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Abstract. In the present paper, we introduce the concept of soft connectedness in a
soft m-structure and study some of its properties and characterizations.
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1. Introduction

The concept of soft set is fundamentally important in almost every scientific
field. Soft set theory is a new mathematical tool dealing with uncertainty and has
been applied in several directions since its introduction by Molodtsov [19] in 1999.
The operations on soft sets and soft structures have been studied in [1, 16, 23]. Maji
et. al [15] gave the first practical application of soft sets in decision theory. In 2011
Shabir and Naz [22] initiated a study of soft topological spaces. In recent years,
many soft topological concepts such as soft connectedness and their strong forms
[8, 11, 17, 20, 24],soft separation axioms [14, 20, 22], weak and strong forms of soft
open sets and soft continuity [17, 2, 3, 4, 5, 6, 9, 10, 12, 13, 25] have been introduced
and studied. Recently, the authors of this paper [21] initiated a study of soft m-
structures. In the present paper we introduce the concept of soft connectedness in
soft m-structures and we study some of its properties and characterizations.

2. Preliminaries

Let U be an initial universe set, E be a set of parameters, P(U) denote the power
set of U and A ⊆ E.

Definition 2.1. [19] A pair (F, A) is called a soft set over U, where F is a mapping
given by F: A → P(U). In other words, a soft set over U is a parameterized family
of subsets of the universe U. For all e ∈ A, F(e) may be considered a set of e-
approximate elements of the soft set (F, A).
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Definition 2.2. [16] For two soft sets (F, A) and (G, B) over a common universe
U, we say that (F, A) is a soft subset of (G, B), denoted by (F, A) ⊆ (G, B), if

(a) A ⊆ B and

(b) F (e) ⊆ G (e) for all e ∈ E.

Definition 2.3. [16] Two soft sets (F, A) and (G, B) over a common universe U
are said to be soft equal denoted by (F, A) = (G, B) if (F, A) ⊆ (G, B) and (G, B)
⊆ (F, A).

Definition 2.4. [7] The complement of a soft set (F, A), denoted by (F,A)c, is
defined by (F,A)c = (F c, A), where F c : A → P(U) is a mapping given by F c(e)
= U − F(e), for all e ∈ E.

Definition 2.5. [16] Let a soft set (F, A) over U.

(a) A null soft set denoted by φ if for all e ∈ A, F (e) = φ.

(b) An absolute soft set denoted by Ũ , if for each e ∈ A, F(e) = U.

Clearly, Ũ c = φ and φc = Ũ .

Definition 2.6. [7] The union of two sets (F, A) and (G, B) over a common
universe U is a soft set (H, C), where C = A ∪ B and for all e ∈ C,

H(e) =


F (e), ife ∈ A−B
G(e), ife ∈ B −A
F (e) ∪G(e), if e ∈A ∩B

Definition 2.7. [7] The intersection of two soft sets (F, A) and (G, B) over a
common universe U is a soft set (H, C) where C = A ∩ B and H(e) = F(e) ∩ G(e)
for each e ∈ E.

Let X and Y be initial universe sets and E and K be non-empty sets of the
parameters, S(X, E) denotes the family of all soft sets over X, and S(Y, K) denotes
the family of all soft sets over Y.

Definition 2.8. [12] Let S(X,E) and S(Y,K) be families of soft sets. Let u: X →
Y and p: E→ K be mappings. Then a mapping fpu: S(X, E)→ S(Y, K) is defined
as:

(i)Let (F, A) be a soft set in S(X, E). The image of (F, A) under fpu, written
as fpu (F, A) = ( fpu(F), p(A)), is a soft set in S(Y,K) such that

fpu(F )(k) =

{⋃
e∈p−1(k)

⋂
A u(F (e)), p−1(k)

⋂
A 6=φ

φ, p−1(k)
⋂
A =φ
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For all k ∈ K.
(ii) Let (G , B) be a soft set in S(Y , K). The inverse image of (G, B) under fpu,
written as f−1pu (G,B) = (f−1pu (G),p−1(B))), is a soft set in S(X,E) such that

f−1pu (G)(e) =

{
u−1G(p(e)), p(e)∈B
φ, p(e)/∈B

For all e ∈ E.

Definition 2.9. [25]Let fpu : S(X, E) → S(Y, K) be a mapping and u : X → Y
and p : E → K be mappings. Then fpu is soft onto, if u : X → Y and p : E → K
are onto and fpu is soft one-one, if u : X → Y and p : E → K are one-one.

Definition 2.10. [22] A subfamily τ of S(X , E) is called a soft topology over X
if:

1. φ̃ , X̃ belong to τ .

2. The union of any number of soft sets in τ belongs to τ .

3. The intersection of any two soft sets in τ belongs to τ .

The triplet (X, τ , E) is called a soft topological space over X. The members of τ are
called soft open sets in X and their complements are called soft closed sets in X.

Definition 2.11. If (X ,τ , E) is a soft topological space and a soft set (F, E) over
X.

(a) The soft closure of (F, E) is denoted by Cl(F,E), and defined as the inter-
section of all soft closed super sets of (F,E) [22].

(b) The soft interior of (F, E) is denoted by Int(F,E), and defined as the soft
union of all soft open subsets of (F, E) [25].

Definition 2.12. [25] The soft set (F,E) ∈ S(X,E) is called a soft point if there
exist x ∈ X and e ∈ E such that F(e) = {x} and F(e’) = φ for each e’ ∈ E – {e},
and the soft point (F,E) is denoted by xe.

Definition 2.13. A soft set (A, E) of a soft topological space(X,τ ,E) is called :

(a) Soft regular open (A, E) = Int(Cl(A, E)) [6];

(b) Soft α-open if (A, E) ⊂ Int(Cl(Int(A, E))) [3] ;

(c) Soft semi-open if (A, E) ⊂ Cl(Int(A, E)) [17] ;

(d) Soft preopen if (A, E) ⊂ Int(Cl(A, E)) [2] ;

(e) Soft b-open if (A, E) ⊂ Int(Cl(A, E)) ∪ Cl(Int (A, E)) [5].
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(f) Soft β-open if (A, E) ⊂ Cl(Int(Cl(A, E))) [4]

The family of all soft regular open (resp. soft α-open, soft semi-open, soft
preopen, soft β-open, soft b-open) sets of X will be denoted by SRO(X,E) (resp.
SαO(X,E), SSO(X,E), SPO(X,E), SβO(X, E), SbO(X, E)).

Definition 2.14. Let (A,E ) be a soft subset of a soft topological space (X,τ ,E).
Then:

(a) The intersection of all soft semi-open sets containing (A, E) is called semi-
closure of (A,E ). It is denoted by sCl(A,E) [17].

(b) The intersection of all soft preopen sets containing (A, E) is called preclosure
of (A,E). It is denoted by pCl(A,E)[2].

(c) The intersection of all soft α open sets containing (A,E) is called α-closure of
(A,E). It is denoted by αCl(A,E )[3].

(d) The intersection of all soft b-open sets containing (A,E) is called b-closure of
(A,E). It is denoted by bCl(A,E)[5].

(e) The intersection of all soft β-open sets containing (A,E) is called β-closure of
(A,E). It is denoted by βCl(A,E)[4].

Definition 2.15. A soft mapping fpu : (X,τ ,E)→ (X,σ,K) is said to be :

(a) Soft continuous if f−1pu (U, K) ∈ τ for every soft set (U, K) ∈ σ [25] .

(b) Soft α-continuous if f−1pu (U, K) ∈ SαO(X, E) for every soft set (U, K) ∈ σ [3].

(c) Soft semi-continuous if f−1pu (U, K) ∈ SSO(X, E) for every soft set (U, K) ∈ σ
[17].

(d) Soft precontinuous if f−1pu (U, K) ∈ SPO(X, E) for every soft set (U, K) ∈ σ
[2].

(e) Soft b-continuous if f−1pu (U, K) ∈ SbO(X, E) for every soft set (U, K) ∈ σ [5].

(f) Soft β-continuous if f−1pu (U, K) ∈ SβO(X, E) for every soft set (U, K) ∈ σ [4].

Definition 2.16. A soft mapping fpu : (X,τ ,E)→ (X,σ,K) is said to be :

(a) Soft open if fpu(U, E) ∈ σ for every soft set (U, E) ∈ τ [26].

(b) Soft α-open if fpu (U, E) ∈ SαO(Y, K) for every soft set (U, E) ∈ τ [3].

(c) Soft semi-open if fpu(U, E) ∈ SSO(Y, K) for every soft set (U, E) ∈ τ [17].

(d) Soft preopen if fpu(U, E) ∈ SPO(Y, K) for every soft set (U, E) ∈ τ [2].
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(e) Soft b-open if fpu(U, E) ∈ SbO(Y, K) for every soft set (U, E) ∈ τ [5].

(f) Soft β-open if fpu(U, E) ∈ SβO(Y, K) for every soft set (U, E) ∈ τ [4].

Definition 2.17. [14] Let (X,τ ,E) be a soft topological space, and (A,E),(B,E) be
two soft sets over X. The soft sets (A,E) and (B,E) are said to be soft-separated, if
(A,E) ∩ Cl(B,E) = φ and Cl(A,E) ∩ (B,E) = φ.

Definition 2.18. [14] Let (X,τ ,E) be a soft topological space and if there exist
two non-empty soft separated sets (A,E),(B,E) such that (A,E) ∪ (B,E) = X̃, then
(A,E) and (B,E) are said to be a soft disconnection for a soft topological space
(X,τ ,E).(X,τ ,E) is said to be soft-disconnected if (X,τ ,E) has a soft disconnection.
Otherwise, (X,τ ,E) is said to be soft-connected.

Definition 2.19. [17] Let (X,τ ,E) be a soft topological space. The nonempty soft
sets (F,A) and (F,B) in S(X,E) are called soft semi-separated iff sCl(F,A) ∩ (F,B)
= (F,A) ∩ sCl(F,B) = φ.

Definition 2.20. [17] Let (X,τ ,E)be a soft topological space. If there does not
exist a soft semi-separation of X, then it is said to be soft s-connected.

Definition 2.21. [24] Let (X,τ ,E) be a soft topological space. The nonempty soft
sets (F,A) and (F,B) in S(X,E) are called soft preseparated iff pCl(F,A) ∩ (F,B) =
(F,A) ∩ pCl(F,B) = φ.

Definition 2.22. [24] Let (X,τ ,E)be a soft topological space. If there does not
exist a soft preseparation of X, then it is said to be soft P-connected.

Definition 2.23. [21] A subfamily m(X,E) of S(X,E) is called a soft minimal struc-

ture (briefly soft m-structure) over X if φ ∈ m(X,E) and X̃ ∈ m(X,E).

(X,m(X,E)) is called a soft space with a soft minimal structure m(X,E) or sim-
ply a soft m-space. Each member of m(X,E) is called a soft m-open set and the
complement of a soft m-open set is called a soft m-closed set.

Remark 2.1. [21] Let (X,τ ,E) be a soft topological space. Then the families τ , SSO(X,E),
SPO(X,E), SαO(X,E), SβO(X,E), SbO(X,E), SRO(X,E) are all soft m-structures over X.

Definition 2.24. [21] Let X be a nonempty set, E be a set of parameters and
m(X,E) be a soft m-structure over X. The soft m(X,E)-closure and the soft m(X,E)-
interior of the soft set (A,E) over X are defined as follows:

(1) m(X,E)-Cl(A,E) = ∩ {(F,E) : (A,E) ⊂ (F,E) ,(F,E)c ∈ m(X,E) }.
(2) m(X,E)-Int(A,E) = ∪ {(F,E) : (F,E) ⊂ (A,E) ,(F,E) ∈ m(X,E) }.
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Remark 2.2. [21] Let (X,τ ,E) be a soft topological space and (A,E) be a soft set over X.
If m(X,E) = τ (respectively SO(X,E), SPO(X,E), SαO(X,E), SβO(X,E), SbO(X,E)), then
we have:

(1)m(X,E)-Cl(A,E) = Cl(A,E) (resp. sCl(A,E) ,pCl(A,E),αCl(A,E),β Cl(A,E), bCl(A,E)).

(2)m(X,E)-Int(A,E)= Int(A,E) (resp. sInt(A,E) ,pInt(A,E),αInt(A,E),βInt(A,E), bInt(A,E)).

Theorem 2.1. [21] Let S(X,E) be a family of soft sets and m(X,E) a soft minimal
structure over X.

For soft sets (A,E) and (B,E) of X, the following holds:

(a) (i): m(X,E)-Int(A,E)c = (m(X,E) − Cl(A,E))c and (ii) : m(X,E)-Cl(A,E)c =
(m(X,E) − Int(A,E))c.

(b) If (A,E)c ∈ m(X,E), then m(X,E)-Cl(A,E) = (A,E) and if (A,E) ∈ m(X,E)

,then m(X,E)-Int(A,E) = (A,E).

(c) m(X,E)-Cl(φ) = φ ,m(X,E)-Cl(X̃) = X̃ , m(X,E)-Int(φ) = φ ,m(X,E)-Int(X̃) =

X̃.

(d) If (A,E) ⊂ (B,E), then m(X,E)-Cl(A,E) ⊂ m(X,E)-Cl(B,E), m(X,E)-Int(A,E)
⊂ m(X,E)-Int(B,E).

(e) (A,E) ⊂ m(X,E)-Cl(A,E) and m(X,E)-Int(A,E) ⊂ (A,E).

(f) m(X,E)-Cl(m(X,E)-Cl(A,E)) =m(X,E)-Cl(A,E) andm(X,E)-Int(m(X,E)-Int(A,E))
= m(X,E)-Int(A,E).

Definition 2.25. [21] A soft mapping fpu : (X,m(X,E)) → (Y,m(Y,K)), where the
minimal soft structure m(X,E) and m(Y,K) over X and Y, respectively, is said to be
soft M-continuous if for each xe ∈ S(X,E) and each (V,K) ∈ m(Y,K) containing fpu
(xe), there exists (U,E) ∈ m(X,E) containing xe such that fpu(U,E) ⊂ (V,K).

Throughout this paper soft clopen means soft closed and open.

3. Connectedness in soft m-structure

Definition 3.1. [21] A soft minimal structure m(X,E) over X is said to have the
property B if the union of any family of subsets belongs to m(X,E) belongs to
m(X,E).

Definition 3.2. Let X be a nonempty set, E be a set of parameters and m(X,E)

be a soft m-structure over X with property B. In (X,m(X,E)) two nonempty soft
sets (A,E) and (B,E) over X are called soft m-separated iff m(X,E)-Cl(A,E) ∩ (B,E)
= (A,E) ∩ m(X,E)-Cl(B,E) = φ.
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Remark 3.1. Let (X,τ ,E) be a soft topological space over X. If m(X,E) = τ (resp.
SSO(X,E),SPO(X,E),SbO(X,E)) and m(X,E)-Cl(A,E) = Cl(A,E) (resp. sCl(A,E),
pCl(A,E), bCl(A,E)) we get definitions of soft separated( resp. soft semi-separated, soft
preseparated, soft b-separated) sets.

Definition 3.3. Let m(X,E) be a soft m-structure over X with the property B.
Then (X,m(X,E)) is said to be soft m-connected if there does not exist two nonempty

soft m-separated sets (A,E) and (B,E) over X, such that (A,E) ∪ (B,E) = X̃.
Otherwise it is soft m-disconnected. In this case, the pair (A,E) and (B,E) is called
soft m-disconnection over X.

Remark 3.2. Let (X,τ ,E) be a soft topological space over X. If we replace soft m-
separated by soft separated (resp. soft semi-separated, soft preseparated, soft b-separated)
sets we get a definition for soft connectedness (resp. soft semi-connectedness, soft precon-
nectedness, soft b-connectedness).

Theorem 3.1. Let (X,m(X,E)) be a soft m-space with the property B. Then the
following conditions are equivalent:

(1) (X,m(X,E)) has a soft m-disconnection.

(2) There exist two disjoint soft m-closed sets (A,E) ,(B,E) ∈ m(X,E) such that

(A,E) ∪ (B,E) = X̃.

(3) There exist two disjoint soft m-open sets (A,E) ,(B,E) ∈ m(X,E) such that

(A,E) ∪ (B,E) = X̃.

(4) (X,m(X,E)) has a proper soft m-open and soft m-closed set over X.

Proof: (1)→ (2) : Let (X,m(X,E)) have a soft m-disconnection (A,E) and (B,E).
Then (A,E) ∩ (B,E) = φ and

m(X,E)-Cl(A,E) = m(X,E)-Cl(A,E) ∩ ((A,E) ∪ (B,E)) = (m(X,E)-Cl(A,E) ∩
(A,E)) ∪ (m(X,E)-Cl(A,E) ∩ (B,E)) = (A,E).

Therefore, (A,E) is a soft m-closed set over X. Similarly, we can see that (B,E)
is also a soft m-closed set over X.

(2) → (3) : Let (X,m(X,E)) has a soft m-disconnection (A,E) and (B,E) such
that (A,E) and (B,E) are soft m-closed. Then (A,E)c and (B,E)c are soft m-open
sets in m(X,E). Then it is easy to see (A,E)c ∩ (B,E)c = φ and (A,E)c ∪ (B,E)c

= X̃.

(3) → (4) : Let (X,m(X,E)) have a soft m-disconnection (A,E) and (B,E) such
that (A,E) and (B,E) are soft m-open over X. Then (A,E) and (B,E are also soft
closed in (X,m(X,E)).

(4)→ (1) : Let (X,m(X,E)) has a proper soft m-open and soft m-closed set (F,E)
over X. Put (H,E) = (F,E)c. Then (H,E) and (F,E) are non-empty soft m-closed
sets in (X,m(X,E)). (H,E) ∩ (F,E) = φ and (H,E) ∪ (F,E) = X̃. Therefore, (H,E)
and (F,E) is a soft m-disconnection of (X,m(X,E)).
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Remark 3.3. Let (X,τ ,E) be a soft topological space over X ,if m(X,E) = τ (resp.
SSO(X,E),SPO(X,E),SbO(X,E)) Then the following conditions are equivalent:

(1) (X,τ ,E) has a soft disconnection (resp. soft semi-disconnection, soft pre disconnec-
tion, soft b-disconnection).

(2) There exist two disjoint soft closed (resp. soft semi-closed, soft pre-closed, soft
b-closed) sets (A,E) ,(B,E) such that (A,E) ∪ (B,E) = X̃.

(3) There exist two disjoint soft open (resp. soft semi-open, soft pre-open, soft b-open)
sets (A,E) ,(B,E) such that (A,E) ∪ (B,E) = X̃.

(4) (X,τ ,E) has a proper soft open(resp. soft semi-open, soft pre-open, soft b-open)
and soft closed (resp. soft semi-closed, soft pre-closed, soft b-closed) set over X.

Corollary 3.1. Let (X,m(X,E)) be a soft m-space with the property B. Then the
following conditions are equivalent: (1) (X,m(X,E)) is a soft m-connected.

(2) There does not exist two disjoint soft m-closed sets (A,E), (B,E) ∈ m(X,E)

such that (A,E) ∪ (B,E) = X̃.

(3) There does not exist two disjoint soft m-open sets (A,E), (B,E) ∈ m(X,E)

such that (A,E) ∪ (B,E) = X̃.

(4) (X,m(X,E)) at most has two soft m-closed and soft m-open sets over X, that

is, φ and X̃.

Remark 3.4. Let (X,τ ,E) be a soft topological space over X ,if m(X,E) = τ (resp.
SSO(X,E),SPO(X,E),SbO(X,E)). Then the following conditions are equivalent:

(1) (X,τ ,E) is a soft connected (resp. soft semi-connected, soft preconnected ,soft
b-connected).

(2) There does not exist two disjoint soft closed (resp. soft semi-closed, soft preclosed,
soft b-closed) sets (A,E) ,(B,E) such that (A,E) ∪ (B,E) = X̃.

(3) There does not exist two disjoint soft open (resp. soft semi-open, soft pre-open,
soft b-open) sets (A,E), (B,E) such that (A,E) ∪ (B,E) = X̃.

(4) (X,τ ,E) has a proper soft open(resp. soft semi-open, soft pre-open, soft b-open)
and soft closed (resp. soft semi-closed, soft pre-closed, soft b-closed)set over X.

Definition 3.4. Let (X,m(X,E)) be a soft m-space with the property B, Y ⊂ X in
(X,m(X,E)). The soft space (Y,m(Y,E)) is called a soft m-subspace of (X,m(X,E)) if

m(Y,E) = {(A,E) ∩ Ỹ : (A,E) ∈ m(X,E)}.

Lemma 3.1. Let (X,m(X,E)) be a soft m-space with the property B, (Y,m(Y,E))

be a soft m-subspace of (X,m(X,E)). If (A,E) ⊂ Ỹ ⊂ X̃. Then m(Y,E)-Cl(A,E) =

m(X,E)-Cl(A,E) ∩ Ỹ .

Proof: We havem(Y,E)-Cl(A,E) = ∩ {(F,E): (A,E)⊂ (F,E), Ỹ -(F,E) ∈m(Y,E))}=
∩ {(F,E) ∩ Ỹ : (A,E) ⊂ (F,E)∩ Ỹ , X̃ - (F,E) ∈ m(X,E))}= ∩ {(F,E) ∩ Ỹ : (A,E) ⊂
(F,E), X̃ - (F,E) ∈ m(X,E))} = ∩ { (F,E) : (A,E) ⊂ (F,E) ,X̃ - (F,E) ∈ m(X,E)} ∩
Ỹ = m(X,E)-Cl(A,E) ∩ Ỹ .

Therefore, the lemma holds.
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Lemma 3.2. Let (X,m(X,E)) be a soft m-space with the property B, (Y,m(Y,E))
be a soft m-subspace of (X,m(X,E)). If (A,E) and (B,E) are soft sets in (Y,m(Y,E)),
then (A,E) and (B,E) are soft m-separated in (Y,m(Y,E)) if and only if (A,E) and
(B,E) are soft m-separated in (X,m(X,E)).

Proof: We have m(Y,E)-Cl(A,E) ∩ (B,E) = (m(X,E)-Cl(A,E) ∩ Ỹ ) ∩ (B,E) =
m(X,E)-Cl(A,E) ∩ (B,E) by lemma 3.1.

Similarly, we have

m(Y,E)-Cl(B,E) ∩ (A,E) = m(X,E)-Cl(B,E) ∩ (A,E).

Therefore, the lemma holds.

Lemma 3.3. Let (X,m(X,E)) be a soft m-space with the property B, Ỹ ⊂ X̃.
(Y,m(Y,E)) be a soft m-subspace of (X,m(X,E)). (Y,m(Y,E)) is soft m-connected. If

(A,E) and (B,E) are soft m-separated in (X,m(X,E)), such that Ỹ ⊂ (A,E) ∪ (B,E),

then Ỹ ⊂ (A,E) or Ỹ ⊂ (B,E).

Proof: We have Ỹ ⊂ (A,E) ∪ (B,E),we have Ỹ =( Ỹ ∩ (A,E) )∪ (Ỹ ∩ (B,E)).
By lemma 3.2 ,Ỹ ∩ (A,E) and Ỹ ∩ (B,E) are soft m-separated in (Y,m(Y,E)).

Since (Y,m(Y,E)) is soft m-connected, we have Ỹ ∩ (A,E) = φ or Ỹ ∩ (B,E) = φ.

Therefore, Ỹ ⊂ (A,E) or Ỹ ⊂ (B,E).

Lemma 3.4. Let {(Xα,m(Xα,E): α ∈ J } be a soft family non-empty soft m-
connected subspaces of (X,m(X,E)). If

⋂
α∈J Xα 6= φ, then (∪α∈JXα,∪α∈Jm(Xα,E)

is a soft m-connected subspace of (X,m(X,E)).

Proof: Let Y = (
⋃
α∈J Xα). Choose a soft point xe ∈ Ỹ . Let (C,E) and (D,E)

be a soft m-disconnection of (∪α∈JXα,∪α∈Jm(Xα,E). Then, xe ∈ (C,E) and xe ∈
(D,E), we assume that xe ∈ (C,E).For each α ∈ J. Since {(Xα,m(Xα,E) is soft

m-connected, it follows from lemma 3.3 that (̃Xα) ⊂ (C,E) or (̃Xα) ⊂ (D,E).
Therefore, we have Ỹ ⊂ (C,E) since xe ∈ (C,E) and then (D,E) = φ, which is
a contradiction. Thus (∪α∈JXα,∪α∈Jm(Xα,E) is a soft m-connected subspace of
(X,m(X,E)).

Theorem 3.2. Let {(Xα,m(Xα,E)): α ∈ J } be a soft family non-empty soft m-
connected subspaces of (X,m(X,E)).If Xα ∩Xβ 6= φ for α, β ∈ J ,then
(∪α∈JXα,m(∪α∈JXα,E)) is a soft m-connected subspace of (X,m(X,E)).

Proof : Let αo ∈ J. For β ∈ J,Put Aβ = Xαo ∪ Xβ By lemma 3.4 , {(Aβ ,m(Xβ ,E)

is soft m-connected. Then, {{(Aβ ,m(Xβ ,E) : β ∈ J} is a family soft m-connected
subspace of (X,m(X,E)) and

⋂
β∈J Aβ =Xαo 6= φ. Obviously, (

⋃
α∈J Xα = (

⋃
β∈J Aβ .

It follows from lemma 3.4 that (∪α∈JXα,∪α∈Jm(Xα,E) is a soft m-connected sub-
space of (X,m(X,E)).

Theorem 3.3. Let (X,m(X,E)) be a soft m-space with the property B, Ỹ ⊂ X̃.

(Y,m(Y,E)) be a soft m-subspace of (X,m(X,E)). If Ỹ ⊂ Ã ⊂ m(X,E)-Cl(F,E), then
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(A,m(A,E)) is a soft connected m-subspace of (X,m(X,E)). In particular, m(X,E)-
Cl(F,E) is a soft connected m-subspace of (X,m(X,E)).

Proof: Let (C,E) and (D,E) be a soft m-disconnection of (A,m(A,E)). By lemma

3.3, we have Ã ⊂ (C,E) or Ã ⊂ (D,E). We assume that Ã ⊂ (C,E). By lemma
3.2, we have m(X,E)-Cl(C,E) ∩ (D,E) = φ and, hence, Ã ∩ (D,E) = φ, which is a
contradiction.

Theorem 3.4. Let fpu : (X,m(X,E)) → (Y,m(Y,K)) be a soft M-continuous map-
ping, where m(X,E) and m(Y,K) are soft minimal structures over X and Y, respec-
tively. If (X,m(X,E)) is soft m-connected, then the soft image of (X,m(X,E)) is also
soft m-connected.

Proof: Let fpu : (X,m(X,E)) → (Y,m(Y,K)) be a soft continuous mapping. Con-
versely, suppose that (Y,m(Y,K)) is soft m-disconnected and the pair (A,K) and
(B,K) is a soft m-disconnection of (Y,m(Y,K)). Since fpu : (X,m(X,E))→ (Y,m(Y,K))
is soft continuous, then f−1pu (A,K) ∈ m(X,E), f

−1
pu (B,K) ∈ m(X,E). Clearly, the pair

f−1pu (A,K) and f−1pu (B,K) is a soft m-disconnection of (X,m(X,E)), which is a con-
tradiction. Hence, (Y,m(Y,K)) is soft m-connected. This completes the proof.

Remark 3.5. Let (X,τ ,E) and (Y,ϑ,K) be two soft topological spaces over X and Y,
respectively. If m(X,E) = τ ,m(Y,K) = ϑ. fpu : (X ,τ ,E) → (Y,ϑ,K) is a soft continuous
mapping. If (X ,τ ,E) is soft connected (resp. soft semi-connected, soft pre connected,
soft b-connected) then the soft image of (X ,τ ,E) is also soft connected (resp. soft semi-
connected, soft preconnected, soft b-connected).

Definition 3.5. Let m(X,E) be a soft m-structure over X. A soft set (F,E) in
(X,m(X,E) ) is soft m-connected if it is soft m-connected as a soft m-subspace.

Remark 3.6. Let (X,τ ,E) be a soft topological space over X. A soft set (F,E) in (X,τ ,E)
is soft connected (resp. soft semi-connected, soft preconnected and soft b-connected) if it
is soft connected (resp. soft semi-connected, soft preconnected and soft b-connected) as a
soft subspace.

Theorem 3.5. Let m(X,E) be a soft m-structure over X ,(G,E) be a soft m-
connected set in (X,m(X,E)) and (F,E) be a soft set over X such that (G,E) ⊂
(F,E) ⊂ m(X,E)-Cl(G,E). Then(F,E) is soft m-connected.

Proof: It is sufficient that m(X,E)-Cl(G,E) is soft m-connected. On the con-
trary, suppose that m(X,E)-Cl(G,E) is soft m-disconnected. Then there exists a
soft m-disconnection ((H,E),(K,E) ) of m(X,E)-Cl(G,E). That is, there are ((H,E)∩
(G,E)),((K,E)∩ (G,E)) soft sets in (G,E) such that ((H,E)∩ (G,E))∩ ((K,E)∩ (G,E))
= ((H,E) ∩ (K,E))∩ (G,E) = φ, and ((H,E)∩ (G,E))∪ ((K,E)∩(G,E)) = ((H,E)∪
(K,E))∩ (G,E) = (G,E). This yields that the pair ((H,E) ∩ (G,E)) and ((K,E)∩
(G,E)) is a soft m-disconnection of (G,E), which is a contradiction. This proves
that m(X,E)-Cl(G,E) is soft m-connected. Hence, the proof is complete.
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Lemma 3.5. Let m(X,E) be a soft m-structure over X with the property B, and
let (A,E) and (B,E) be two soft sets over X. In (X,m(X,E)) the following statements
are equivalent:

(1) φ, X̃ are only soft m-open and soft m-closed set in m(X,E).

(2) (X,m(X,E)) is not a soft union of two disjoint soft sets (A,E) and (B,E) ∈
m(X,E).

(3)(X,m(X,E)) is not a soft union of two disjoint soft sets (A,E)c and (B,E)c

∈ m(X,E).

(4)(X,m(X,E)) is not a soft union of two nonempty soft m-separated sets.

Remark 3.7. Let (X, τ ,E) be a soft topological space over X, so we put m(X,E) = τ
(resp. SSO(X,E),SPO(X,E),SbO(X,E)). Also, let (A,E) and (B,E) be two soft sets over X.
In (X, τ ,E) the following statements are equivalent:

(1) φ and X̃ are only soft clopen (resp. soft semi-clopen, soft preclopen, soft b-clopen)
sets in (X, τ ,E).

(2) (X, τ ,E) is not a soft union of two soft disjoint soft open(resp. soft semi-open ,soft
pre open, soft b-open) sets .

(3) (X, τ ,E) is not a soft union of two soft disjoint soft closed (resp. soft semi-closed,
soft preclosed, soft b-closed) sets.

(4) (X, τ ,E) is not a soft union of two nonempty soft separated(soft semi separated,
soft preseparated, soft b-separated) sets.

Theorem 3.6. Let m(X,E) be a soft m-structure over X with the property B. In
(X,m(X,E)) the following statements are equivalent:

(1) (X, m(X,E)) is a soft m-connected space.

(2)(X, m(X,E)) is not a soft union of any two soft m-separated sets.

Proof : (1) → (2) : Assume (1). Suppose (2) is false, then let (A,E) and (B,E)
be two soft m-separated sets such that X̃ = (A,E) ∪ (B,E). Since (X, m(X,E)) is soft
m-connected m(X,E)-Cl(A,E) ∩ (B,E)=(A,E) ∩ m(X,E)-Cl(B,E) = φ. Since (A,E)
⊂ m(X,E)-Cl(A,E) and (B,E) ⊂ m(X,E)-Cl(B,E),then (A,E) ∪ (B,E) = φ. Now
m(X,E)-Cl(A,E) ⊂ (B,E)c =(A,E). Hence, m(X,E)-Cl(A,E) = (A,E). Therefore,
(A,E)c ∈ m(X,E).By the same way we show that (B,E)c ∈ m(X,E) which is a
contradiction with remark 3.5. This shows that (2) is true. Therefore (1) → (2).

(2) → (1) : Assume that (2) is not true. Let (A,E)c and (B,E)c be two soft
m-disjoint nonempty and (A,E)c and (B,E)c ∈ m(X,E) such that X̃ = (A,E)c ∪
(B,E)c. Then, m(X,E)-Cl(A,E)c ∩ (B,E)=(A,E) ∩ m(X,E)-Cl(B,E)c = (A,E)c ∩
(B,E)c = φ. This contradicts the hypothesis in (2). This show that (1) is true.
Therefore, (2) → (1).

Remark 3.8. Let (X, τ ,E) be a soft topological space over X, so we put m(X,E) = τ .
Then, the following statements are equivalent:

(1) (X, τ ,E) is a soft connected (soft semi-connected, soft preconnected, soft b-
connected) space.
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(2) (X, τ ,E) is not the soft union of any two soft separated (soft semi separated, soft
preseparated, soft b-separated) sets.

Remark 3.9. (1) Let m(X,E) be a soft m-structure over X with the property B, and let
(A,E) be a soft set over X. If φ 6= (A,E) ⊂ (X,m(X,E)) then (A,E) is a soft m-connected
set in m(X,E) whenever (X,m(X,E)) is a soft m-connected space.

(2) Let (X, τ ,E) be a soft topological space over X, so we put m(X,E) = τ . If φ 6=
(A,E) ⊂ (X, τ ,E) then (A,E) is a soft connected (soft semi-connected, soft preconnected,
soft b-connected) set over X whenever (X, τ ,E) is a soft connected (soft semi-connected,
soft preconnected, soft b-connected) space.

Theorem 3.7. Let m(X,E) be a soft m-structure over X with the property B. In
(X,m(X,E)), let the soft set (A,E) be a soft m-connected set. Let (B,E) and (C,E)
be soft m-separated sets. If (A,E) ⊂ (B,E) ∪ (C,E). Then, either (A,E) ⊂ (B,E)
or (A,E) ⊂ (C,E).

Proof: Suppose (A,E) is a soft m-connected set and (B,E),(C,E) are soft m-
separated sets such that (A,E) ⊂ (B,E) ∪ (C,E). Let (A,E) notsubset (B,E) and
(A,E) is not a subset of (C,E). Suppose (A1,E) = (B,E) ∩ (A,E) 6= φ and (A2,E)
= (C,E) ∩ (A,E) 6= φ. Then, (A,E) = (A1,E) ∪ (A2,E). Since (A1,E) ⊂ (B,E).
Hence, m(X,E)-Cl(A1,E) ⊂m(X,E)-Cl(B,E). Since m(X,E)-Cl(B,E)∩ (C,E) = φ then
m(X,E)-Cl (A1,E) ∩ (A2,E) = φ. Since (A2,E) ⊂ (C,E). Hence, m(X,E)-Cl(A2,E)
⊂ m(X,E)-Cl(C,E). Since m(X,E)-Cl(C,E)∩ (B,E) = φ. Then m(X,E)-Cl (A2,E)
∩ (A1,E) = φ. But (A,E) = (A1,E)∪ (A2,E). Therefore, (A,E) is not a soft m-
connected space. This is a contradiction. Then either (A,E) ⊂ (B,E) or (A,E) ⊂
(C,E).

Remark 3.10. Let (X, τ ,E) be a soft topological space over X, so we put m(X,E) =
τ . Also, let (A,E) be a soft connected (resp. soft semi-connected, soft preconnected, soft
b-connected) set. Let (B,E) and (C,E) be soft separated (resp. soft semi-separated, soft
preseparated, soft b-separated) sets. If (A,E) ⊂ (B,E) ∪ (C,E) then either (A,E) ⊂ (B,E)
or (A,E) ⊂ (C,E).

Let m(X,E) be a soft m-structure over X with the property B. In (X,m(X,E)),
let the soft set (A,E) be a soft m-connected set, then m(X,E)-Cl(A,E) is soft m-
connected.

Proof: Suppose the soft set (A,E) is a soft m-connected set and m(X,E)-Cl(A,E)
is not. Then there exist two soft m-separated sets (B,E) and (C,E) such thatm(X,E)-
Cl(A,E) = (B,E) ∪ (C,E). But (A,E) ⊂m(X,E)-Cl(A,E),then (A,E) = (B,E) ∪ (C,E)
and since (A,E) is a soft m-connected set, then by Theorem 3.7 either (A,E) ⊂ (B,E)
or (A,E) ⊂ (C,E).

(i) If (A,E) ⊂ (B,E) then m(X,E)-Cl(A,E) ⊂ m(X,E)-Cl(B,E). But m(X,E)-
Cl(B,E) ∩ (C,E) = φ. Hence, m(X,E)-Cl(A,E)∩ (C,E) = φ. Since (C,E) ⊂ m(X,E)-
Cl(A,E), then (C,E) = φ this is a contradiction.

(ii) If (A,E) ⊂ (C,E) then in the same way we can prove that (B,E) = φ, which
is a contradiction. Therefore, m(X,E)-Cl(A,E) is soft m-connected.
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Remark 3.11. Let (X, τ , E) be soft topological space over X, we put m(X,E) = τ let
soft set (A,E) be a soft connected (resp. soft semi connected,soft pre connected, soft b-
connected)set then m(X,E)-Cl(A,E) is soft connected(resp. soft semi connected,soft pre
connected, soft b-connected).

Theorem 3.8. Let m(X,E) be a soft m-structure over X with the property B. In
(X,m(X,E)), let the soft set (A,E) be a soft m-connected set and (A,E) ⊂ (B,E) ⊂
m(X,E)-Cl(A,E) then (B,E) is soft m-connected.

Proof: If (B,E) is not soft m-connected, then there exist two soft sets (C,E)
and (D,E) such that m(X,E)-Cl(C,E) ∩ (D,E) = (C,E) ∩ m(X,E)-Cl(D,E)= φ and
(B,E) = (C,E) ∪ (D,E). Since (A,E) ⊂ (B,E), thus either (A,E) ⊂ (C,E) or (A,E)
⊂ (D,E). Suppose (A,E) ⊂ (C,E) then m(X,E)-Cl(A,E) ⊂ m(X,E)-Cl(C,E), thus
m(X,E)-Cl(A,E) ⊂ (D,E) = m(X,E)-Cl(C,E) ⊂ (D,E) = φ. But (D,E) ⊂ (B,E) ⊂
m(X,E)-Cl(A,E), thus m(X,E)-Cl(A,E) ∩ (D,E) =(D,E). Therefore, (D,E) =φ which
is a contradiction. Thus, (B,E) is a soft m-connected set.

If (A,E) ⊂ (B,E), then we can prove that (C,E) = φ. This is a contradiction.
Then (B,E) is soft m-connected.

Remark 3.12. Let (X, τ ,E) be a soft topological space over X, so we put m(X,E)

= τ . Also, let the soft set (A,E) be a soft connected (resp. soft semi-connected, soft
preconnected, soft b-connected) set and (A,E) ⊂ (B,E) ⊂ m(X,E)-Cl(A,E), then (B,E) is
soft connected (resp. soft semi-connected, soft preconnected, soft b-connected).

Remark 3.13. Let (X,τ ,E) be a soft topological space over X, and (F,E) be a soft set
over X. (X,τ ,E) is soft connected (soft semi-connected, soft preconnected, soft b-connected)
if and only if there does not exist nonempty soft set (F,E) over X which is both soft open
(resp. soft semi-open, soft preopen, soft b-open) and soft closed (resp. soft semi-closed,
soft pre-closed, soft b-closed) set over X.
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