormal frame. For any vector field

X, putting X = Xj, replacing Y by ¢X in (2.6), taking the inner product with
X = X;, by using hé = @€ = 0, tr(gh) = 0, the symmetry of Vx,ph, and the
skew-symmetry of ¢ we get
3(Q¢, ¢X)
2n+1 -
= > @g(R(Xi, $X)E, X)
i=1
2n+1 _ N . _ .
= > ei{an(Xi)§(apX — ¢he X, Xi)+3((Vx,ph) e X, X;)— §((Vox ph) Xi, Xi)}
i=1

2n+1 B N
> g((Vx, 8h)@X, X,).

i=1

Thus the above equality reduces to
~ 2n+1 B .
PQE =Y eip(Vx,gh)Xi,
i=1

Applying @ to the above equality, using $? = Id — 7 ® £ and (2.8), combining with
(2.4), we get 2" e,G((Vx, @h) Xy, €) = trh?, it follows that

2n+1 - N B

S eV, 5h) X = QOF + 2na’e.

i=1
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In order to obtain (3.4), we choose a @-basis { E;, pE;, £},using (2.6) and Ve = 0,
we get

2n+1
> al(Vx @)X Zaz (VEQ)E Zal s P)PE; + (Vep)€ = 0.
=1

=1

O

The next lemma concerns almost a-para-Kenmotsu manifolds having the canonical
distribution D with para-Kéhler leaves for which the following formula holds [9]:

(3.3) (Vx@)Y = §(agX + hX,Y)E —n(Y)(apX + hX).

Lemma 3.2. Let (M1 3,£,1,3) be an almost a-para-Kenmotsu manifold and
assume that the distribution D has para-Kdhler leaves, then, for any orthonormal
frame X;,0=1,--- ,2n+ 1, we have

2n-+1
(34) > el Vx,h)Xi = Q¢
1=1
Proof. Since
(3.5) VxhpY = (Vxh)@Y + h(Vx@)Y + hgVxY,
(3.6) Vx@hY = @(Vxh)Y + @h(VxY) + (Vx@)hY,

By (3.5)-(3.6) and ph = —h@, we get

(Vxh)@Y + @(Vxh)Y = —h(Vx@)Y — (Vx@)hY
(3.7) = nY)(ahgX + h*X) — GlagX + hX,hY)E.
Taking X =Y = X, in (3.7), summing on ¢ and using tr(ﬁcﬁ) =0 and hé = 0, we
get

2n+1
(3.8) > el (Vxh)gXi + 3(Vx h)Xi} = —(trh?)e.

=1

y (3.1), and using (3.4) we get

2n-+1 2n+1
Q¢ +2na’¢ = Z ei(Vx,ph)X; = — Z ei(Vx,hp) X

i=1 i=1

2n+1
= = > el(Vxh)gXi + h(Vx,$) Xi}
=1
2n+1
(3.9) = =) eV, h)exX;
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Substituting (3.3) into (3.8) we obtain

2n+1

Z eip(Vx,h)X; = Q€ + (2na® — trh?)E,
i=1

finally, we get the required result acting by ¢ and using Zfﬁjl sif]((@xi B)Xi, &) =
0, which, by direct calculation, follows from the fact that G(gh*X;, X;) = 0 and
tr(h@) =0. 0O

Next we study almost a-para-Kenmotsu manifolds under assumption that the cur-
vature satisfies (g, fi, 7)-nullity condition

(3.10) R(X,Y)§ =n(Y)BX —n(X)BY,

where B is Jacobi operator of ¢, that is to say BX = R(X,€)¢ = #g?X + ahX +
phX, for &, fi, 7 € R, (M?"+1). Particularly BE = 0. If i=0or h =0 and 7 = 0
or ph = 0, the (R, ft, 7)-nullity distribution is reduced to the well-known R-nullity
distribution N(&). The (&, fi, 7)-nullity condition (3.10) is obtained by requiring
that £ belong to some N (&, fi,7). If almost a-para-Kenmotsu manifold satisfies
(3.10), then the manifold is said to be an almost a-para-Kenmotsu (%, fi, 7)-space.
We observe that, in an almost a-para-Kenmotsu manifold, if £ € N(&, i, ), (3.10)
and (2.5) implies @h is a Codazzi tensor, that is to say, (Vx@h)Y — (Vyph)X =0,
for any X,Y € D.

Proposition 3.1. [9] Let (M?"*! %, £,m,3) be an almost a-para-Kenmotsu (k, u, v)-
space, then the following identities hold:

(3.11) h? = (i + o®)@?,
(3.12) Veh = — (20 + D)h + jih,
(3.13) E(R) = —2(2a + ) (F + o?),
(3.14) Q& = 2nkE.

Lemma 3.3. Let (M?,5,€,1,3) be an almost a-para-Kenmotsu (&, fi, 7 =const. )-
spaces, then one has:

(3.15) OX = (=i + g)X + (3% — %)n(X)g + ihX + 9PhX,

(3.16) hgradfi + ghgradp = gradi — £(R)E,

where Q 18 the Ricci operator of M. T denotes scalar curvature of M and [ =
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Proof. Let Y = Z = ¢ in (2.9) and using (3.10), we can easily obtain (3.15).

By using the well known formula
1 > -
(3.17) Soradr = ;ai(vx Q)X

for any orthonormal frames X;, 4 = 1,2, 3, using (2.2) and (3.15), since trh = triu,b =
0, we have

3

3
%gradr = Zaz(vXIQ)Xz = Zal(VXIQXl — QVXIXJ
= D el Vl(—R+ 5)Xi + (3% — £)n(X0)¢ + X, + 7phXi]
—[(=F + Vi, Xi + (37 = £)n(Vx, Xi)€ + ihV x, X + 7@V x, X,]}

3
= D el X+ 5)X + Xi(3% — 3)n(X)E + Xi(AX + Xi(7) phXi}

i=1
1 ~ ~ 1
= —gradk + §grad7 + hgradi + ghgradv + [3¢(&) — 55(7)]5
3
(3.18) +> el iV, h)Xi + #(Vx, $h) X, }.
i=1

Thus, using (3.1), (3.2) and (3.14) we get

3
> ei(Vx,h)Xi =0,
=1

and
3
Z ei(Vx, ph) Xi = 2(k + a?)€.
i=1

Using these two equalities in (3.15), one has

£(R)€ — gradi + hgradfi + ghgradi + (2 — %7)5 +2(a® 4+ )€ = 0.

Since the vector field {(&)¢ — gradi + hgradji + @ghgradp is orthogonal to &, (3.16)
follows. O
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Proposition 3.2. Let (M3,$,£,1,§) be an almost a-para-Kenmotsu manifold. If
M is n-FEinstein, then £ € N(&) for some function &.

Proof. By (2.7), choosing the @-basis {, e, e}, we get Q¢ = (a+b)¢ and 7 =
3(&,€) +9(Qe,e) + §(Qpe, pe) = 3a+b. Let Z = ¢ in (??) and using (2.7), we can
easily obtain R(X,Y)¢ = 2 (n(Y)X — n(X)Y), thus £ € N(&2). O

Corollary 3.1. Let (M3,$,£,m,3) be an almost a-para-Kenmotsu manifold. If M
is & € N(R), then M is n-FEinstein.

Proof. By Lemma 3.3, we get QX = (—#& + D)X + (38 = T)n(X)E, it is simply to
get that M is n-Einstein. O

If h =0, by (2.5), we get R(X,Y)¢é = —a?(n(Y)X —n(X)Y), thus £ € N(—a?),
by Corollary 3.1, it follows that M is n-Einstein. Therefore, from now on, we will
restrict our investigations mainly on the more meaningful case h # 0. I. K. Erken,
P. Dacko and C. Murathan analyzed the different possibilities for the tensor field h
in [9]. If A has

A 0
(3.19) 0 -\
0 0

o O O

with respect to a local orthonormal @-basis {X, X, ¢}, the authors called the op-
erator h is of b type.

If A has

O = O
o O O
o O O

with respect to a pseudo orthonormal basis {e1, e2, e3}, the authors called the op-
erator h is of ha type.

If h has
0 X 0
(3.20) -2 0 0
0 0 0

with respect to a local orthonormal @-basis {X,»X, £}, in this case. the authors
called the operator h is of hs type.

It follows that h2X = A2X if h is of by type and h2X = —A2X if h is of b
type, but h2X = 0 if h is of by type though h # 0, and there are examples of
3-dimensional almost a-para-Kenmotsu manifold of this case [9]. In this paper, we
manly discuss the case h2 # 0, that is, & + a2 # 0.
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Lemma 3.4. Let (M3, 3,€,1m,§) be an almost a-para-Kenmotsu (R, fi, 7 = const.)-
space with h is of b1 type. Then, for any point p € M, there exist a neighborhood
U of p and a ¢-basis {X,¢X,£} defined on U, such that

(3.21) hX =XX, hpX =-XApX, hé=0, A=Vi+a?

at any point ¢ € U. Moreover, setting A = X () and B = $X(\) on U the following
formulas are true:

(3.22) Vxé=aX +ApX, Vioxé=apX — X,

(3.23) VeX = —%@X, VepX = —%X,

(3.24) @X—ag—ﬁix Vs ~X——ag—ﬁx
. X 25\90 ) X P 25\ )

(3.25) Vs X——X§—£~X v ~X——Xg—ﬁx
. X 25\90 ) xX® 25\

(326)  [6X]=—aX - A+ D)X, [6.pX] = (- )X - apX,

B A

3.27 X, pX]=-——=X + —pX.

(3.27) [X, ¢X] % 557

(3.28) hgradji = gradi — £(R)E,

Proof. By [9] we know that if ]~7,~iS of by type with respect to a @-basis {X, X, £}
such that hX = AX, h¢pX = —ApX, and by (3.11), we get A = V& + «?. Similar
as the proof of [16], we get Lemma 3.4. O

Similarly as Lemma 3.4, we get the following Lemma.

Lemma 3.5. Let (M3,5,€,1,3) be an almost a-para-Kenmotsu (R, ji, 7 = const.)-
space with h is of hs type. Then, for any point p € M, there ezist a neighborhood
U of p and a ¢-basis {X,¢X,£} defined on U, such that

(3.29) hX = AgX, h@eX =-AX, hé=0, A=+/—(i+a?)

at any point ¢ € U. Moreover, setting A = X (\) and B = $X(\) on U the following
formulas are true:

(3.30) Vxé=(a+NX, Vixé=(a—N@X,
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(3.31) VeX = —g@X, VepX = —%X,
N - B _. - . A
(332) VxX = (a + /\)f — =X, VzxpX = (/\ — Ot)f - =X,
22 2
. A - B
3.33 Vox X = — =X, VxpX = ——=X
( ) PX 2)\90 X 5
(3.34) (6. X] = ~(a+MX - £oX, [6.6X] = ~EX + (A - a)px,
B, A
3.35 X, pX] = + X
(3.35) [X, pX] Xt ox®
(3.36) hgradfi = gradi — £(R)E.

4. Almost a-para-Kenmotsu (g, i, 7 = const.)-space with di An =0

Locally, an almost a-para-Kenmotsu (&, i, 7 = const.)-space with his of by type
and dk A1 = 0 can be described as follows.

Theorem 4.1. Let (M3,$,£,m,3) be an almost a-para-Kenmotsu (i, fi, 7 = const.)-
space with h is of b1 type and di AN = 0. Then, in a neighbourhood U of every
point p € M, there exist coordinates x,y,z and an orthonormal frame {X,pX, £} of
ergenvectors ofh with hX = AX, such that on U &, i only depends on z and

a . 0 0 0 0
X—a—x, @X—a—y, g—a%'i‘ba—y'i‘&,

and the tensor fields ¢, g, h are given by the relations:

-1 0 a 01 =b\ A0 —a)
g=| o 1 —b , =110 —a |,h=[0 =X b\
a —b 1—a2+0b? 00 0 0 0 0

where a = ax + (% Ny + f(2), b= (% + Nz —ay — g(2), f(2), 9(2) are arbitrary
smooth functions of z, a is a constant value.

Proof. The condition di An = 0 and (3.28) means that dji A n = 0, since h#0
and kerh = Span{¢}. Moreover, we have E(\) = 0 for all E € D. By lemma 3.4,
we get that for any point p € M, there exist a neighborhood U of p and a ¢-basis
{X,pX, €} defined on U, such that hX = AX, h¢X = —AgX, A = Vi +aZ.



140 X. Liu and Q. Pan

Hence A = X(S\) =B = @X(j\) = 0, that is to say, by Lemma 3.4, we get that
[X,2X] = 0. So, fixed the point p € M, there exist coordinates (z,y,t) on an open
neighbourhood V' of p such that

X:— ~X:27§:a/—+b_+c—
dy

where a,b and ¢ are smooth functions on V' with ¢ # 0 everywhere. Since we get
[X,€] € D and [X,£] € D for any X € D by dn = 0, we obtain that % =0 and
g—; = 0. Therefore, if we consider on V' the linearly independent vector fields X, 9 X

and Z = c%, we have

[X,$X] =0, [X,Z] =0, [¢X,Z] = 0.

This implies that there exists a coordinate system {U,(z,y,z)} around p in V

such that X = 8%7 pX = 8% and Z = %.Thus, on the open set U we have

§=aZ + ba% + 2. From (3.13) and (3.21), we get that EQN) = —(2a 4 D),

and since A = X\ =B = @X(A\) = 0, it follows that X = ce~(2*t?)= and
R=X\—a?=c?e 2272 _ 2 for some real constant ¢ > 0. Since dji An = 0, we
get that i = fi(z). Next, we need to compute the functions a,b. To this end,

0a 0 0Ob O . Oa 0 0b 0

(3 ]:_%%_%B_y’ €, ¢ ]__8_34%_8_348_3/
And by Lemma 3.4, we obtain

0

[gvX] = _O‘%

-G+ D 68X = (G-

The comparison of these relations with the previous leads to

oa da @ ~ 0Ob -
(41) !

By integration of these system, considering A, i functions depending only on z, we
get a = ax + (§ — Ny + f(z), b= (5 + Nz — ay — g(2), f(2), g(2) are arbitrary
smooth functions of z.

We will continue calculate the tensor fields 7, ¢, g and h with respect to the
basis 8%’ a%, %. The expression of the 1-form = dz immediately follows from
n(€) = 1,n(X) = n(¢X) = 0. For the components of g;; of the pseudo-Riemannian
metric, we have

5 0 0 5 ~ 0 0 o
911—9(%78—35)—9()(7)()——17 922—9(a—y78—y)—9(@X7<PX)—17

oD O a0l 09 e 0 b9 22
933 =9(5-,5-) = 9 —ap- bay,ﬁ ag bay)_l a? + b2
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o0 0 0 0 0
Jio =021 =J(=—,=—)=9(X,¢X)=0, g13=931 = §(=—,E—a=— —b—) =
J12 = g21 g(ax,ay) 9(X,0X) =0, g13=gn g(ax’§ am 8y) a,
0 0 0
= = g(— _ = b— = —b
G23 = G32 9(8y,§ g (?y) :
thus the matrix form of g with respect to the basis 6%, 6%, % is given by
-1 0 a
g= 0 1 —b
a —b 1—a®+0b?
The components of the tensor field ¢ are followed by:

0 0 0 9, 0 0 0 0 0 0 0
N—) = — N—) = 0°(—) = — N—) = @ ————:———b—
thus the matrix form of ¢ with respect to the basis 6%, 6%, % is given by

0 1 —-b
1 0 —a
0 0 0

1%}

The components of the tensor field h with respect to the basis %, 8%, 5, are given

as follows:

-~ 0 ~ ~ ~0d -, 0 ~ < ~ 0
hMz=—)=h(X)=2AX =A—, (=) =hpX = -ApX = - A—
(5) = h(X) S bl = heX = —Xpx = AL
-~ 0 < 0 0 ~ 0 0
hM=—)=h(—az——b—)=—ar— +bA—.
(82) (€ ‘o 8y) a8x+ dy
Thus the matrix form of & is given by
A 0 aE\
0 —X b
0 0 O

O
Now we consider the case of & is of b5 type.

Theorem 4.2. Let (M3,5,€,m,3) be an almost a-para-Kenmotsu (k, fi, 7 = const.)-
space with h is of b3 type and dk A'm = 0. Then, in a neighbourhood U of every
point p € M, there exist coordinates x,y,z and an orthonormal frame {X, X, &}
with hX = ApX, hoX = —AX, such that on U R, i only depends on z and

0 0 0 0]

. 0
X—a—x, @X—a—y, g—a%'i‘ba—y'i‘&,



142 X. Liu and Q. Pan

and the tensor fields ¢, g, h are given by the relations:

-1 0 a 01 —b\ 0 =X DA
g= 0 1 —b , o= 1 0 —a |,h=| X 0 —a)\
a —b 1—a?+0b° 00 0 0 0 0

where a = (o + Az + %y + f(2), b= %x +(a =Ny +g(2), f(2),9(2) are arbitrary
smooth functions of z.

Proof. The condition di A n = 0 and (3.28) means that djz A n = 0, since h #0
and kerh = Span{¢}. Moreover, we have E(\) = 0 for all E € D. By lemma 3.5,
we get that for any point p € M, there exist a neighborhood U of p and a ¢-basis
{X,9X, &} defined on U, such that hX = M\pX, h¢X = —AX, A= /—(k + a?).
Hence A = X(\) = B = $X(\) = 0, that is to say, by Lemma 3.5, we get that
[X,$X] = 0. So, fixed the point p € M, there exist coordinates (z,y,t) on an open
neighbourhood V' of p such that
0

X:— ~_X:
8x’(p

fz(zg—i—bﬁ—i—ca

9 9
oy’ dxr OQy ot

where a,b and ¢ are smooth functions on V' with ¢ # 0 everywhere. Since we get

[X,€] € D and [X,£] € D for any X € D by dn = 0, we obtain that % = 0 and
g—; = 0. Therefore, if we consider on V' the linearly independent vector field X, p X

and Z:c%, we have
[X,¢X]=0, [X,Z] =0, [¢pX,Z] =0.

This implies that there exists a coordinate system {U, (z,y,z)} around p in V

such that X = 68, pX = 6— and Z = az.Thus, on the open set U we have

§ = a + b2 + £ From (3.13) and (3.21), we get that £(X) = —(2a + )\,
and since A = X(/\) = B = ¢X()\) = 0, it follows that A = ce~*t?)= and
R=—-X—a?=—c2e 2@tz _ 2 for some real constant ¢ > 0. Since dii A1 = 0,
we get that & = i(z). Next, we need to compute the functions a,b. To this end,

da 0 Ob 9 da 0  0b 0
X, ——, [pX ——
X.€] = Oz Oz + Ox Oy’ [P X&) = Ay Ox + Oy Oy
And by Lemma 3.5, we obtain

0 [o RG]
[X,s]:mﬂ)%%a—y, X, =L+ (a- N

The comparison of these relations with the previous leads to

(4.2) — =a+ )
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By integration of these system, considering 5\, i functions depending only on z, we

get a = (a4 Nz + %y + f(2), b= %:v — (= ANy — g(2), f(2), g(2) are arbitrary
smooth functions of z.

We will continue calculate the tensor fields 7, ¢, g and h with respect to the
basis 6%, 8%, %. The expression of the 1-form n = dz immediately follows from
n) =1, n(X) = n(pX) = 0. For the components of g;; of the pseudo-Riemannian
metric and the components of the tensor field ¢, the proof is the same with that of
Theorem 4.1, we omit here. The components of the tensor field h with respect to

the basis 8%7 8%7 % are given as follows:

700 < R R BN - _ 9
h(%) = h(X) =ApX = )\a—y, h(a—y) =hpX = -2X = _,\%7
0 0 0 0 -0

0 X bA
-A 0 —al
0 0 0

O

Theorem 4.1 and Theorem 4.2 allow us to obtain a complete local classification of
3-dimensional almost a-para-Kenmotsu (&, fi, 7 = const.)-spaces with his of by type
or b3 type and di An = 0. In fact, we can construct in R? almost a-para-Kenmotsu
(R, fi, 7 = const.)-space for each of them as follows.

Let M be the open submanifold of R? defined by M := {(z,y,2) € R3} and
A=ce 2tz 4o fg: MR

be four smooth functions of z, where o, ¢, 7 are constant functions. Let us denote
again by z,y, z the coordinates induced on M by the standard ones on R3. We
consider on M

8_}_&
0z’

0
f—a%—i—ba—y n=dez,

the pseudo-Riemannian metric g, the tensor fields ¢ and h with respect to the basis

9 9 0 H 1 .
350 Dy D2 Are given by the relations:

-1 0 a 01 —b\ A0 —a)
g=1 0 1 —b , =110 —a |,h=|0 =X bx
a —b 1—a®+b? 00 0 0 0 0
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where a = ax + (& — Ny+ f(z), b= (& + Nz —ay+ g(z), a is a constant value. Tt
is easy to check that (M, @,€,n,§) ia an almost paracontact metric manifold. Since
dn=0and ® = —%d:b/\dy—l—gd:v/\dz— 5dyAdz, thus we get d® = —adx ANdy/Ndz =
2am A @, that is to say, (M, ¢, £, n,§) ia an almost a-para-Kenmotsu manifold and
that {X = 6%, pX = 6%, ¢} makes up a global @-basis on M. Moreover, by direct
computation, we get

X, @X] =0, [X,€] =aX +(+5)pX, [6X,€ = (5 - DX +apX.
and

- ) <0 <o 5. =0 0 T 7

(X)) = h(z-) = Ag- = AX, hgX = h(a—y) = Ay, = TAeX, he =,

In this case A is of b1 type with respect to the @-basis { X, ¢ X, £}. By the well-known
formula

2g(VZW,T)
= ZQ(W, T) + Wg(Tv Z) - Tg(Zv W) - Q(Z, [Wv T]) +§(VV7 [T7 Z]) +§(T7 [Zv W])

and by (2.3), we obtain the following identities

X, VepX = -£X,

Vxé=aX +AgX, Vexé=agX —AX, VX =—

N | =

VxX =af, Vex@pX = —af, VexX =X, Vx@pX = -A¢.

By direct calculation we obtain

R(X,6)¢ = (N2 — o®)X + ihX + v@ghX,
R(pX,6)€ = (N2 — a®)pX + ih¢X + DphpX,

R(X,3X)¢ =0,
Therefore, for any Z, W on M, it holds

R(Z,W)E = (RI + ih + 0@h) (n(W)Z —1n(Z)W),

and since & = A2 — a2 = 2e 2@tz _ 2 it satisfies di A n = 0. In this way, we
construct an almost a-para-Kenmotsu (&, i, 7 = const.)-space with h is of b1 type
and dk An = 0.

If we consider on M
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the pseudo-Riemannian metric g, the tensor fields ¢ and h with respect to the basis

a 9 0 ; ions:
350 D0 97 Are given by the relations:

-1 0 a 01 —b\ A0 —a)
g=| o 1 —b , =110 —a |,h=]0 =X bX
a —b 1—a2+0b? 00 0 0 0 0

where a = (o + Nz + %y + f(2), b= %x + (= Ny 4 g(2), o is a constant value.
It is also easy to check that (M, @,&,n,g) is an almost a-para-Kenmotsu manifold
and that {X = %, X = 8%,5} makes up a global p-basis on M. Moreover, by
direct calculation, we get

X,6X]=0, [X,8 = (a+ )X + 2oX, [px,6= 2X 1 (a - g

and

. N -0 o
BX) = h(g0) = Ag. = AeX, heX =hig.) = =Ag = =AX, he =0,

In this case h is of hs type with respect to the @-basis {X, $X, £}

By the well-known Koszul's formula and by (2.3), we obtain the following iden-
tities

Vx€=(a+N)X, Vixé=(a—NpX, VeX = —%@X, VepX = —%X,
VxX = (a4 NE, VexpX =(A—a)f, VexX =0, VxpX = 0.
After long but direct calculation we obtain

R(X,6)¢ = —(N2 4+ o)X + ihX + 0@hX,

R(GX, )& = —(N2 + o) pX + ih¢pX + vphpX,

R(X,X)¢ = 0.
therefore, for any Z, W on M, it holds
R(Z,W)¢ = (Rl + jih+ 0gh)(n(W)Z — n(Z)W),
And since & = —(A% + a?) = —c2e 2(209)2 _ o2 it satisfies di A = 0. In this

way, we construct an almost a-para-Kenmotsu (g, i, 7 = const.)-space with h is of
hs type and di An = 0.
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5. Further Characterizations

Proposition 5.1. Let (M3,5,€,m,3) be an almost a-para-Kenmotsu (K, fi, 0 =
const.)-space with h? # 0 and di A = 0. Then the leaves of the canonical foliation
of M are flat para-Kdahler manifolds.

Proof. Let M’ be a leaf of D and (J, <, >) be the induced almost para-Hermitain
structure. M’ is a para-Kahler manifold since it is almost para-Kéhler manifold of
dimension 2. In order to prove the flatness of (M’, <, >), we consider the Weingarten
operator A of M’, if h is of by type, then AX = —aX — ¢hX = —(aX 4+ \@X) for
a unit timelike vector field X such that hX = AX and using the Gauss equation,
the sectional curvature K’ of <, > is given by K'(X, 3X) = K(X,$X) — (a2 4+ A2).
By Lemma 3.4, we obtain R(X, 3X)pX = —(a?+ X)X, thus K (X, $X) = —(a® +
S\Q)Q(X,X) = o2 + A2. Therefore, we get K'(X,¢X) = 0. If h is of b3 type,
then AX = —aX — $hX = —(a + A)X for the unit timelike vector field X such
that hX = :\@X , and using the Gauss equation, the sectional curvature K’ of
<,> is given by K'(X,3X) = K(X,3X) + A2 — a2, By Lemma 3.5, we obtain
K(X,pX)=R(X,pX,pX,X) = a? — \2. Therefore, we get K'(X,3X)=0. O

Remark 5.1. This conclusion is in accord with Corollary 3 of [9].

Proposition 5.2. Let (M3,3,€6,m,3) be an almost a-para-Kenmotsu (&, fi, 7 =
const.)-space. If h is of b1 type, then

(5.1) Leh = — (20 + D)h + ih@ — 2025.
Ifﬁ is of hs type, then

(5.2) Leh = —(20+ D)h + ihg + 222 5.
Proof. By (2.3) and (3.12), it is easy to get that
Leh = Veh +hVE) — (VER = —(2a + 0)h + ihg — 2h%¢.

Hence, If h is of by type, h2X = A2X, If h is of b3 type, h2X = —A2X, the relations
(5.1) and (5.2) are easily obtained. O

Now we give the following further characterization.

Theorem 5.1. Let (M3,5,£,1,3) be an almost paracontact metric manifold h2 #+
0, and &, [i are smooth functions on M such that diAn = 0. Then, M?> is an almost
a-para-Kenmotsu (&, i, 7 = const.)-space if and only if for any point p € M, there
exists an open meighbourhood U of p with coordinates x1,x2,t such that & and [
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depend only on t and the tensor fields of the structure are expressed in the following
way:

2 2
. i 0 0 5 .
(5.3) ¢ = E @;dxj(@%v £= 5 n=dt, g=dt@dt+ E gijdri @ dj,

i,j=1 ,5=1
where @3,@] are functions only of t; The fundamental 2-form ® is given by
(5.4) O = e*'dry A drs,
and the non-zero components ﬁ;,f?; i U of h and B := cﬁﬁ, respectively, are

functions of t satisfying the condition B,iB;? = 6_2(20"’"3)’55; and the following
system of differential equations:

dgt dhi

i _ oii i 932 _\Ti - pi
dB;' NP =T
el —(2a + ) B} — jih},
where A = e~ 2o+t and it takes 7 — 7 if h is of by type, it takes 7 4+ 7 if h is of b3

type.

Proof. Suppose that M carries a structure locally represented as in (5.3)-(5.5).
Obviously dn = 0 and d® = 2n A ® are followed by (5.3)-(5.4), therefore, M is
an almost a-para-Kenmotsu manifold. Now we need to prove that M satisfies the
(R, i, = const.)-nullity condition. Notice that X; = 8%1 and Xo = 8%2 are
Killing vector fields and thus we get §(Vx, X;, X;) = 0 for any 7, j, k € {1,2}. Since
the distribution orthogonal to £ = % is spanned by X; and X, it follows that
Vx,X; € [¢] for all 4,5 € {1,2}. Consequently, for the Levi-Civita connection V
determined by g, we obtain

(5.6)Vx, X; = Vx, X; = —§(Xi,aX; + BX;)¢, VeX; =Vyx,&=aX; +BX,.

Using (5.5) and (5.6) and by direct computations, we get

R(Xi, X;)€ =0,
and
- - dB*
R(X;,€)6 = —VeVx§ = —alaX; + BXi) - [—
= —a’X; — 20BX; + (2a 4+ 0)BX; + jihX; — B*X;
= (k% = a®D)X; + ihX; + D@phX;.

Xy + BFVe X))

X, 6)¢ = (N —a?) X, + ihX; + Dcﬁf:LXi. Thus, M? is an almost

If h is of by type, R(X;, Vi
(K, i, = const.)-space, where & = \? — o?. If h is of b3 type,

a-para-Kenmotsu
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R(X;,6)¢ = —(5\2+a2)Xi+ﬂiLXi—|—ﬂ¢iL~Xi. Thus, M3 is an almost a-para-Kenmotsu
(K, fi, 7 = const.)-space, where & = —(\% + o?).
Suppose M3 is an almost a-para-Kenmotsu (&, fi, 7 = const.)-space, we have

(5.3)-(5.5) as similar as the proof of Theorem 6.1 in [16], we omit here. [
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