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Abstract. The aim of the paper is to characterize generalized Sasakian-space-forms
satisfying certain curvature conditions on the m-projective curvature tensor. We study
m-projectively semisymmetric, m-projectively flat, £&-m-projectively flat, and m-proje-
-ctively recurrent generalized Sasakian-space-forms. W*.S = 0 and W*.R = 0 on
generalized Sasakian-space-forms are also studied.
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1. Introduction

Studying the almost Hermitian manifold, Alfred Gray, a well-known geometri-
cian, formulated a principle according to which the so-called curvature identities
for the Riemann-Christoffel tensor are key to understanding differential-geometric
properties of such manifolds [I3]. Many papers are devoted to the study of geomet-
ric consequences of these identities and to their analogs for almost contact metric
structures. As a continuation of this line of research, we consider some curvature
properties of generalized Sasakian-space-forms regarding the m-projective curvature
tensor.

A generalized Sasakian-space-form was defined by P. Alegre, D. E. Blair and
A. Carriazo in [I] as an almost contact metric manifold (M?"*1, ¢, £, n, g) whose
curvature tensor R is given by

(1.1) R = fiR1 + f2R2 + f3Rs,
where f1, fa, f3 are some differential functions on M?"*+! and

Ri(X,Y)Z =g(Y, 2)X — g(X, Z)Y,

Ry(X,Y)Z = g(X,0Z)¢Y — g(Y,0Z)0X + 29(X, 0Y )¢ Z,
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R3(X,Y)Z =n(X)n(2)Y —n(Y)n(Z)X + g(X, Z)n(Y)§ — g(Y, Z)n(X)E,

for any vector field X, Y, Z on M?"*!. In such a case we denote the manifold
as M(f1, f2, f3). This kind of manifold appears as a generalization of the well-
known Sasakian-space-forms by taking f; = 0'23, fo=fs = Cf. It is known
that any three-dimensional («, 8)—trans-Sasakian manifold with «, depending
on £ is a generalized Sasakian-space-form [2].P.Alegre, A.Carriazo, Y.H.Kim and
D.W.Yoon give results in [3] about B.Y.Chen’s inequality on submanifolds of gen-
eralized complex space-forms and generalized Sasakian-space-forms. R. Al-Ghefari,
F.R. Al-Solamy and M.H.Shahid analyse in [4] and [5] CR-submanifolds of gen-
eralized Sasakian-space-forms. In [9], U.K.Kim studied conformally flat general-
ized Sasakian-space-forms and locally symmetric generalized Sasakian-space-forms.
U.C.De and A.Sarkar [7] studied generalized Sasakian-space-forms regarding the
projective curvature tensor. On the other hand, in 1971, G.P.Pokhariyal and
R.S.Mishra [I2]defined a tensor field W* on a Riemannian manifold as

(1.2)

1
/W*(XaYvZa U) :/R(Xv Y7 Za U) -

2(n—1)
+9(Y,2)S(X,U) - g(X, 2)S(Y, U)],

[S(Y7 Z)g(X’ U) - S(X7 Z)g(Ya U)

where 'W*(X,Y,Z,U) = g(W*(X,Y)Z,U) and 'R(X,Y, Z,U) = g(R(X,Y)Z,U).
Such a tensor field W* is known as m-projective curvature tensor. Later, R. H.Ojha
[10] defined and studied the properties of the m-projective curvature tensor in
Sasakian and Kdhler manifolds. He also showed that it bridges the gap between
the conformal curvature tensor, conharmonic curvature tensor and concircular cur-
vature tensor on one side and the H-projective curvature tensor on the other.

Motivated by the above studies, we study here the flatness and symmetry prop-
erty of generalized Sasakian-space-forms regarding the m-projective curvature ten-
sor. The paper is organized as follows. In section 2, some preliminary results are
recalled. In section 3, we study m-projectively semisymmetric generalized Sasakian-
space-forms. Section 4 deals with m-projectively flat generalized Sasakian-space-
forms. £-m-projectively flat generalized Sasakian-space-forms are studied in Section
5 and necessary and sufficient condition are obtained for a generalized Sasakian-
space-form to be £-m-projectively flat. In Section 6, m-projectively recurrent gen-
eralized Sasakian-space-forms are studied. Section 7 is devoted to the study of
generalized Sasakian-space-forms satisfying W*.5 = 0. The last section discusses
generalized Sasakian-space-forms satisfying W*.R = 0.

2. Preliminaries

If on an odd dimensional differentiable manifold M?2"*1! of the differentiability class
C™1 there exists a vector-valued real linear function ¢, a 1-form 7, the associated
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vector field £ and the Riemannian metric g satisfying

(2.1) P*X = =X +1(X)& 6(€) =0,
(22) 77(5) = 1’9(X7 f) = U(X)ﬂ?(ébX) =0,
(2.3) 9(¢X,9Y) = g(X,Y) — n(X)n(Y),

for arbitrary vector fields X and Y, then (M?"+1 g) is said to be an almost contact
metric manifold [6] and the structure (¢, &, , g) is called an almost contact metric

structure to M?" 1. In view of the equations (2.1)), (2.2) and (2.3), we have

(2.4) 9(¢X,Y) = —g(X, 9Y), g(¢X, X) =0,

(2.5) (Vxn)(Y) = g(Vx&,Y).
Again we know that [I] in a (2n + 1)-dimensional generalized Sasakian-space-form

(2.6)
R(X.,Y)Z = fi{9(Y, 2)X — g(X, 2)Y}

+ fo{9(X, 02)pY — g(Y,0Z)pX + 29(X, ¢Y ) Z}
+ fs{In(X)n(2)Y —n(Y)n(Z2)X + g(X, Z)n(Y)E — g(Y, Z)n(X)E}

for all vector fields X, Y, Z on M?"*! where R denotes the curvature tensor of
M2+l

(2.7)  S(X,Y)=(2nfi+3fo— f3)9(X,Y) — (3fa + (2n — 1) f3)n(X)n(Y),
(2.8) QX = (2nf1 +3f2 — f3)X — Bf2 + (2n — 1) f3)n(X)¢E,

(2.9) r=2n2n+1)f1 + 6nfo —4dnfs).

For generalized Sasakian-space-forms we also have

(2.10) R(X,Y)E = (f1 — f3)[n(Y)X = n(X)Y],
(2.11) R(§, X)Y = —R(X,8)Y = (f1 — f3)[9(X,Y)§ = n(Y)X],
(2.12) n(R(X,Y)Z) = (f1 = fs)n(X)g(Y, Z) = n(Y)g(X, Z)],

(2.13) S(X,8) = 2n(f1 — f3)n(X),
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(2.14) Q¢ =2n(f1 — f3)§,
where @ is the Ricci operator, i.e. g¢(QX,Y) = S(X,Y).
A generalized Sasakian space-form is said to be n-Einstein if its Ricci tensor S
is of the form
(2.15) S(X,Y) =ag(X,Y) + bn(X)n(Y),

for arbitrary vector fields X and Y, where a and b are smooth functions on M?"*1,
For a (2n+1)-dimensional (n > 1) almost contact metric manifold the m-projective
curvature tensor W* is given by [12]

(2.16)

W*(X,Y)Z = R(X,Y)Z——

2(n—1)

The m-projective curvature tensor W* for a generalized Sasakian-space-form is given
by

[S(Y, 2)X=S(X, Z2)Y +g9(Y, 2)QX —g(X, Z)QY].

(2.17)
* _ (fl - f ) 1
W*(X,Y)¢ = —ﬁ[ﬁ(y)X —n(X)Y] - m[n(y)QX —n(X)QY],
(2.18) n(W*(X,Y)E) =0,
(2.19)
wHev)z= -7y e w2y - L (s 2)e - n(2)QY]
’ (n—1) ’ 2(n—1) ’ ’
a0 (€1)2) ==Ly v. 2) = 0y 0 2)
(2.20) .
- S S0 2) = 2l = F(¥n(2)]
and
. _ (h=1) .
WOV (X,1)2) = =P gV, 20(X) = 9(X, 2p0(Y)
(2.21) .
- S IS0 20 - S(X, Z)n( )L

3. m-Projectively Semisymmetric Generalized Sasakian-Space-Forms

Definition 3.1. A (2n+1)—dimensional (n > 1) generalized Sasakian-space-form
is said to be m-projectively semisymmetric [7] if it satisfies (R(X,Y).W*)(U,V)Z =
0, where R(X,Y’) is to be considered a derivation of the tensor algebra at each point
of the manifold for tangent vectors X, Y and W* is the m-projective curvature tensor
of the space-forms.

Theorem 3.1. If a (2n + 1)—dimensional (n > 1) generalized Sasakian-space-
form is m-projectively semisymmetric then either fi = fs or M?"*1 is an Einstein
manifold.
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Proof: Let us suppose that the generalized Sasakian-space-form is m-projectively
semisymmetric. Then we can write

(3.1) (R(&, X).W*)(Y, Z)U = 0.

The above equation can be written as
(3.2)

In view of the equation the above equation reduces to
(f1 = fB)g(X, WY, 2)U)§ —n(W*(Y, Z)U)X — g(X, Y)W (¢, 2)U
(33) +n(Y)WHX, 2)U — g(X, Z2)W*(Y, U + n(Z)W* (Y, X)U
—g(X,U)W*(Y, Z)§ + n(U)W*(Y, Z)X] = 0.
Now, taking the inner product of the above equation with £ and using the equation
, we get
(fi = BIW Y, Z, U, X) = n(W*(Y, Z)U)n(X) — g(X,Y)n(W*(&, 2)U)
(34)  +nY)n(W*(X, 2)U) — g(X, Z)n(W* (Y, )U) + n(Z)n(W*(Y, X)U)
—9(X,U)n(W*(Y, 2)§) + n(U)n(W*(Y, Z2)X)] = 0,

which on using the equations (2.18)), (2.20)) and (2.21]) gives

(i = BIRY,Z,U,X) - {9(2,0)S(Y, X) —g(Y,U)S(X, Z)

2(n—1)
(3.5) +{S(X, 2)n(Y) = S(X, Y)n(2)1n(U) + 2n(f1 — fs){n(2)g9(X,Y)
a0 2000} + L (2,096, ¥) = oV, D)X, 2

=0.

Putting Z = U = e; in the above equation and taking summation over i, 1 <1 <
2n + 1, we get

(3.6) (f1 = BISXY) + (=n)(f1 — f3)9(X,Y)] = 0.

This gives either f; = f3 or
S(Xa Y) = n(fl - f3)g(X7 Y)7

which shows that M?"*! is an Einstein manifold. This completes the proof.

4. m-Projectively Flat Generalized Sasakian-Space-Forms

Theorem 4.1. A (2n + 1)—dimensional (n > 1) generalized Sasakian-space-form
is m-projectively flat if and only if f1 = 2(?17% = f3 provided any arbitrary vector
field Z is not pointwise collinear with the characteristic vector field €.
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Proof: For a (2n+1)—dimensional (n > 1) m-projectively flat generalized Sasakian-
space-form, we have from the equation (2.16)

1

(41) R(X,Y)Z = T

SY,2)X -S(X,2)Y +9(Y,2)QX — g(X, Z)QY].

In view of the equations (2.7) and (2.8) the above equation takes the form

R(X.Y)Z = gesl2(nfy + 32 = )oY, 2)X —g(X.2)Y)

= @Bfe+ @2n = 1)f3){n(Y)X —n(X)Y}n(Z)
— (3f2+ 2n — 1) fs){g(Y, Z)n(X) — 9(X, Z)n(Y)}¢].
By virtue of the equation the above equation reduces to
eV, 2)X — (X, 2)Y} + fo{9(X, 62)0Y — g(Y, 0Z)pX
+29(X, Y )0 Z} + fs{n(X)n(2)Y —n(Y)n(Z2)X + g(X, Z)n(Y)¢
(43) —g(Y,Z)n(X)&} = ﬁp(?nﬁ +3f2— fs){g(Y, 2)X — g(X, 2)Y'}
= Bfa+ (2n = 1)f3){n(Y)X —n(X)Y}n(Z)
— (3f2+ (2n = 1) f3){9(Y, Z)n(X) — g(X, Z)n(Y)}].

Now, replacing Z by ¢Z in the above equation, we obtain
Fi{9(Y,02)X — g(X,02)Y} + fo{—9(X, Z)9Y + g(Y, Z)$pX

= 29(X,0Y)Z +n(X)n(Z)6Y —n(Y)n(Z)X + 21(Z)g(X, ¢Y )&}
(4.4) + f3{9(X,0Z)n(Y) — g(Y,0Z)n(X)}¢

= SR+ 3 — R){a(V.62)X — g(X.02)Y)

= (3f2+ 2n — Dfs){g(Y,¢Z)n(X) — g(X,6Z)n(Y) }¢],

which by putting X = £ takes the form

=2(f1 = f3)9(Y,9Z)¢ = 0.

(4.2)

Then either

(4.5) fi=1Is

or

(4.6) 9(Y,62) = 0.

Suppose g(Y,$Z) = 0. Replacing Z by ¢Z in the equation yields

9(Y,¢*Z) =0,
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which implies
Z =n(Z)§.

This shows that Z is collinear with &.
Again replacing X by ¢.X in the equation (4.3), we get

S{g(Y, 2)oX — g(¢X, Z)Y'} + fo{g(X, Z2)¢Y — n(X)n(Z)eY

+9(Y,02)X — g(Y, 0Z)n(X)§ + 29(X,Y)oZ — 2n(X)n(Y)9Z}

1

= m[2(2nfl +3f2 = f3){9(Y, 2)¢X — g(¢X, Z)Y'}

= (Bf24 2n— 1) fs)n(Y)n(Z2)pX + (3f2 + (2n — 1) f3)g(6 X, Z)n(Y )E].
Now putting Y = £ in the above equation, we obtain

[(2n+ 1) f1 +3f2 = 3f3](n(2)9X — g(¢X, Z)§) = 0.
Since n(Z2)¢X — g(¢X, Z)€ # 0 in general, we obtain

(4.8) (2n+1)f1+3f2—3f3=0.
From the equations (4.5) and (4.8)), we have
3f2
4.9 = —".
(4.9) h 2(1—n)
Thus, in view of the equations (4.5)) and (4.9)), we have
3fs
4.10 = — = f3.
(4.10) f1 201 —n) f3

Conversely, suppose f; = 25”:2”) = f3 satisfies a generalized Sasakian-space-form,

then we have

(4.11) S(X,Y) =0,

(4.12) QX =0.
Also, in view of the equation ([2.16)), we have
(4.13) 'WH(X,Y,Z,U) ="R(X,Y, Z,U),

where 'W*(X,Y,Z,U) = gW*(X,Y)Z,U) and 'R(X,Y,Z,U) = g(R(X,Y)Z,U).
Putting Y = Z = e; in the equation (4.13]) and taking summation over i, 1 < i <
2n + 1, we get

2n+1 2n+1
(4.14) > WX eiye,U) = Y 'R(X,ei,e:,U) = S(X,U).

=1 =1
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In view of the equations (4.13)) and (2.6), we have

(4.15)
'WH(X,Y, Z,U) = fi{g(Y, Z)g(X,U) — g(X, Z)g(Y,U)}
+ fo{9(X,02)g(¢Y,U) — g(Y, 02)g(¢ X, U)
+29(X, 8Y)g(0Z,U)} + fa{n(X)n(Z)g(Y,U)
—n(Y)n(2)g(X,U) + g(X, Z)n(Y)n(U) — g(Y, Z)n(X)n(U)}.

Now, putting ¥ = Z = e¢; in the above equation and taking summation over i,
1<i<2n+ 1, we get

2n+1
> WX, eie,U) = 2nf1g(X,U) + 3f29(6X, 6U)

(4.16) P

= f3{(2n = )n(X)n(U) + g(X,U)}.

In view of the equations (4.16)), (4.14)) and (4.11)), we have

(4.17)  2nf19(X,U) 4 3f29(¢X, oU) — fs{(2n — 1)n(X)n(U) + g(X,U)} = 0.

Putting X = W = ¢; in the above equation and taking summation over ¢, 1 < ¢ <
2n+ 1, we get f; = 0. Then in view of the equation (4.10), fo = f35 = 0. Therefore,
we obtain from the equation ([2.6)

(4.18) R(X,Y)Z =0.

Hence in view of the equations (4.18]), (4.11)) and (4.12)), we have W*(X,Y)Z = 0.

This completes the proof.

5. ¢-m-Projectively Flat Generalized Sasakian-Space-Forms

Definition 5.1. A (2n+1)—dimensional (n > 1) generalized Sasakian-space-form
is said to be &-m-projectively flat [14], if W*(X,Y)¢ =0 for all X,Y € TM.

Theorem 5.1. A (2n + 1)—dimensional (n > 1) generalized Sasakian-space-form
is £-m-projectively flat if and only if it is an n— Einstein manifold.

Proof: Let us consider a generalized Sasakian-space-form is {-m-projectively flat,
ie. W*(X,Y)& =0. Then in view if equation (2.16]), we have

(5.1)  R(X,Y)§ = [S(Y,6)X = 5(X, Y +9(Y,§)QX — g(X, QY]

2(n—1)
By virtue of the equations (2.2)), (2.10) and (2.13) the above equation reduces to

(5.2) n(Y)QX —n(X)QY = =2(f1 — f3)[n(Y)X —n(X)Y],
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which by putting Y = £ gives

(5.3) QX =2(f1 — f3)[-X + (n+ 1)n(X)¢].
Now, taking the inner product of the above equation with U, we get
(5.4) S(X,U) =2(f1 = fs)[=9(X,U) + (n+ 1)n(X)n(U)],

which shows that generalized Sasakian-space-form is an 7n-Einstein manifold. Con-
versely, suppose the equation (5.4) is satisfied. Then by virtue of the equations
(5.3) and (5.1), we have W*(X,Y )& = 0. This completes the proof.

6. m-Projectively Recurrent Generalized Sasakian-Space-Forms

Definition 6.1. A non-flat Riemannian manifold M?2"*! is said to be m-projectively
recurrent if its m-projective curvature tensor W* satisfies the condition

(6.1) VIW*=Ag W*,
where A is a non-zero 1-form.

Theorem 6.1. If a (2n+1)—dimensional (n > 1) generalized Sasakian-space-form
is m-projectively recurrent, then either fi = f3 or it is an Einstein manifold.

Proof: We define a function f2 = g(W*,W*) on M?"*! where the metric g is
extended to the inner product between the tensor fields. Then we have

FYf) = fPAY).
This can be written as
(6.2) Yf=f(AY)),(f #0).
From the above equation, we have
XY f)-Y(Xf)={XAY) - YAX) - A(X,Y])}f.

Since the left hand side of the above equation is identically zero and f # 0 on
M?"+1 Then

(6.3) dA(X,Y) =0,
i.e. 1-form A is closed.
Now from
(VyW*)(Z,U)V = AY)W*(Z,U)V,
we have

(6.4) (VxVy W) (Z,U)V = {XA(Y) + A(X)A(Y)}W*(Z,U)V.
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In view of the equations (6.3) and (6.4) , we have

(R(X,Y).W*)(Z,U)V = 2dA(X,Y)|W*(Z,U)V

(6.5) y

Thus in view of Theorem (3.1), we have either f; = f3 or M?"*1 is an Einstein
manifold.

7. Generalized Sasakian-Space-Forms Satisfying W*.5 = 0.

Theorem 7.1. A (2n+ 1)—dimensional (n > 1) generalized Sasakian-space-form
satisfying W*.S = 0 is an n-Finstein manifold.

Proof: Let us consider a generalized Sasakian-space-form M?2"*1 satisfying W* (¢, X).S =
0. In this case we can write
(7.1) S(W* (€, X)Y. Z) + S(Y,W*(¢,X)Z) = 0.
In view of the equation the above equation reduces to
(fr = fs)2n(f1 = f){9(X, Y)n(2) + g(X, Z)n(Y)}

(7.2) —{n(V)S(X, 2) +n(2)S(X,Y)}] + %[271(1‘1 — fa){S(X,Y)n(2)
+ 85X, Z)n(Y)} = {n(Y)S(QX, 2) +n(2)S(QX,Y)}] = 0.

Now, putting Z = £ in the above equation, we get
(7.3) S(QX,Y) =2(f1 — f3)[(n = 1)S(X,Y) + 2n(f1 — f3)9(X,Y)].
By virtue of the equation (2.7) the above equation takes the form

2n(f1 — f3)

S(X,Y) = =

2(f1 = f3)9(X,Y) + (3f2 + (2n — 1) f3)n(X)n(Y)],

where K = 2nf; + 3f2 + (2n — 3)f3, which shows that M?"*! is an n-Einstein
manifold. This completes the proof.

8. Generalized Sasakian-Space-Forms Satisfying W*.R = 0.

Theorem 8.1. A (2n + 1)—dimensional (n > 1) generalized Sasakian-space-form
satisfying W*.R = 0 is an n-Finstein manifold.



On m-Projective Curvature Tensor of Generalized Sasakian-Space-Forms 371

Proof: Suppose M?"*! satisfying (W* (¢, X).R)(Y, Z)U = 0, then it can be writ-
ten as

W, X)R(Y, 2)U — R(W™(§, X)Y, Z)U — R(Y, W*(§, X) Z)U

BV Ry 2w xw =,

which on using the equation takes the form
(f1— f3)
(n—1)
—n(Y)R(X, Z)U + g(X, Z)R(Y, §)U — n(Z)R(Y, X)U
1
2(n—1)
—n(R(Y, 2)U)QX — S(X,Y)R(, Z)U +n(Y)R(QX, Z2)U
= S(X, Z)R(Y. U +n(Z)R(Y,QX)U — S(X,U)R(Y, Z)§
+n(U)R(Y,Z2)QX] = 0.
Taking the inner product of the above equation with &, we get
(f1—f3)
(n—1)
—n(Y)n(R(X
(8.3)  +9(X,U)n(R(Y, 2)§) —n(U)n(R(Y, Z)X)] — =1
Z)U

= n(R(Y, Z2)U)n(QX) — S(X,Y)n(R(&, 2)U) + n(Y)n(R(QX, Z)U)
(X, Z)n(R(Y,§U) +n(Z)n(R(Y,QX)U) — S(X,U)n(R(Y, Z)§)
+77(U) (R(Y,2)QX)] =0
Now using the equations , and in the above equation, we get
(fi = f)[=f1i{9(Z,U)g(X,Y) — g(Y,U)g(X, Z)}
— oY, 9U)g(¢Z, X) — g(Z, pU)g(¢Y, X) +29(Y, ¢Z)g(oU, X)}
= fa{n(Y)m(U)g(X, Z) —n(Z)n(U)g(X,Y) + g(Y,U)n(Z)n(X)
= 9(Z,Un(Y)n(X)} + (f1 — fs){9(Z,U)g(X,Y) — g(Y,U)g(X, Z)}]
B4 AL DS Y) gV, U)S(X, 2)} + L{g(Y, 00)S(67, X)
—9(Z,0U)S(¢Y, X) + 29(Y, ¢2)S(¢U, X) } + f3{n(Y)n(U)S(X, Z)
—n(Z)nU)S(X,Y) +2n(f1 — fs)n(X)n(Z)g(Y,U)

—2n(f1 = fe)n(X)n(Y)g(Z,U)} — (fr — f3){9(Z, U)S(X,Y)
—9(Y,U)S(X, Z)}] = 0.

[—9(X, R(Y, 2)U)§ + n(R(Y, 2)U)X + g(X,Y)R(E, 2)U

(8.2) +9(X,U)R(Y, 2)§ = n(U)R(Y, Z) X] — [S(X, R(Y, 2)U)¢

[—g(X. R(Y, 2)U) + n(R(Y, Z)U)(X) + g(X. Y )i(R(E, Z)U)
D)) + g(X, Z)n(RY.OU) — n(Z)n(R(Y, X)U)
L [s(X R(Y. 2)D)

Putting Z = U = e; in the above equation and summing over i, 1 < ¢ < 2n+ 1, we
get

(8.5) S(X,Y) =2(f1 = f3)[=9(X,Y) + (n + 1)n(X)n(Y)],
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which

10.

11.

12.

13.

14.

S. K. Pandey and R.N. Singh

shows that M2"*! is an n—Einstein manifold. This completes the proof.
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