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Ser. Math. Inform. Vol. 32, No 2 (2017), 231–253

DOI: 10.22190/FUMI1702231H

SOME FIXED POINT THEOREMS FOR GENERALIZED

α-GERAGHTY CONTRACTION TYPE MAPPINGS IN B-METRIC

SPACES AND SOME APPLICATIONS TO THE NONLINEAR

INTEGRAL EQUATION

Nguyen Trung Hieu and Le Thi Chac

Abstract. The aim of this paper is to introduce the notion of a generalized α-Geraghty
contraction type mapping in b-metric spaces and state the existence and uniqueness of
a fixed point for this mapping. These results are generalizations of certain main results
in [D. Dukić, Z. Kadelburg, and S. Radenović, Fixed points of Geraghty-type mappings

in various generalized metric spaces, Abstr. Appl. Anal. 2011 (2011), 13 pages] and
[O. Popescu, Some new fixed point theorems for α-Geraghty contraction type maps in

metric spaces, Fixed Point Theory Appl. 2014:190 (2014), 1 – 12]. Some examples
are given to illustrate the obtained results and to show that these results are proper
extensions of the existing ones. Then we apply the obtained theorem to study the
existence of solutions to the nonlinear integral equation.
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1. Introduction

The Banach contraction principle is a useful tool in the study of many branches
of mathematics and mathematical sciences. This principle was improved, general-
ized and extended in various ways and many fixed point results were obtained. One
of the interesting generalizations of this basic principle was given by Geraghty [15]
in 1973 by considering an auxiliary function. After that, Geraghty’s result was gen-
eralized and many fixed point results were stated in many ways [4, 9, 10, 16, 21]. In
particular, Popescu [26] generalized the obtained results in [10] by using the concept
of triangular α-orbital admissible mappings and studied other conditions to prove
the existence and uniqueness of a fixed point of α-Geraghty contraction type map-
pings in complete metric spaces. In 2016, Arshad et al. [2] introduced a generalized
contraction by using the concept of triangular α-orbital admissible mappings and
stated some fixed point results in the setting of the Branciari metric space.
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In recent times, there were some new approaches to the generalization of the
Banach contraction principle on complete metric spaces. In 2004, Ran and Reurings
[27] stated a generalization of Banach contraction principle by using a partial order
on a metric space. In 2008, Suzuki [30] proved a generalization of Banach contrac-
tion principle by using a contraction condition depending on a non-increasing func-
tion θ : [0, 1) −→ [ 12 , 1]. In 2015, Kumam et al. [23] introduced a new generalized
quasi-contraction by adding four new values d(T 2x, x), d(T 2x, Tx), d(T 2x, T y), d(T 2x, y)
to a quasi-contraction condition. The authors also stated a unique fixed point the-
orem which is the generalization of Ćirić fixed point theorem in [11].

Another way to generalize Banach contraction principle, appealing to many
authors, was replacing the given metric space by some generalized metric space
and stating analogues of fixed point theorem on metric spaces. In this way, there
were many generalizations of a metric space and many fixed point theorems on
generalized metric spaces were stated [5]. Note that b-metric is a generalization of a
metric that was introduced by Czerwik in [7] and then extensively used by Czerwik
in [12, 13]. The first important difference between a metric and a b-metric is that
the b-metric need not be a continuous function in its two variables, see [22, Example
13]. This led to many fixed point theorems on b-metric spaces being stated, so the
readers may refer to [1, 3, 6, 8, 17, 18, 19, 20, 24, 25, 28, 29] and references therein.

In 2011, Dukić et al. [14] generalized the class of functions F to the class of
functions Fs for some s ≥ 1. By using the function β ∈ Fs, the authors stated the
existence and uniqueness of a fixed point for Geraghty contraction type mapping in
b-metric spaces.

The aim of this paper is to introduce the notion of a generalized α-Geraghty
contraction type mapping in b-metric spaces by adding four terms d(T 2x, Tx),
d(T 2x, x) + d(T 2x, T y)

2s
, d(T 2x, y), d(T 2x, T y) to the contractive condition in [26,

Definition 4] and state the existence and uniqueness of a fixed point for this map-
ping. Some examples are given to illustrate the obtained results and to show that
these results are proper extensions of the existing ones. Then we apply the obtained
theorem to study the existence of solutions to the nonlinear integral equation.

2. Preliminaries

The following interesting result was given by Geraghty [15] in 1973 by considering
an auxiliary function.

Theorem 2.1. [15] Let (X, d) be a complete metric spaces and T : X −→ X be a
mapping. Suppose that there exists β ∈ F such that for all x, y ∈ X,

d(Tx, T y) 6 β(d(x, y))d(x, y),

where F is the family of all functions β : [0,∞) −→ [0, 1) such that

lim
n→∞

β(tn) = 1 implies lim
n→∞

tn = 0.
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Then T has a unique fixed point z ∈ X and {T nx} converges to z for each
x ∈ X.

In 2014, Popescu [26] studied the existence and uniqueness of a fixed point of
α-Geraghty contraction type mappings in complete metric space.

Definition 2.1. [26] Let T : X −→ X be a mapping and α : X × X −→ R

be a function. Then T is called α-orbital admissible if α(x, Tx) ≥ 1 implies
α(Tx, T 2x) ≥ 1 for all x ∈ X .

Definition 2.2. [26] Let T : X −→ X be a mapping and α : X ×X −→ R be a
function. Then T is called triangular α-orbital admissible if

1. T is α-orbital admissible.

2. α(x, y) ≥ 1 and α(y, T y) ≥ 1 imply α(x, T y) ≥ 1 for all x, y ∈ X .

Definition 2.3. [26] Let (X, d) be a metric space, α : X × X −→ R be a func-
tion and T : X −→ X be a mapping. Then T is called a generalized α-Geraghty
contraction type mapping if there exists β ∈ F such that for all x, y ∈ X ,

α(x, y)d(Tx, T y) 6 β
(

MT (x, y)
)

MT (x, y),

where

MT (x, y) = max
{

d(x, y), d(x, Tx), d(y, T y),
d(x, T y) + d(y, Tx)

2

}

.

The notion of a b-metric space and some notions on b-metric spaces was introduced
as follows.

Definition 2.4. [13] Let X be a non-empty set and d : X × X −→ [0,∞) be a
function such that for all x, y, z ∈ X and some s ≥ 1,

1. d(x, y) = 0 if and only if x = y.

2. d(x, y) = d(y, x).

3. d(x, y) ≤ s
(

d(x, z) + d(z, y)
)

.

Then d is called a b-metric on X and (X, d, s) is called a b-metric space.

Definition 2.5. [13] Let (X, d, s) be a b-metric space. Then

1. A sequence {xn} is called convergent to x, written lim
n→∞

xn = x, if lim
n→∞

d(xn, x) = 0.

2. A sequence {xn} is called Cauchy in X if lim
n,m→∞

d(xn, xm) = 0.
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3. (X, d, s) is called complete if each Cauchy sequence is a convergent sequence.

Aghajani et al. [1] proved the following simple lemma about the convergent
sequence in b-metric spaces.

Lemma 2.1. [1] Let (X, d, s) be a b-metric space and lim
n→∞

xn = x, lim
n→∞

yn = y.

Then

1.
1

s2
d(x, y) ≤ lim inf

n→∞

d(xn, yn) ≤ lim sup
n→∞

d(xn, yn) ≤ s2d(x, y). In particular, if

x = y, then lim
n→∞

d(xn, yn) = 0.

2. For each z ∈ X,
1

s
d(x, z) ≤ lim inf

n→∞

d(xn, z) ≤ lim sup
n→∞

d(xn, z) ≤ sd(x, z).

Dukić et al. [14] stated the existence and uniqueness of a fixed point for Geraghty
contraction type mapping in b-metric spaces by using the function β ∈ Fs.

Lemma 2.2. [26] Let T : X −→ X be a triangular α-orbital admissible mapping.
Assume that there exists x1 ∈ X such that α(x1, T x1) > 1. Define a sequence {xn}
by xn+1 = Txn for all n ≥ 1. Then α(xn, xm) > 1 for all m > n ≥ 1.

Theorem 2.2. [14] Let (X, d, s) be a complete b-metric space and T : X −→ X

be a mapping. Suppose that there exists β ∈ Fs such that for all x, y ∈ X,

d(Tx, T y) 6 β(d(x, y))d(x, y),

where Fs is the family of all functions β : [0,∞) −→ [0, 1
s
) which satisfies the

following condition: lim
n→∞

β(tn) =
1

s
implies lim

n→∞

tn = 0. Then T has a unique

fixed point z ∈ X and {T nx} converges to z for each x ∈ X.

3. Main results

First, by using the function β ∈ Fs and adding four terms
d(T 2x, x) + d(T 2x, T y)

2s
,

d(T 2x, Tx), d(T 2x, y), d(T 2x, T y) to the generalized α-Geraghty contraction con-
dition in metric spaces, we introduce the notion of a generalized α-Geraghty con-
traction type mapping in b-metric spaces.

Definition 3.1. Let (X, d, s) be a b-metric space, α : X × X −→ R be a func-
tion and T : X −→ X be a mapping. Then T is called a generalized α-Geraghty
contraction type if there exists β ∈ Fs such that for all x, y ∈ X ,

(3.1) sα(x, y)d(Tx, T y) 6 β
(

Cs(x, y)
)

Cs(x, y),
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where

Cs(x, y) = max
{

d(x, y), d(x, Tx), d(y, T y),
d(x, T y) + d(y, Tx)

2s
,

d(T 2x, x) + d(T 2x, T y)

2s
, d(T 2x, Tx), d(T 2x, T y), d(T 2x, y)

}

.

The following theorem is a sufficient condition for the existence of the fixed point
for a generalized α-Geraghty contraction type mapping in b-metric spaces.

Theorem 3.1. Let (X, d, s) be a complete b-metric space, α : X ×X −→ R be a
function and let T : X −→ X be a mapping such that

1. T is a generalized α-Geraghty contraction type mapping.

2. T is a triangular α-orbital admissible mapping.

3. There exists x1 ∈ X such that α(x1, T x1) > 1.

4. T is continuous.

Then T has a fixed point z ∈ X and {T nx1} converges to z.

Proof. Let x1 ∈ X such that α(x1, T x1) > 1, we construct a sequence {xn} by
xn+1 = Txn for n ≥ 1. By using Lemma 2.2, we have α(xn, xn+1) > 1 for all n > 1.
Since T is a generalized α-Geraghty contraction type mapping, we have

sd(xn+1, xn+2) = sd(Txn, T xn+1)

6 sα(xn, xn+1)d(Txn, T xn+1)

6 β
(

Cs(xn, xn+1)
)

Cs(xn, xn+1).(3.2)

We also have

max{d(xn, xn+1), d(xn+1, xn+2)}

≤ Cs(xn, xn+1)

= max
{

d(xn, xn+1), d(xn, T xn), d(xn+1, T xn+1),

d(xn, T xn+1) + d(xn+1, T xn)

2s
,
d(T 2xn, xn) + d(T 2xn, T xn+1)

2s
,

d(T 2xn, T xn), d(T
2xn, T xn+1), d(T

2xn, xn+1)
}
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= max
{

d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2),

d(xn, xn+2) + d(xn+1, xn+1)

2s
,
d(xn+2, xn) + d(xn+2, xn+2)

2s
,

d(xn+2, xn+1), d(xn+2, xn+2), d(xn+2, xn+1)
}

= max
{

d(xn, xn+1), d(xn+1, xn+2),
d(xn, xn+2)

2s

}

≤ max
{

d(xn, xn+1), d(xn+1, xn+2),
d(xn, xn+1) + d(xn+1, xn+2)

2

}

= max
{

d(xn, xn+1), d(xn+1, xn+2)
}

.

This implies that

(3.3) Cs(xn, xn+1) = max
{

d(xn, xn+1), d(xn+1, xn+2)
}

.

From (3.2) and (3.3), we have

sd(xn+1, xn+2)

6 β(max
{

d(xn, xn+1), d(xn+1, xn+2)})max{d(xn, xn+1), d(xn+1, xn+2)
}

.(3.4)

If there exists n > 1 such that max
{

d(xn, xn+1), d(xn+1, xn+2)
}

= d(xn+1, xn+2),
then (3.4) becomes

sd(xn+1, xn+2) 6 β
(

d(xn+1, xn+2)
)

d(xn+1, xn+2)

<
1

s
d(xn+1, xn+2).

This implies that
s2 − 1

s
d(xn+1, xn+2) < 0.

This leads to a contradiction with s > 1. Therefore, max
{

d(xn, xn+1), d(xn+1, xn+2)
}

=
d(xn, xn+1) for all n > 1. Then (3.4) becomes

sd(xn+1, xn+2) 6 β
(

d(xn, xn+1)
)

d(xn, xn+1)

<
1

s
d(xn, xn+1)

≤ sd(xn, xn+1).(3.5)

It follows that {d(xn, xn+1)} is a non-decreasing sequence of non-negative real num-
bers. Therefore, there exists r ≥ 0 such that lim

n→∞

d(xn, xn+1) = r. We will show

that r = 0. On the contrary, suppose that r > 0. From (3.5), we obtain

1

s
d(xn+1, xn+2) 6 β

(

d(xn, xn+1)
)

d(xn, xn+1)

<
1

s
d(xn, xn+1).(3.6)
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Letting n → ∞ in (3.6), we get

1

s
r 6 r lim

n→∞

β(d(xn, xn+1)) ≤
1

s
r.

This implies that lim
n→∞

β(d(xn, xn+1)) =
1

s
. Since β ∈ Fs, we obtain

lim
n→∞

d(xn, xn+1) = 0,

which contradicts r = 0. Therefore, we conclude that

(3.7) lim
n→∞

d(xn, xn+1) = 0.

Next, we will prove that {xn} is a Cauchy sequence. On the contrary, suppose
that {xn} is not a Cauchy sequence. Then there exists ε > 0 for which we can find
two subsequence {xn(k)} and {xm(k)} of {xn} such that m(k) is the smallest index
satisfying m(k) > n(k) > k ≥ 1 and

(3.8) d(xn(k), xm(k)) > ε.

This implies that

(3.9) d(xn(k), xm(k)−1) < ε.

Then, from (3.8) and (3.9), we get

ε 6 d(xn(k), xm(k))

6 sd(xn(k), xm(k)−1) + sd(xm(k), xm(k)−1)

< εs+ sd(xm(k), xm(k)−1).(3.10)

Letting k → ∞ in (3.10) and using (3.7), we have

(3.11) ε 6 lim inf
k→∞

d(xn(k), xm(k)) 6 lim sup
k→∞

d(xn(k), xm(k)) 6 εs.

From (3.8), we again have

ε 6 d(xm(k), xn(k))

6 sd(xm(k), xm(k)−1) + sd(xm(k)−1, xn(k))

6 sd(xm(k), xm(k)−1) + s2d(xm(k)−1, xn(k)−1) + s2d(xn(k)−1, xn(k)).(3.12)

Letting k → ∞ in (3.12) and using (3.7), we have

(3.13)
ε

s2
6 lim inf

k→∞

d(xn(k)−1, xm(k)−1) 6 lim sup
k→∞

d(xn(k)−1, xm(k)−1).

From (3.9), we also have

d(xn(k)−1, xm(k)−1) 6 sd(xn(k)−1, xn(k)) + sd(xn(k), xm(k)−1)

< sd(xn(k)−1, xn(k)) + sε.(3.14)
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Letting k → ∞ in (3.14) and using (3.7), we get

(3.15) lim inf
k→∞

d(xn(k)−1, xm(k)−1) 6 lim sup
k→∞

d(xn(k)−1, xm(k)−1) 6 εs.

Combining (3.13) with (3.15), we obtain

(3.16)
ε

s2
6 lim inf

k→∞

d(xn(k)−1, xm(k)−1) 6 lim sup
k→∞

d(xn(k)−1, xm(k)−1) 6 εs.

From (3.8), we also have

(3.17) ε 6 d(xm(k), xn(k)) 6 sd(xm(k), xm(k)−1) + sd(xm(k)−1, xn(k)).

Letting k → ∞ in (3.17) and using (3.7), we have

(3.18)
ε

s
6 lim inf

k→∞

d(xm(k)−1, xn(k)) 6 lim sup
k→∞

d(xm(k)−1, xn(k)) 6 εs.

We also have

(3.19) ε 6 d(xm(k), xn(k)) 6 sd(xm(k), xn(k)−1) + sd(xn(k)−1, xn(k)),

(3.20) d(xn(k)−1, xm(k)) 6 sd(xn(k)−1, xm(k)−1) + sd(xm(k)−1, xm(k)).

Letting k → ∞ in (3.19), (3.20) and using (3.7), (3.16), we get

(3.21)
ε

s
6 lim inf

k→∞

d(xn(k)−1, xm(k)) 6 lim sup
k→∞

d(xn(k)−1, xm(k)) 6 εs2.

We again have

(3.22) ε ≤ d(xn(k), xm(k)) ≤ sd(xn(k), xn(k)+1) + sd(xn(k)+1, xm(k)),

(3.23) d(xn(k)+1, xm(k)) ≤ sd(xn(k)+1, xn(k)) + sd(xn(k), xm(k)).

Letting k → ∞ in (3.22), (3.23) and using (3.7), (3.11), we obtain

(3.24)
ε

s
6 lim inf

k→∞

d(xn(k)+1, xm(k)) 6 lim sup
k→∞

d(xn(k)+1, xm(k)) 6 εs2.

We also have

(3.25) d(xm(k)−1, xn(k)) ≤ sd(xm(k)−1, xn(k)+1) + sd(xn(k)+1, xn(k)),

(3.26) d(xn(k)+1, xm(k)−1) ≤ sd(xn(k)+1, xn(k)) + sd(xn(k), xm(k)−1).

Letting k → ∞ in (3.25), (3.26) and using (3.7), (3.9), (3.18), we have

(3.27)
ε

s2
6 lim inf

k→∞

d(xn(k)+1, xm(k)−1) 6 lim sup
k→∞

d(xn(k)+1, xm(k)−1) 6 εs.
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Since m(k) − 1 > n(k) − 1, we get α(xn(k)−1, xm(k)−1) > 1 by Lemma 2.2. Then,
from (3.1), we have

sd(xn(k), xm(k)) = sd(Txn(k)−1, T xm(k)−1)

6 sα(xn(k)−1, xm(k)−1)d(Txn(k)−1, T xm(k)−1)

6 β
(

Cs(xn(k)−1, xm(k)−1)
)

Cs(xn(k)−1, xm(k)−1),(3.28)

where

Cs(xn(k)−1, xm(k)−1)

= max
{

d(xn(k)−1, xm(k)−1), d(xn(k)−1, T xn(k)−1), d(xm(k)−1, T xm(k)−1),

d(xn(k)−1, T xm(k)−1) + d(xm(k)−1, T xn(k)−1)

2s
,

d(T 2xn(k)−1, xn(k)−1) + d(T 2xn(k)−1, T xm(k)−1)

2s
,

d(T 2xn(k)−1, T xn(k)−1), d(T
2xn(k)−1, T xm(k)−1), d(T

2xn(k)−1, xm(k)−1)
}

= max
{

d(xn(k)−1, xm(k)−1), d(xn(k)−1, xn(k)), d(xm(k)−1, xm(k)),

d(xn(k)−1, xm(k)) + d(xm(k)−1, xn(k))

2s
,
d(xn(k)+1, xn(k)−1) + d(xn(k)+1, xm(k))

2s
,

(.xn(k)+1, xn(k)), d(xn(k)+1, xm(k)), d(xn(k)+1, xm(k)−1)
}

.(3.29)

Letting k → ∞ in (3.29) and using (3.7), (3.16), (3.18), (3.21), (3.24) and (3.27),
we have

ε

s2
= max

{ ε

s2
, 0, 0,

ε
s
+ ε

s

2s
,
0 + ε

s

2s
, 0,

ε

s
,
ε

s2

}

≤ lim inf
k→∞

Cs(xn(k)−1, xm(k)−1)

≤ lim sup
k→∞

Cs(xn(k)−1, xm(k)−1)

≤ max
{

εs, 0, 0,
εs2 + εs2

2s
,
0 + εs2

2s
, 0, εs2, εs

}

= εs2.(3.30)

Letting k → ∞ in (3.28) and using (3.30), we have

sε 6 lim sup
n→∞

β(Cs(xn, xn+1)) lim sup
n→∞

Cs(xn, xn+1)

≤ εs2 lim sup
n→∞

β(Cs(xn, xn+1)).

This implies that lim sup
n→∞

β(Cs(xn, xn+1)) ≥
1

s
. Since β ∈ Fs, we have

lim sup
n→∞

β(Cs(xn, xn+1)) ≤
1

s
.
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We conclude that

(3.31) lim sup
n→∞

β(Cs(xn, xn+1)) =
1

s
.

Similary, we also see that

(3.32) lim inf
n→∞

β(Cs(xn, xn+1)) =
1

s
.

Combining (3.31) with (3.32), we conclude that lim
n→∞

β(Cs(xn, xn+1)) =
1

s
. Since

β ∈ Fs, we have lim
n→∞

Cs(xn, xn+1) = 0, contrary to (3.30). Thus, {xn} is a

Cauchy sequence in (X, d, s). Since (X, d, s) is complete, there exists z ∈ X such
that lim

n→∞

xn = z. Since T is continuous, we obtain z = lim
n→∞

xn = lim
n→∞

xn+1 =

lim
n→∞

Txn = T ( lim
n→∞

xn) = Tz. It implies that z is a fixed point of T . Since

lim
n→∞

xn+1 = z and xn+1 = Txn = T nx1, lim
n→∞

T nx1 = z.

In the following theorem, we replace the continuity of a mapping T in Theo-
rem 3.1 by another condition.

Theorem 3.2. Let (X, d, s) be a complete b-metric space, α : X ×X −→ R be a
function and T : X −→ X be a mapping such that

1. T is a generalized α-Geraghty contraction type mapping.

2. T is a triangular α-orbital admissible mapping.

3. There exists x1 ∈ X such that α(x1, T x1) > 1.

4. If {xn} is a sequence in X such that α(xn, xn+1) > 1 for all n > 1 and
lim
n→∞

xn = x ∈ X, then there exists a subsequence {xn(k)} of {xn} such that

α(xn(k), x) > 1 for all k > 1.

Then T has a fixed point z ∈ X and {T nx1} converges to z.

Proof. Following the lines in the proof of Theorem 3.1, we conclude that the se-
quence {xn} by xn+1 = Txn for n ≥ 1 converges to z ∈ X . By using hypothesis (4),
we deduce that there exists a subsequence {xn(k)} of {xn} such that α(xn(k), z) ≥ 1.
Since T is a generalized α-Geraghty contraction type mapping, we obtain

sd(xn(k)+1, T z) = sd(Txn(k), T z)

6 sα(xn(k), z)d(Txn(k), T z)

6 β
(

Cs(xn(k), z)
)

Cs(xn(k), z),(3.33)
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where

Cs(xn(k), z) = max
{

d(xn(k), z), d(xn(k), T xn(k)), d(z, T z),

d(xn(k), T z) + d(z, Txn(k))

2s
,
d(T 2xn(k), xn(k)) + d(T 2xn(k), T z)

2s
,

d(T 2xn(k), T xn(k)), d(T
2xn(k), T z), d(T

2xn(k), z)
}

= max
{

d(xn(k), z), d(xn(k), xn(k)+1), d(z, T z),

d(xn(k), T z) + d(z, xn(k)+1)

2s
,
d(xn(k)+2, xn(k)) + d(xn(k)+2, T z)

2s
,

d(xn(k)+2, xn(k)+1), d(xn(k)+2, T z), d(xn(k)+2, z)
}

.(3.34)

On the contrary, suppose that Tz 6= z. Then d(Tz, z) > 0. Letting k → ∞ in (3.34)
and using (3.7), Lemma 2.1, we have

(3.35)
1

s2
d(z, T z) ≤ lim inf

n→∞

Cs(xn(k), z) ≤ lim sup
n→∞

Cs(xn(k), z) ≤ sd(z, T z).

Letting k → ∞ in (3.33) and using (3.35), Lemma 2.1, we get

d(z, T z) = s
(1

s
d(z, T z)

)

6 sd(z, T z) lim sup
n→∞

β(Cs(xn(k), z)).

This implies that lim sup
n→∞

β(Cs(xn(k), z)) ≥
1

s
. Since β ∈ Fs, we have

lim sup
n→∞

β(Cs(xn(k), z)) ≤
1

s
.

We conclude that

(3.36) lim sup
n→∞

β(Cs(xn(k), z)) =
1

s
.

Similarly, we also see that

(3.37) lim inf
n→∞

β(Cs(xn(k), z)) =
1

s
.

Combining (3.36) with (3.37), we get lim
n→∞

β(Cs(xn(k), z)) =
1

s
. Since β ∈ Fs, we

have lim
n→∞

Cs(xn(k), z) = 0, which 0 (3.35). This implies that Tz = z. Therefore, z

is a fixed point of T . Since lim
n→∞

xn+1 = z and xn+1 = Txn = T nx1, we get that

lim
n→∞

T nx1 = z.

The following theorem is a sufficient condition for the uniqueness of a fixed point
for a generalized α-Geraghty contraction type mapping in b-metric spaces.
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Theorem 3.3. Let (X, d, s) be a complete b-metric space, α : X ×X −→ R be a
function and T : X −→ X be a mapping such that

1. All the hypotheses in Theorem 3.1 or Theorem 3.2 are satisfied.

2. If x 6= y are two fixed points of T , then there exists v ∈ X such that α(x, v) ≥
1, α(y, v) ≥ 1 and α(v, T v) ≥ 1.

Then T has a unique fixed point.

Proof. By Theorem 3.1 and Theorem 3.2, T has a fixed point. Suppose that x

and y are two fixed points of T with x 6= y. By using hypothesis (2), there exists
v ∈ X such that α(x, v) ≥ 1, α(y, v) ≥ 1 and α(v, T v) ≥ 1. Since α(x, v) ≥ 1 and
α(v, T v) ≥ 1, we have α(x, T v) ≥ 1. Since α(v, T v) ≥ 1, we also have α(Tv, T 2v) ≥
1. This implies that α(x, T 2v) ≥ 1. Continuing this process, we get α(x, T nv) ≥ 1
for all n ≥ 1. Similarly, we also see that α(y, T nv) ≥ 1 for all n ≥ 1. Since
α(x, T nv) ≥ 1 and T is a generalized α-Geraghty contraction type mapping, we
obtain

sd(x, T n+1v) = sd(Tx, T n+1v)

6 sα(x, T nv)d(x, T nv)

6 β
(

Cs(x, T
nv)
)

Cs(x, T
nv),(3.38)

where

Cs(x, T
nv)

= max
{

d(x, T nv), d(x, Tx), d(T nv, T n+1v),
d(x, T n+1v) + d(T nv, Tx)

2s
,

d(T 2x, x) + d(T 2x, T n+1v)

2s
, d(T 2x, Tx), d(T 2x, T n+1v), d(T 2x, T nv)

}

= max
{

d(x, T nv), d(T nv, T n+1v),
d(x, T n+1v) + d(T nv, x)

2s
, d(x, T n+1v)

}

.(3.39)

It follows from Theorem 3.1 or Theorem 3.2 where x1 is replaced by v that there
exists z ∈ X such that lim

n→∞

T nv = z and Tz = z. On the contrary, suppose that

x 6= z. Letting n → ∞ trong (3.39), we have

(3.40)
1

s
d(x, z) ≤ lim inf

n→∞

Cs(xn, xn+1) ≤ lim sup
n→∞

Cs(xn, xn+1) = sd(x, z).

Letting n → ∞ in (3.38) and using (3.40), we have

d(x, z) =
1

s
sd(x, z) ≤ lim sup

n→∞

β(Cs(xn, xn+1))sd(x, z).

This implies that lim sup
n→∞

β(Cs(xn, xn+1)) ≥
1

s
. Since β ∈ Fs, we have

lim sup
n→∞

β(Cs(xn, xn+1)) ≤
1

s
.
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Therefore, we conclude that

(3.41) lim sup
n→∞

β(Cs(xn, xn+1)) =
1

s
.

Similarly, we also see that

(3.42) lim inf
n→∞

β(Cs(xn, xn+1)) =
1

s
.

Combining (3.41) and (3.42) gives lim
n→∞

β(Cs(xn, xn+1)) =
1

s
. Since β ∈ Fs, it

follows that lim
n→∞

Cs(xn, xn+1) = 0, which contradicts (3.40). It implies that x = z

and hence lim
n→∞

T nv = x.

Similarly, we also see that lim
n→∞

T nv = y. Then, we conclude that x = y and

hence T has a unique fixed point.

Since each metric is a b-metric with s = 1, from Theorem 3.1, Theorem 3.2 and
Theorem 3.3, we get following corollaries. These results are generalizations of [26,
Theorem 4, Theorem 5 and Remark 9].

Corollary 3.1. Let (X, d) be a metric space, α : X ×X −→ R be a function and
T : X −→ X be a mapping such that

1. There exists β ∈ F such that for all x, y ∈ X,

α(x, y)d(Tx, T y) 6 β
(

C(x, y)
)

C(x, y),

where

C(x, y) = max
{

d(x, y), d(x, Tx), d(y, T y),
d(x, T y) + d(y, Tx)

2
,

d(T 2x, x) + d(T 2x, T y)

2
, d(T 2x, Tx), d(T 2x, T y), d(T 2x, y)

}

.

2. T is a triangular α-orbital admissible.

3. There exists x1 ∈ X such that α(x1, T x1) > 1.

4. T is continuous.

Then T has a fixed point z ∈ X and {T nx1} converges z.

Corollary 3.2. Let (X, d) be a metric space, α : X ×X −→ R be a function and
T : X −→ X be a mapping such that
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1. There exists β ∈ F such that for all x, y ∈ X,

α(x, y)d(Tx, T y) 6 β
(

C(x, y)
)

C(x, y),

where

C(x, y) = max
{

d(x, y), d(x, Tx), d(y, T y),
d(x, T y) + d(y, Tx)

2
,

d(T 2x, x) + d(T 2x, T y)

2
, d(T 2x, Tx), d(T 2x, T y), d(T 2x, y)

}

.

2. T is a triangular α-orbital admissible.

3. There exists x1 ∈ X such that α(x1, T x1) > 1.

4. If {xn} is a sequence in X such that α(xn, xn+1) > 1 for all n > 1 and
lim
n→∞

xn = x ∈ X, then there exists a subsequence {xn(k)} of {xn} such that

α(xn(k), x) > 1 for all k > 1.

Then T has a fixed point z ∈ X and {T nx1} converges z.

Corollary 3.3. Let (X, d) be a metric space, α : X ×X −→ R be a function and
T : X −→ X be a mapping such that

1. All the hypotheses s in Corollary 3.1 or Corollary 3.2 are satisfied.

2. If x 6= y are two fixed points of T , then there exists v ∈ X such that

α(x, v) ≥ 1, α(y, v) ≥ 1 and α(v, T v) ≥ 1.

Then T has a unique fixed point.

Remark 3.1. Theorem 3.1, Theorem 3.2 and Theorem 3.3 are generalizations of
[14, Theorem 3.8].

Finally, we give some examples to support our results. The following example
is an illustration of Theorem 3.2. This example also proves that Theorem 3.2 is a
proper generalization of [14, Theorem 3.8].

Example 3.1. Let X = [−2,−1] ∪ {0} ∪ [1, 2] and b-metric d be defined by d(x, y) =
(x− y)2 for all x, y ∈ X. Then (X, d, s) is a b-metric space with s = 2. Let T : X −→ X

be defined by

Tx =

{

−x if x ∈ [−2,−1) ∪ (1, 2]
0 if x ∈ {−1, 0, 1}.

By choosing x = 1, y = 2, we have d(x, y) = d(1, 2) = 1 and d(Tx,Ty) = d(0,−2) = 4.
Then, if the condition d(T1, T2) 6 β(d(1, 2))d(1, 2) is satisfied, then 4 ≤ β(1). This
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contradicts β ∈ Fs. Therefore, [14, Theorem 3.8] cannot be used to prove the existence of
a fixed point of T .

Define a mapping α : X ×X −→ R by

α(x, y) =







1 if x, y ∈ {−1, 0, 1}
1
6

if xy > 0
0 otherwise.

We claim that T is triangular α-orbital admissible mapping. Indeed, for x ∈ X such
that α(x, Tx) > 1, it implies that x ∈ {−1, 0, 1}. Then α(Tx, T 2x) = α(0, 0) = 1. It implies
that T is α-orbital admissible. For x, y ∈ X such that α(x, y) ≥ 1 and α(y, Ty) ≥ 1, it
follows that Ty = 0 and x ∈ {−1, 0, 1}. This implies that α(x, Ty) ≥ 1. Therefore, T is a
triangular α-orbital admissible mapping.

Let {xn} ⊂ X such that α(xn+1, xn) ≥ 1 and lim
n→∞

xn = x ∈ X. We conclude that

x, xn ∈ {−1, 0, 1} and hence α(xn, x) ≥ 1.

Finally, we claim that T is a generalized α-Geraghty contraction type mapping with

β(t) =
1

3
for all t ≥ 0. Indeed, for all x, y ∈ X, we consider the following cases.

Case 1. x, y ∈ [−2,−1). Then d(Tx, Ty) = d(−x,−y) = (x− y)2 ≤ 1 and Cs(x, y) ≥
4. This implies that

sα(x, y)d(Tx, Ty) ≤ 2× 1

6
× 1 =

1

3
and β(Cs(x, y))Cs(x, y) ≥ 1

3
× 4 =

4

3
.

Case 2. x, y ∈ (1, 2]. Then d(Tx, Ty) = d(−x,−y) = (x − y)2 ≤ 1 and Cs(x, y) ≥ 4.

This implies that sα(x, y)d(Tx,Ty) ≤ 2× 1

6
×1 =

1

3
and β(Cs(x, y))Cs(x, y) ≥ 1

3
×4 =

4

3
.

Case 3. x ∈ [−2,−1), y = −1 or x ∈ (1, 2], y = 1. Then d(Tx, Ty) = d(−x, 0) = x2

and Cs(x, y) ≥ x2. This implies that

sα(x, y)d(Tx,Ty) ≤ 2× 1

6
x2 =

x2

3
and β(Cs(x, y))Cs(x, y) ≥

x2

3
.

Case 4.: x ∈ [−2,−1) ∪ (1, 2], y = 0. Then d(Tx, Ty) = d(−x, 0) = x2 and
Cs(x, y) ≥ x2. This implies that

sα(x, y)d(Tx,Ty) ≤ 2× 0× x2 = 0 and β(Cs(x, y))Cs(x, y) ≥ x2

3
.

Case 5. x, y ∈ {−1, 0, 1}. Then d(Tx, Ty) = d(0, 0) = 0 and Cs(x, y) ≥ 0.

Case 6. x = −1, y ∈ [−2,−1). Then d(Tx, Ty) = d(0,−y) = y2 and C(x, y) ≥ 4y2.

This implies that sα(x, y)d(Tx,Ty) ≤ 2× 1

6
y2 =

y2

3
and β(Cs(x, y))Cs(x, y) ≥ 4y2

3
.

Case 7. x = 1, y ∈ (1, 2]. Then d(Tx, Ty) = d(0,−y) = y2 and Cs(x, y) ≥ 4y2. This

implies that sα(x, y)d(Tx,Ty) ≤ 2× 1

6
×y2 =

y2

3
and β(Cs(x, y))Cs(x, y) ≥ 1

3
×4y2 =

4y2

3
.

Case 8. x = 0, y ∈ [−2,−1)∪(1, 2]. Then d(Tx, Ty) = d(0,−y) = y2 andCs(x, y) ≥ 4y2.

This implies that sα(x, y)d(Tx,Ty) ≤ 2× 0× y2 = 0 and β(Cs(x, y))Cs(x, y) ≥ 4y2

3
.
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Case 9. x ∈ [−2,−1), y ∈ (1, 2] or x ∈ (1, 2], y ∈ [−2,−1) or x ∈ [−2,−1), y = 0 or
x ∈ (1, 2], y = −1 or x = −1, y ∈ (1, 2] or x = 1, y ∈ [−2,−1). Then Cs(x, y) ≥ 0 and
sα(x, y)d(Tx,Ty) = s× 0× d(Tx, Ty) = 0.

By the above cases, we conclude that sα(x, y)d(Tx,Ty) ≤ β
(

C(x, y)
)

C(x, y) and hence
T is a generalized α-Geraghty contraction type mapping. Therefore, all the hypotheses in
Theorem 3.2 are satisfied. So, Theorem 3.2 is applicable to T , α, β and (X, d, s).

The following example proves that Corollary 3.1 is a proper generalization of
[26, Theorem 4, Theorem 5].

Example 3.2. Let X = {1, 2, 3, 4, 5} and metric d be defined by

d(x, y) =







0 if x = y

2 if (x, y) ∈ {(1, 4), (4, 1), (1, 5), (5, 1)}
1 otherwise.

Define a map α : X ×X → R by

α(x, y) =







1 if (x, y) ∈ {(1, 1), (1, 2), (1, 5), (2, 1), (2, 2), (2, 5),
(3, 5), (4, 5), (5, 4)}

0 otherwise.

Let T : X −→ X be defined by T1 = T2 = T3 = T4 = 1, T5 = 2. Then T is
triangular α-orbital admissible. Indeed, for x ∈ X such that α(x, Tx) > 1, we conclude
that x ∈ {1, 2}. Therefore, α(T1, T 21) = α(1, 1) = 1. This implies that T is α-orbital
admissible. For x, y ∈ X such that α(x, y) > 1 and α(y, Ty) > 1, we have x, y ∈ {1, 2}.
This implies that α(x, Ty) = α(1, 1) = 1. Therefore, we conclude that T is triangular
α-orbital admissible.

By choosing x = 2, y = 5, we have α(2, 5) = 1, d(Tx,Ty) = d(1, 2) = 1 and

MT (2, 5) = max

{

d(2, 5), d(2, 1), d(5, 2),
d(2, 2) + d(5, 1)

2

}

= 1.

If hypothesis (1) in [26, Theorem 4, Theorem 5] is satisfied, then it implies that β(1) ≥ 1.
This contradicts β ∈ F . Thus, [26, Theorem 4, Theorem 5] is not applicable to T , (X, d)
and α.

Let β(t) =
2

3
for all t ≥ 0. For x, y ∈ X, put

L = α(x, y)d(Tx,Ty),R = β(C(x, y))C(x, y) =
2

3
C(x, y).

Then we have the following table.
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x y α(x, y) d(Tx, Ty) L C(x, y) R

1 1 1 0 0 0 0

1 2 1 0 0 1 2
3

1 3 0 0 0 1 2
3

1 4 0 0 0 2 4
3

1 5 1 1 1 2 4
3

2 1 1 0 0 1 2
3

2 2 1 0 0 1 2
3

2 3 0 0 0 1 2
3

2 4 0 0 0 2 4
3

2 5 1 1 1 2 4
3

3 1 0 0 0 1 2
3

3 2 0 0 0 1 2
3

3 3 0 0 0 1 2
3

3 4 0 0 0 2 4
3

3 5 1 1 1 2 4
3

4 1 0 0 0 2 4
3

4 2 0 0 0 2 4
3

4 3 0 0 0 2 4
3

4 4 0 0 0 2 4
3

4 5 1 1 1 2 4
3

5 1 0 1 0 2 4
3

5 2 0 1 0 1 2
3

5 3 0 1 0 3
2

1

5 4 1 1 1 2 4
3

5 5 0 0 0 2 4
3

This implies that hypothesis (1) in Corollary 3.1 is satisfied. Therefore, all the hy-
potheses in Corollary 3.1 are satisfied and hence Corollary 3.1 is applicable to T , (X, d), α
and β.

Finally, we apply Theorem 3.2 to study the existence of solutions to the nonlinear
integral equation.

Example 3.3. Let C[a, b] be the set of all continuous functions on [a, b], b-metric d with
s = 2p−1 defined by

d(u, v) = sup
t∈[a,b]

|u(t)− v(t)|p

for all u, v ∈ C[a, b] and some p > 1. Consider the nonlinear integral equation

(3.43) u(t) = g(t) +

∫ b

a

K(t, x, u(x))dx,

where t ∈ [a, b], g : [a, b] −→ R, K : [a, b] × [a, b] × u[a, b] −→ R for each u ∈ C[a, b].
Suppose that the following statements hold.

1. g is continuous on [a, b] and K(t, x, u(x)) is integral with respect to x on [a, b].

2. Tu ∈ C[a, b] for all u ∈ [a, b], where Tu(t) = g(t)+

∫ b

a

K(t, x, u(x))dx for all t ∈ [a, b].



248 N. T. Hieu and L. T. Chac

3. For all u ∈ C[a, b] and u(x) ≥ 0 for all x ∈ [a, b], we have T 2u(x) ≥ 0 for all x ∈ [a, b].

4. For all x, t ∈ [a, b] and u, v ∈ C[a, b] such that u(x), v(x) ∈ [0,∞) for all x ∈ [a, b],
we have

|K
(

t, x, u(x)
)

−K
(

t, x, v(x)
)

|

≤ ξ(t, x)max
{

|u(x)− v(x)|, |u(x)− Tu(x)|, |v(x)− Tv(x)|,

|u(x)− Tv(x)|+ |v(x)− Tu(x)|
2p

,
|T 2u(x)− u(x)|+ |T 2u(x)− Tv(x)|

2p
,

|T 2
u(x)− Tu(x)|, |T 2

u(x)− Tv(x)|, |T 2
u(x)− v(x)|

}

,

where ξ : [a, b]× [a, b] −→ R is continuous function satisfying

sup
t∈[a,b]

(

∫ b

a

ξ
p(t, x)dx

)

<
1

22p−2(b− a)p−1
.

5. There exists u1 ∈ C[a, b] such that u1(t) ≥ 0 and Tu1(t) ≥ 0 for all t ∈ [a, b].

Then nonlinear integral equation (3.43) has a unique solution in C[a, b].

Proof. Define a mapping T : C[a, b] −→ C[a, b] by

Tu(t) = g(t) +

∫ b

a

K(t, x, u(x))dx

for all u ∈ C[a, b] and for all t ∈ [a, b]. It follows from hypothesis (1) and hypoth-
esis (2) that T is well-defined. Notice that the existence of a solution to (3.43) is
equivalent to the existence of a fixed point of T . Now, we will show that all the
hypotheses of Theorem 3.2 are satisfied.

Define a mapping α : C[a, b]× C[a, b] −→ R by

α(u, v) =

{

1 if u(x), v(x) ∈ [0,∞) for all x ∈ [a, b]
0 otherwise.

(1). We claim that T is a generalized α-Geraghty contraction type mapping.

Indeed, let q > 1 such that
1

p
+

1

q
= 1. From condition (4), for all u, v ∈ C[a, b]
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such that u(x), v(x) ∈ [0,∞) for all x ∈ [a, b], we have

2p−1α(u, v) |Tu(x)− Tv(x)|
p

= 2p−1 |Tu(x)− Tv(x)|
p

≤ 2p−1

∣

∣

∣

∣

∣

∫ b

a

K(t, x, u(x))dx −

∫ b

a

K(t, x, v(x))dx

∣

∣

∣

∣

∣

p

≤ 2p−1

∣

∣

∣

∣

∣

∫ b

a

(K(t, x, u(x)) −K(t, x, v(x)))dx

∣

∣

∣

∣

∣

p

≤ 2p−1

(

∫ b

a

|K(t, x, u(x))−K(t, x, v(x))| dx

)p

≤



2p−1

(

∫ b

a

dx

)
1

q

(

∫ b

a

|K(t, x, u(x)) −K(t, x, v(x))|pdx

)
1

p





p

≤ 2p−1(b − a)p−1

(

∫ b

a

ξp(t, x)dx

)

max
{

|u(x)− v(x)|, |u(x) − Tu(x)|,

|v(x) − Tv(x)|,
|u(x)− Tv(x)|+ |v(x) − Tu(x)|

2p
,

|T 2u(x)− u(x)|+ |T 2u(x)− Tv(x)|

2p
, |T 2u(x)− Tu(x)|,

|T 2u(x)− Tv(x)|, |T 2u(x)− v(x)|
}

= 2p−1(b − a)p−1
(

∫ b

a

ξp(t, x)dx
)

Cs(u, v)

≤ 2p−1(b − a)p−1 sup
t∈[a,b]

(

∫ b

a

ξp(t, x)dx
)

Cs(u, v)

= λCs(u, v),

where λ = 2p−1(b − a)p−1 sup
t∈[a,b]

(

∫ b

a

ξp(t, x)dx
)

<
1

2p−1
. This implies that condi-

tion (3.1) is satisfied with β(t) = λ for all t ≥ 0. Therefore, T is a generalized
α-Geraghty contraction type mapping.

(2). We shall show that T is triangular α-orbital admissible mapping. Indeed,
for u ∈ C[a, b] such that α(u, Tu) ≥ 1, we have u(x) ≥ 0 for all x ∈ [a, b]. It
follows from condition (3) that T 2u(x) ≥ 0. Therefore, α(u, T 2u) ≥ 1 and hence T

is α-orbital admissible mapping. In addition, for u, v ∈ C[a, b] such that α(u, v) ≥ 1
and α(v, T v) ≥ 1, we have u(x), v(x), T v(x) ≥ 0 for all x ∈ [a, b]. It implies that
α(u, T v) ≥ 1. Thus, T is triangular α-orbital admissible mapping.

(3). By hypothesis (5), we have α(u1, T u1) ≥ 1.

(4). Let {un} ⊂ C[a, b] such that α(un, un+1) ≥ 1 and lim
n→∞

un = u ∈ C[a, b].
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Then u(x), un(x) ∈ [0,∞) for all x ∈ [a, b] and n ≥ 0. Therefore, α(un, u) ≥ 1 for
all n ≥ 1.

Therefore, we conclude that all the hypotheses in 3.2 are satisfied. Thus, T has
a fixed point u ∈ C[a, b] and hence equation (3.43) has a solution u ∈ C[a, b].

The following example guarantees the existence of the functions K and g satis-
fying all the hypotheses in Example 3.3.

Example 3.4. Let C[0, 1] be the set of all continuous functions on [0, 1], b-metric d with
s = 2 defined by

d(u, v) = sup
t∈[0,1]

|u(t)− v(t)|2

for all u, v ∈ C[0, 1]. Consider the nonlinear integral equation

u(t) = − t2

2
√
14

+ t+

∫ 1

0

(x+ 1)t2u(x)

2
√
14(1 + u(x))

dx

for all t ∈ [0, 1] and u ∈ C[0, 1]. Put g(t) = − t2

2
√
14

+t andK(t, x, u(x)) =
(x+ 1)t2u(x)

2
√
14(1 + u(x))

for all x, t ∈ [0, 1] and u ∈ C[0, 1]. Then

(1). g is continuous on [0, 1]. Since u ∈ C[0, 1], K(t, x, u(x)) is integral with respect to
x on [0, 1].

(2). For all x, t ∈ [0, 1] and the sequence tn ∈ [0, 1] with lim
n→∞

tn = t. We have

|Tu(tn)− Tu(t)| ≤ |g(tn)− g(t)|+ 1

2
√
14

∫ 1

0

(1 + x)|t2n − t
2|
∣

∣

∣

∣

u(x)

1 + u(x)

∣

∣

∣

∣

dx

≤ |g(tn)− g(t)|+ 1

2
√
14

∫ 1

0

(1 + x)|t2n − t
2|dx

= |g(tn)− g(t)|+ 3√
224

|t2n − t
2|.

This implies that Tu ∈ C[0, 1] for all u ∈ C[0, 1].

(3). It is easy to see that g(t) ≥ 0 for t ∈ [0, 1]. In addition, for u ∈ C[0, 1] such
that u(x) ≥ 0 for all x ∈ [0, 1], we have K(t, x, u(x)) ≥ 0 for all x, t ∈ [0, 1]. It implies
that Tu(t) ≥ 0 for all u ∈ C[0, 1] and t ∈ [0, 1]. This implies that for all t ∈ [0, 1] and
u ∈ C[0, 1],

T
2
u(x) = g(t) +

∫ 1

0

K(t, x, Tu(x))dx ≥ 0.

(4). Let u, v ∈ C[0, 1] and u(x), v(x) ∈ [0,∞) for all x ∈ [0, 1], we have

|K(t, x, u(x))−K(t, x, v(x))| =
(1 + x)t2

2
√
14

∣

∣

∣

u(x)

1 + u(x)
− v(x)

1 + v(x)

∣

∣

∣

=
(1 + x)t2

2
√
14

∣

∣

∣

∣

u(x)− v(x)

[1 + u(x)][1 + v(x)]

∣

∣

∣

∣

≤ (1 + x)t2

2
√
14

∣

∣u(x)− v(x)
∣

∣.
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By choosing ξ(t, x) =
(x+ 1)t2

2
√
14

, it see that ξ is continuous, sup
t∈[0,1]

(

∫ 1

0

ξ
2(t, x)dx

)

<
1

4
,

0 ≤ |K(t, x, u(x))−K(t, x, v(x))| ≤ ξ(t, x)
∣

∣u(x)− v(x)
∣

∣, and hence

|K
(

t, x, u(x)
)

−K
(

t, x, v(x)
)

|

≤ ξ(t, x)max
{

|u(x)− v(x)|, |u(x)− Tu(x)|, |v(x)− Tv(x)|,

|u(x)− Tv(x)|+ |v(x)− Tu(x)|
2p

,
|T 2u(x)− u(x)|+ |T 2u(x)− Tv(x)|

2p
,

|T 2
u(x)− Tu(x)|, |T 2

u(x)− Tv(x)|, |T 2
u(x)− v(x)|

}

.

(5). By choosing u1(t) = t for all t ∈ [0, 1], we have Tu1(t) = t for all t ∈ [0, 1]. Then
u1(t) ≥ 0 and Tu1(t) ≥ 0 for all t ∈ [0, 1]. It implies that α(u1, Tu1) ≥ 1.

From the above, all the hypotheses to K and g in Example 3.3 are satisfied.
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izations of metric spaces and fixed point theorems. Rev. R. Acad. Cienc. Exactas
Fis. Nat. Ser. A Mat. RACSAM. 109 (2014), no. 1, 175 – 198.

6. T. V. An, L. Q. Tuyen and N. V. Dung: Stone-type theorem on b-metric spaces

and applications. Topology Appl. 185 (2015), 50 – 64.

7. I. A. Bakhtin: The contraction principle in quasimetric spaces. Func. An.,
Ulianowsk, Gos. Fed. Ins. 30 (1989), 26 – 37.

8. M. Boriceanu, M. Bota and A. Petrusel: Multivalued fractals in b-metric

spaces. Cent. Eur. J. Math. 8 (2010), no. 2, 367 – 377.



252 N. T. Hieu and L. T. Chac

9. J. Caballero, J. Harjani and K. Sadarangani: A best proximity point the-

orem for Geraghty-contractions. Fixed Point Theory Appl. 2012:231 (2012), 1 –
9.

10. S. H. Cho, J. S. Bae and E. Karapinar: Fixed point theorems for α-Geraghty

contraction type maps in metric spaces. Fixed Point Theory Appl. 2013:329

(2013), 1 – 11.
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mappings in various generalized metric spaces. Abstr. Appl. Anal. 2011 (2011),
1 – 13.

15. M. Geraghty: On contractive mappings. Proc. Am. Math. Soc. 40 (1973), 604
– 608.

16. M. E. Gordji, M. Ramezami, Y. J. Cho and S. Pirbavafa: A generalization of

Geraghty’s theorem in partially ordered metric spaces and applications to ordinary

differential equations. Fixed Point Theory Appl. 2012:74 (2012), 1 – 9.

17. B. T. N. Han and N. T. Hieu: A fixed point theorem for generalized cyclic

contractive mappings b-metric spaces. Facta Univ. Ser. Math. Inform. 31 (2016),
no. 2, 399 – 415.

18. N. T. Hieu and N. V. Dung: Some fixed point results for generalized rational

type contraction mappings in partially ordered b-metric spaces. Facta Univ. Ser.
Math. Inform. 30 (2015), no. 1, 49 – 66.

19. H. Huang and S. Xu: Fixed point theorems of contractive mappings in cone

b-metric spaces and applications. Fixed Point Theory Appl. 2012 (2012), 1 – 8.

20. N. Hussain, V. Parvaneh, J. R. Roshan and Z. Kadelburg: Fixed points of

cyclic weakly (ψ,ϕ, L,A,B)-contractive mappings in ordered b-metric spaces with

applications. Fixed Point Theory Appl. 2013:256 (2013), 1 – 18.

21. E. Karapinar: α-ψ-Geraght contraction type mappings and some related fixed

point results. Filomat. 28 (2014), no. 1, 37 – 48.

22. P. Kumam, N. V. Dung and V. T. L. Hang: Some equivalences between cone

b-metric spaces and b-metric spaces. Abstr. Appl. Anal. 2013 (2013), 1 – 8.

23. P. Kumam, N. V. Dung and K. Sitthithakerngkiet: A generalization of
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