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VISUALIZATION OF LINES OF CURVATURE ON QUADRATIC
SURFACES

Vesna Velickovié

Abstract. In this paper, we give a complete survey of the lines of curvature on quadratic
surfaces, and, more generally, on tangent surfaces, general cylinders and cones. We also
apply our own software to the graphical representation of all the results we present.
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1. Introduction

Quadratic surfaces or quadrics are traditionally studied in lectures on linear
algebra and analytic geometry, and multi-variable analysis and vector analysis.
They also provide interesting examples for the study in the differential geometry of
non-trivial lines of curvature.

A curve on a surface whose tangent at each point is in a principal direction at
that point is called a line of curvature. Some differential geometrical properties of
those lines on parametric surfaces are discussed in [8] and on implicit surfaces in
[22, 2]. A good overview of lines of curvatures and their behavior near umbilical
points and principal cycles and in the neighborhood of critical points is given in
[20]. There are papers that extract lines of curvature from noisy point clouds, or
construct surfaces by lines of curvature [9, 11, 1, 7).

In this paper we study the lines of curvature on quadratic surfaces. For cylinders
and cones we consider more general cases, general cylinders and general cones. We
also deal with tangent surfaces, since the computation is similar.

Visualization strongly supports the understanding of mathematical concepts.
We developed our own software to visualize all the presented results. To be able
to represent lines precisely, we use line graphics. In this approach surfaces are rep-
resented by families of lines on them, without polygon mesh. Lines are given by
their parametric representation. In this paper we determine the mathematical ex-
pressions for the lines of curvature on quadratic surfaces and illustrate the obtained
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results. All the geometrical figures in this paper have been created by our software
package.

2. Line Graphics Approach

The main stream to represent surfaces in modern computer graphics is their ap-
proximation by the faces of polyhedra, mainly by triangulation or rectangulation,
called polygon mesh. Therefore, we do not see the original surface but we do see
the approximation of the surfaces.

A problem arises in the representation of curves on such surfaces. A graphical
representation of a curve can be fairly precise. Then, it appears as if a curve is not
really on the surface, it looks like it floats around the surface. Another approach
is to approximate the curve so that it lies on the corresponding polyhedron. But
then, the curve is not smooth and differs very much from the original curve.

This issue is of special interest for us, because we want to visualize lines of
curvature on quadratic surfaces. The visualization of curves on surfaces plays an
important role in differential geometry. As an example we mention asymptotic and
geodesic lines, lines of curvature, level lines, lines of self-intersection, or the lines of
intersection of surfaces.

This is why we use line graphics, and represent surfaces by families of lines
on them. Since we do not make any approximation of surfaces, the curves on
the surfaces can be arbitrarily accurate. The curves look smooth and they are of
printing quality. The size of figures can be measured in meters without loosing
quality.

The representation of a surface by line graphics is not the same as by wire
models. We take into account the visibility of points. The visibility of a point is
tested with respect to the surface to which it belongs, but also with respect to the
other surfaces in the scene. Furthermore, the surface includes a contour line. By a
contour point of a surface we mean a point at which the surface normal vector is
orthogonal to the projection ray. The contour line of a surface is the set of all its
contour points. Without its contour line, a surface would appear to be unfinished.

Surfaces and curves are given by their parametric representations. The visibility
of points is tested analytically. Contour points are also computed analytically. We
derive the corresponding formulae for each class of surfaces we want to represent.
The major work in line graphics is the derivation of those formulae. Once we have
obtained the formulae, we can draw curves precisely, up to the limitations of the
real numbers in the programming language. Nevertheless, if the computation is
complicated, the accuracy may depend on numerical errors, which can show if the
figure is too large. On the other hand, visual representations can show whether the
mathematics is correct.

The line graphics approach was first introduced by Endl ([3, 4]) in the late 1980’s
for some elementary geometrical bodies such as Platonic bodies, cones, cylinders or
spheres. Starting shortly afterwards, Malkowsky used the same approach for many
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topics in classical differential geometry ([14]). Later several extensions were made
in different fields, for instance in functional analysis, topology, physics, chemistry
and the engineering sciences ([5, 6, 12, 13, 16, 17, 18, 15, 19, 21]).

3. Mathematical Background
A general definition of a quadratic surface in R? in normal form is
(3.1) @7 A-Z+b-F+d=0,

where 7 = (x,y,2)7 is a column vector, b= (0,0,b3), bs € {0,—1} is a row vector,
d € {-1,0,1}, and the diagonal matrix A is

aq 0 0
A= 0 a9 0
0 0 as

For various entries in the matrix A, and value of bs and d, we get different quadratic
surfaces. There are nine real nontrivial quadratic surfaces.

For example, for a; = a—12, as = b%, az = ciz, a,b,c € R\{0}, b3 =0and d = —1,
we have the ellipsoid

2 2 2
x Y z
2tpta=t
It is easy to verify that
- 1 1 1
Z(u') = { —— cosu' cosu?, — cosu' sinu?, — sinul}
( ) { Va1 Va2 Vv as

is a parametric representation of the ellipsoid for (u',u?) € (=%, %) x (0,27).
Similarly, the hyperboloid of one sheet (a1 = a—lz, as = b%, az = —C%, b3 = 0 and

d = —1) has a parametric representation
F(u') = {L coshu' cosu?, L coshu sin u?, 1 sinh ul}
Vi Vi V=i
for (ul,u?) € R x (0,27).
We can get the parametric representations of the other quadratic surfaces in the

similar way, except for parabolic cylinder (a1 = %, az =0, a3 =0, bg = —1 and
d = 0) that has a parametric representation

Z(u') = {Lul,u{ (u1)2} , ((ur,u?) € R x (0,27))

and for the hyperbolic paraboloid (a1 = %, as = —b%, as =0,b3 =—1and d=0)
with

Sy Lul 1 W2 (uM)? — (u2)2 ul 2
) = { Sl St WP = 2 () € R R).
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Now we give a short survey of the standard background from differential geom-
etry, and introduce the necessary notations.

Let D C R? be a domain and S be a surface in R with a parametric represen-
tation

(3.2) f(uz) = f(ul,uz) = (ml(ul,u2),x2(ul,u2),:Eg(ul,uz)) ((ul,u2) e D).

We always assume that S is of class C"(D) for some r > 1, that is, the functions
2% (k = 1,2,3) in (3.2) have continuous derivatives of order r on D, where r is
chosen according to need. Furthermore, we assume that the vector—valued functions
7, = 07/0u” (k= 1,2) are linearly independent on D. Thus the tangent plane to
S spanned by the vectors 7 (u®) and #a(u’) exists at every point of S. The vectors

((u',u?) € D)

fl (ul) X fg (ul)
Z
are called surface normal vectors of S (Figure 3.1).

X,  Tangent plane

Tangent plane /| ‘X N 7
=~
/
N>

F1G. 3.1: The vectors Z, tangent planes and surface normal vectors

The first and second fundamental coefficients of a surface S are denoted by g;x
and L, (i,k =1,2) , that is, if S has a parametric representation (3.2), then

0%

gir(w?) = Z;(u?) o Fp(u?) and L, (u!) = N(u’) e Zyy.(u!) where &y = DDk

for ¢,k = 1, 2; we also write
9(u?) = g11(u?)gaz(w’) — g3, (v’) and L(w’) = Ly (u?) Lo (u?) — L3,(u?).

It follows from g(u?) = (&1 (u’) x Z2(u?))? that g(u?) > 0 for all (u!,u?) € D.
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Let S be a surface with a parametric representation (3.2) and v be a curve on
S given by Z(s) = Z(u'(s)) for s € I C R where s is the arc length along 7. We
denote derivatives with respect to s by a dot. The vector of curvature f(s) of v at
s is split into two components (left on the figure 3.2)

—

Z(s) = kn(s)N(u'(s)) + rg(s)E{u'(s)) where t{u'(s)) = N(u'(s)) x Z(s).

The values k,(s) and k4(s) are called the normal and geodesic curvature of «y at s.

At any point P on a surface, there corresponds one and only one value of the
normal curvature to any direction ([10, Satz 5.1,p. 46]). The extreme values of the
normal curvature are called principal curvatures, and the directions corresponding
to the principal curvatures are called principal directions (right on the figure 3.2).
It is well known that at every point of a surface there are two orthogonal principal
directions.

Plane spanned by # and N

Curve X(s)

Fia. 3.2: Left: The components of a vector of curvature;
Right: Principal directions at a point

A curve on a surface which has the property that its tangent at each of its points
P coincides with a principal direction at P is called line of curvature (Figure 3.3).

The next result is well known and useful to determine the lines of curvature.

Proposition 3.1. ([10, (5.12)])
The lines of curvature are given by the solutions of the differential equation

(3.3)

det Llldul —|— ngdu2 glldul —|— 912du2
Loydut + Loodu? ggldul + ggzdu2
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F1a. 3.3: Surface generated by the surface normal vectors along a line of curvature
on an elliptical cone

4. Lines of Curvature on Tangent Surfaces,
General Cylinders and General Cones

In this section, we determine and represent the lines of curvature on the quadratic
surfaces that are cylinders or cones. Even more, we consider general cylinders
and general cones. Furthermore, we determine the lines of curvature on tangent
surfaces, since the computation is similar. General cylinders, general cones and
tangent surface are special kinds of ruled surfaces. There are shown on Figure 4.1.

Let v be a curve with a parametric representation ¢(t) (¢t € 1 C R). Further-
more, for every ¢t € Iy, let Z(t) be a unit vector. Then a ruled surface is generated
by the movement along v of the straight lines defined by the vectors Z(t). We
put u' = ¢ and obtain the following parametric representation for a ruled surface
(Figures 4.2 and 4.3)

(4.1) F(u') = gut) +u?2wt), ((u',v?) € R=1 x Iy).

It follows that

Lig(u?) = 2/ (ul) %\/%w,
Los(u’) = 0 and L(u?) = —L2,(u?).
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Fia. 4.1: Left: A general cone; Right: A tangent surface; Down: A general cylinder

It is easy to see that, in the special case of general cylinders, cones and tangent
surfaces, we have

7' (u') e (Z(u') x 2'(u')) = 0 for all (u',u?) € R,
and the differential equation (3.3) for the lines of curvature reduces to

L1 (uf)du® (gr2(u?)dut + goz(u)du?)
= L1 (u')du' ((§'(u') ® Z(u'))du' + du?) = 0.

Since L1;(u') # 0 except for the trivial case of a plane, the u?-lines are lines of
curvature. The second family of lines of curvature is given by

(4.2) w2 (ul) = —/g'(ul) o () du.

If the surface is a general cylinder, then Z(u') = ¢, a constant vector. We obtain
from (4.2)

(4.3) u?(u') = —Ce §(u') + d where d € R is a constant (Figure 4.4).
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F1G. 4.2: A ruled surface with y(u!) = 4cosu! and
z(ut) = (cosu!sin4ul, sinu! sin 4ut, cos4ul) for (u',u?) € [0,27] x [0, 3]

FIG. 4.3: Representation of the normal curvature along a curve F(u’(t)) on a torus
as §(t) = £(u'®) — kn (W' (t)) - N(u'(t))

If the surface is a general cone, then let ¢ # 7(u'!) denote the position vector of
the point of intersection of all straight lines of the ruled surface. We may assume
¢ = 0, for otherwise we apply a linear transformation of the coordinate system.
Putting Z(u!) = 7(u')/||7(ul)]|, we obtain from (4.2)

g'(u') e g(ul) S 1
(4.4) u?(u') = —/_,7 du” = [[g(u’)|| +d
[g(ub)]]
where d € R is a constant (Figure 4.5).

If the surface is a tangent surface, then Z(u') = 7'(u')/||%’(u')||. We obtain
from (4.2)

20, 1\ _ gl(ul)’g/(ul) ul = — 7 () w! (Fieur
@) )= - [T et = — [t (Figure ),

that is, u? is the arc length along the curve v given by #(u').
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FiG. 4.5: Lines of curvature on two general cones
Left: Lines of curvatures coincide with parameter lines
Right: General case

The following well-known result is useful for finding the lines of curvature on
quadratic cylinders.

Proposition 4.1. ([10, Problem 5.7, p. 41])
The lines of curvature of a surface coincide with its parameter lines if and only if
g12 =0 and L12 = 0.

Example 4.1. Let a and b be positive real numbers. For the elliptic, parabolic and
hyperbolic cylinder with parametric representations

#F(u') = (acosu?, bsinu?, u') (u',u*) € D =R x (0,27)),
Hu) = (- ulud, (@) ((ul,u?) € D=RY),
Z(u') = (£acoshu?, bsinhu? u') ((u',u?) € D =R?),

respectively, we have gi12 = 0 and L2 = 0. Hence the parameter lines are lines of curvature
by Proposition 4.1.
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F1G. 4.6: Lines of curvature on a tangent surface

We close this section with giving the lines of curvature on elliptic and hyperbolic
cones.

Example 4.2. Let a and b be positive real numbers.
(a) We consider the elliptic cone with a parametric representation

(4.6) Z(u') = (au' cosu®, bu' sinu®, u') ((u',u*) € D = (0,00) x (0,27)).
Putting v = u?, 7*(v*') = (acosu™,bsinu**, 1) and u*? = (1 —u")||§7* (u?)||, we obtain
the parametric representation

(47) ) = (1o ) )

for the elliptic cone. The lines of curvature are the v*?~lines with respect to the parametric
representation (4.7), that is, the u'-lines with respect to the parametric representation
(4.6), and by (4.4), the curves given by u*?(u*') = ||7*(u*')|| + d where d € R is a
constant. We put £ = —d and obtain from the transformation formulae for the parameters
(Figure 4.7)

*2

o2y 4 W g 4
0 =1 iy = 1= (14 )
k

Va2 cos? u? + b2 sin® u? + 1

, for k > 0, since u' > 0.

(b) We consider the hyperbolic cone with a parametric representation
Z(u') = (£au' coshu?, bu' sinh u?, u') ((u',u®) € D+ (0,00) x R).

As in Part (a), we obtain that the lines of curvature are the u'-lines and the lines given
by (Figure 4.8)
k

= for £ > 0.
\/@2 cosh? u2 + b2 sinh? u2 + 1

ul (uz)
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FiG. 4.7: Lines of curvature on an elliptic cone

F1G. 4.8: Lines of curvature on a hyperbolic cone

5. Lines of Curvature on Hyperbolic Paraboloids

In this section, we determine and represent the lines of curvature on hyperbolic
paraboloids.

Example 5.1. Let a and b be positive real numbers. Here we consider the hyperbolic
paraboloid with a parametric representation

(5.1) Z(u') = (au', b, (uh)? — (©®)?) ((u',u?) € D = R?).
We introduce new parameters u** (i = 1,2) by

(5.2) u' = v +u*? and v® = u*t —u*?.

Then we may represent the hyperbolic paraboloid by

f*(u*z) _ (a(u*l +’U,*2),b(u*1 _ ) 4u*1u*2) ((u*l’u*Z) c ]RZ)
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The fundamental coefficients are given by

grl(u*i) — a2 + b2 + 16(11*2)27 gikz(u*i) — a2 _ b2 + 16u*1u*27
g;z(u*z) — a2 +b2 + 16(u*1)2;
L (u™) = Li;(u*) = 0 and Liy(u**) = —8ab.

We omit the arguments u**. Then the differential equation (3.3) reduces to
(5.3) L1, (d?f2 (gfzdu*l + ggzdu*2) — du™! (gfldu*l + gfzduﬂ)) =0.
Since L}y # 0 on R?, equation (5.3) is equivalent to

g2 (du)? + (gt2 — gia) du™ du*® — g5y (du™)® = g3 (du*?)’ — gy (du™t)? = 0.

/ du*Z B :t/ du*l

We obtain from this

Therefore we have

4 *2 4 *1
arsinh <u7> = tarsinh <u7> + C where C' € R is a constant,

1/(12_‘_1)2 1/(12_‘_1)2
and, putting ¢ = sinh C, u**(u*") = +u™'V1+ 2 + (c¢/4)\/a? + b2 + (4u*1)2. Hence a
parametric representation for the lines of curvature on the hyperbolic paraboloid is (Figure
5.1)

u'(t) = (1£VI+e)t+ Va2 + b2+ 1612
(t € R).

w(t) = (1FVI+e)t—$vVa® + b2+ 1612

Fi1G. 5.1: Lines of curvature on a hyperbolic paraboloid
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6. Triple orthogonal systems

Triple orthogonal systems of surfaces are often useful to find the lines of curvature.

Let g(u',u?,u?) be of class C?, the vectors i, = 95/9u* (k = 1,2,3) be linearly
independent, and g, e ; = 0 (i # k). Then the surfaces v/ = const make up three
families of mutually orthogonal surfaces, a so—called triple orthogonal system.

Example 6.1. Let
Fu',u? u®) = (u' cosu® cosu®, u' cosu” sinu®, u' sin u?)
((U17 u27U3) € (07 OO) X (_71—/27 7T/2) X (07 27T))

For u! =7 > 0, we obtain the sphere of radius r centred at the origin. For u? = const, we
obtain a cone with its vertex in the origin. For u® = const, we obtain a plane orthogonal
to the z'2®~ plane. Furthermore, ¥ is of class C2,

2 3 2. 3 . 2
f(u',u?, u®) = (cosu® cosu®, cosu’ sinu®, sinu?),

1 . 2 3 1 . 2 . 3 1 2
Fo(u',u?, u®) = (—u'sinu®cosu®, —u'sinu’sinu®, u" cosu?),

1 2.3 1 2 3
Fa(u',u?, u®) = (—u' cosu’sinu®, u' cosu® cosu®,0),

and it is easy to see that g e ij; = 0 for ¢ # k. Consequently the surfaces are members of
a triple orthogonal system (Figure 6.1).

Fi1G. 6.1: The triple orthogonal system of Example 6.1

The following result is well known.
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Theorem 6.1. Dupin ([10, Satz 6.9, p. 63]) The surfaces of a triple orthogonal
system intersect in lines of curvature.

7. Lines of curvature on ellipsoids and hyperboloids

In this section, we apply Dupin’s theorem to find the lines of curvature on ellipsoids
and hyperboloids of one and two sheets.

We need the following result.

Lemma 7.1. Leta,b,c € R with0 < a? < b? < ¢ be given. We consider the class
S of surfaces given by the equations

.’L‘l 2 .%'2 2 .%'3 2
(7.1) g\ = a(z _))\ b(2 _))\ 0(2 —)/\

—1=0 (A#d% b 2.

If A\ < a2, then the surfaces are ellipsoids. If a> < X\ < b2, then the surfaces are
hyperboloids of one sheet. If b> < X\ < c?, then the surfaces are hyperboloids of
two sheets. There is one and only one surface of each family through each point
(1,22, 23) € R3\ {0}. The class S is a triple orthogonal system.

Proof. For any fixed point (z!,22,23) € R?\ {0}, the function g is continuous
on R\ {a?,b% %}, and

li A) =1 A) =1 A) =
Jm_ o) = lm o) = I g(h) = e
i g = g o) = T o) = e
Jim g(d) = lim g¢(d) =-1.

Thus there are values A1, A2, A3 € R with
M <a? <X <b?<A3<c?and g\) =0 (k=1,2,3).

On the other hand, g has at most three zeros, since g(A) = 0 is equivalent to a cubic
equation.

The surface normal vector at a point (z!,z2,2%) € R?\ {0} to the surface given by
the equation g(A;) = 0 has the direction

1 2t 22 3
—grad g(Ax) =
2gra g( k) (Q2—Ak,b2—Ak,C2—)\k),
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and we have for i # k

xt x? x3 . xt x? x3
a2 = N2 =)\ =\ a2 =N, b2 =X 2=\

B ($1)2 (:EQ)Q ($3)2
T @A) B (@)@ A

_ 1 ($1)2 B ($1)2 N (3:2)2 B ($2)2 N ($3)2 B (3:3)2
_)\i_)\k a2—)\i a2—)\k bz—)\i bz—)\k C2—)\i C2—)\k

1
YD

(g(Ai) —g(Ax)) = 0.

Thus the equations in (7.1) define a triple orthogonal system (Figure 7.1). O

3
N
0

§¢‘~‘ \
’/77//77776
////A

SN
D ;‘s\

F1G. 7.1: A triple orthogonal system of ellipsoids and hyperboloids of one and two
sheets

We now apply Lemma 7.1 and Dupin’s theorem to find the lines of curvature on
ellipsoids and hyperboloids of one and two sheets.
Example 7.1. Let the point (z',2% z3) € R*\ {0} be given. We put
(7.2) $(A) = (a® = N)(B” = A)(¢* = Ng(N)
where g is the function defined in (7.1). Thus we have

(7.3) $(A) = (')’ (6" = N = X) + (2°)*(@® = N)(® = ) +
(7.4) (@*)2(a® = N = N) — (a® = N) (B> = N)(? = \)
and ¢(A) = 0 is a cubic equation with zeros Ay (k = 1,2, 3), where

M<a® < <b<Az< i
Consequently we may write

(7.5) d(A) = (A= A) (A= A2)(A = A3).
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We choose A = a?, and obtain from (7.3) and (7.5)
$(a”) = (z")*(b” = a®)(c* — a®) = (a® = M) (a” = A2)(a” = As),

hence

(a2 - )\1)(a2 - )\2)((12 —A3)

(7.6) ()" = (a2 — b2)(a2 — )

and similarly

_ (0P = M) (0 = A2) (b — As)
@) -)

_ (02 - )\1)(02 — )\2)(02 — )\3)
@-a)@ -

(7.7) ()

(7.8) (x3)?

If we choose A; = const, then the identities in (7.6), (7.7) and (7.8) yield a parametrization
of the surface given by the equation g(A;) = 0 with respect to the values A\; and Ap. We
put

a=a>-Xi, B=b—-X, v=c-\,

u' =X — A and u? = Mg — A,

Then the surface given by the equation

has parametric representation

The parameter lines with respect to this parametric representation are lines of curvature
(Figures 7.2 and 7.3).
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FiG. 7.3: Left: Lines of curvature on a hyperboloid of one sheet;
Right: Lines of curvature on a hyperboloid of two sheets

REFERENCES

1. L. BIARD, R.T. FAROUKI, N. SZAFRAN: Construction of rational surface patches
bounded by lines of curvature. Computer Aided Geometric Design, 27(5), (2010),
359-371.

2. W.J. CHE, J.C. PAuL, X.P. ZHANG: Lines of curvature and umbilical points
for implicit surfaces. Computer Aided Geometric Design, 24('7) (2007) 395409.

3. K. ENDL and R. ENDL:  Computergraphik 1 — Eine Software zur Geomerie in
Turbo—Pascal. Wiirfel-Verlag, Biebertal-Vetzberg, 1989.

4. K. ENDL and R. ENDL:  Computergraphik 2 — FEine Software zur Geomerie
objektorientierter Programmierung mit Turbo—Pascal. Wiirfel-Verlag, Biebertal—
Vetzberg, 1991.

5. M. FAILING: Entwicklung numerischer Algorithmen zur computergrafischen
Darstellung spezieller Probleme der Differentialgeometrie und Kristallografie. Ph.
D. Thesis, Giessen, Shaker Verlag Aachen, 1996.



28

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

V. Velickovié

. M. FAILING and E. MALKOWSKY:  Ein effizienter Nullstellenalgorithmus zur

computergrafischen Darstellung spezieller Kurven und Fldchen. Mitt. Math. Sem.
Giessen 229 (1996), 11-28.

W.X. Huang, H.J.L. Wu, G.J. WANG: Constructing PDE-based surfaces
bounded by geodesics or lines of curvature. Computers and Mathematics with
Applications, 65(4), (2013), 673-681.

H.K. Joo, T. YAazaKI, M. TAKEZAWA, T. MAEKAWA:  Differential geometry
properties of lines of curvature of parametric surfaces and their visualization.
Graphical Models 76 (2014), 224238.

E. KALOGERAKIS, D. NOWROUZEZAHRAI, P. SIMARI, K. SINGH: FEuxtracting lines
of curvature from noisy point clouds. Computer Aided Design, 41(4) (2009), 282-
292.

D. LAauGewiITZ: Differentialgeometrie. B. G. Teubner Verlag, 1970.

C.Y. L1, R.H. WaNG, C.G. ZHU:  An approach for designing a developable
surface through a given line of curvature. Computer Aided Design 45(3) (2013)
621627.

E. MALKOWSKY:  An open software in OOP for computer graphics and some
applications in differential geometry. Proceedings of the 20th South African Sym-
posium on Numerical Mathematics, (1994) 51-80

E. MALKOWSKY: Visualisation and animation in mathematics and physics. Pro-
ceedings of the Institute of Mathematics of NAS of Ukraine (50)(3) (2004), 1415
1422.

E. MALKOwWsSKY and W. NICKEL: Computergrafik in der Differentialgeometrie.
Vieweg—Verlag, Braunschweig, 1993.

E. MALKOWSKY, F. OzcER and V. VELIGKOVIG:  Some Spaces Related to Cesaro
Sequence Spaces and an Application to Crystallography. MATCH Commun. Math.
Comput. Chem., 70(3) (2013), 867-884.

E. MALKOWSKY and V. VELICKOVIC: Analytic transformations between surfaces
with animations. Proceedings of the Institute of Mathematics of NAS of Ukraine
(50)(3) (2004), 1496-1501.

E. MALKOWSKY and V. VELICKOVIC:  Topologies of some new sequence spaces,
their duals, and the graphical representations of neighborhoods. Topology and its
Applications, 158(12) (2011), 1369-1380.

E. MALKOWSKY and V. VELICKOVIC:  Some New Sequence Spaces, Their Du-
als and a Connection with Wulff’s Crystal. MATCH Commun. Math. Comput.
Chem., 67(3) (2012), 589-607.

E. MALKOWSKY and V. VELICKOVIC:  The duals of certain matriz domains
of factorable triangles and some related visualisations. Filomat, 27(5) (2013),
821829.

J. SOTOMAYOR, R. GARCIA: Lines of Curvature on Surfaces, Historical Com-
ments and Recent Developments. Sao Paulo Journal of Mathematical Sciences
2(1) (2008), 99143

V. VELICKOVIC:  Vizualizacija u matematici pomodu objektno orijentisanog pro-
gramskog paketa za linijsku grafiku. Ph. D. Thesis, University of Ni§, 2012

X.P. ZHANG, W.J. CHE, J.C. PAauL: Computing lines of curvature for implicit
surfaces. Computer Aided Geometric Design, 26(9) (2009), 923-940.



Visualization of Lines of Curvature on Quadratic Surfaces

Vesna Velickovié¢

University of Nis

Faculty of Sciences and Mathematics
Department of Computer Science
Visegradska 33

18000 Ni§, Serbia

vesna@pmf.ni.ac.rs

29



