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EXISTENCE OF N(k)-QUASI EINSTEIN MANIFOLDS
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Abstract. The aim of the present paper is to study the properties of pseudo Ricci sym-
metric quasi Einstein and N (k)—quasi Einstein manifolds. We construct some examples
of N(k)—quasi Einstein manifolds which support the existence of such manifolds.
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ture tensors

1. Introduction

An n—dimensional semi-Riemannian or Riemannian manifold (M,, g), (n > 2),
is said to be an Einstein manifold if its Ricci tensor S satisfies the condition S =
—g, where 7 denotes the scalar curvature of (M,,g). In other words, an Einstein
manifold is a Riemannian or pseudo Riemannian manifold whose Ricci tensor is
proportional to the metric. The notion of quasi Einstein manifolds arose during the
study of exact solutions to Einstein field equations, as well as during consideration of
quasi-umbilical hyper surfaces. A non-flat n—dimensional Riemannian manifold is
said to be quasi Einstein manifold if its Ricci tensor S of type (0, 2) is not identically
zero and satisfies

(1.1) S(X,)Y)=ag(X,Y)+(X)nY), X, YeTM
for smooth functions a and b # 0, where 7 is a non-zero 1—form such that

(1.2) 9(X,8) =n(X), g8 =n) =1

for all vector fields X and the associated vector fields £ [4]. The 1—form 7 is called
the associated 1—form and the unit vector field £ is called the generator of the
manifold. If the generator of a quasi Einstein manifold is a parallel vector field
then the manifold is locally a product manifold of one-dimensional distribution U
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and (n — 1) dimensional distribution U, where U~ is involutive and integrable
[25]. In an n—dimensional quasi Einstein manifold the Ricci tensor has precisely
two distinct eigenvalues a and a + b, where the multiplicity of a isn—1 and a+ b is
simple [4]. A proper n—Einstein contact metric manifold is a natural example of a
quasi Einstein manifold ([5], [6]). Different geometrical properties of quasi Einstein
manifolds have been studied by Chaki [26], Guha [28], De and Ghosh ([8], [18], [27]),
Shaikh, Yoon and Hui [32], Shaikh, Kim and Hui [33], Deszcz, Hotlos and Senturk
[19], Mantica and Suh [20], and others.

Let R denote the Riemannian curvature tensor of a Riemannian manifold M,,.
The k—nullity distribution N (k) of a Riemannian manifold is defined by

(1.3) N(k):p—Ny(k)={Z € T,M : R(X,Y)Z=k[g(Y,Z2)X — g(X,2)Y]},

where k is a smooth function [7]. If the generator £ belongs to k—nullity distri-
bution N(k), then the quasi Einstein manifold is called an N(k)—quasi Einstein
manifold [9]. A conformally flat quasi Einstein manifolds are certain N (k)—quasi
Einstein manifolds [9]. The derivation conditions R(§, X).R = 0, R({,X).S =0
have also been studied in [9], where R and S denote the curvature and Ricci tensors
of the manifold, respectively. In 2007, Ozgiir and Tripathi [10] studied the devia-
tion conditions Z(¢, X).Z = 0, Z(£,X).R = 0 and Z(£, X).R = 0 on N (k)—quasi
Einstein manifolds, where Z denotes the concircular curvature tensor. Ozgﬁr and
Sular [11] continued the study of N(k)—quasi Einstein manifolds with conditions
R(¢,X).C = 0 and R(&,X).C = 0, where C' and C denote the Weyl conformal
and quasi conformal curvature tensors, respectively. Again, in 2008, Ozgiir [12]
studied the deviation conditions R(&, X).P =0, P(£,X).S =0 and P(¢,X).P=0
for an N(k)—quasi Einstein manifold, where P denotes the projective curvature
tensor and some physical examples of N(k)—quasi Einstein manifolds are given. In
2010, Singh, Pandey and Gautam [13], Taleshian and Hosseinzadeh [17], Dwivedi
[24] have studied the N (k)—quasi Einstein manifolds with the deviation conditions
R(§,X).P =0, R(&,X). Wy =0, Wa(£,X).S = 0 and P(¢, X).P = 0, where P and
W5 denote the pseudo projective curvature and Ws—projective curvature tensors,
respectively. Several geometrical properties of N(k)—quasi Einstein manifolds have
studied by Yildiz, De and Cetinkaya [15], Taleshian and Hosseinzadeh ( [16], [23]),
De, De and Gazi [14], Yang and Xu [22] and others. Motivated by the above studies,
the author continues the study of N(k)—quasi Einstein manifolds.

The paper is organized as follows. Section 2 is about the prerequisites of
N (k)—quasi Einstein manifolds. In Section 3, we give some examples of N (k)—quasi
Einstein manifolds which support the existence of such manifolds. We also prove
that the m—projectively flat quasi Einstein manifold is an N (ﬁgfg))—quasi Ein-
stein manifold but the converse is not true. In Sections 4 and 5, we show that there
does not exist N(k)—quasi Einstein manifolds under certain conditions. Section 6
gives the answer to the question:
Que: ”What condition is to be imposed on N (k)— quasi Einstein manifold that makes
it m—projectively flat?”
Section 7 is concerned with the study of the pseudo Ricci symmetric quasi Einstein
manifold.
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2. Preliminaries

In consequence of (1.1) and (1.2), we get

(2.1) S(X,8) = (a+b)n(X),
and
(2.2) r=na+b,

where 7 denotes the scalar curvature of the Riemannian manifold (M, g).

Lemma 2.1. [10] In an n—dimensional N(k)—quasi Einstein manifold it follows
that
a+b

k= .
n—1

In an n—dimensional N (k)—quasi Einstein manifold (M,,, g), the following relations
hold ([9], [10])

(2.3) R(X,Y)E = kn(Y)X —n(X)Y],

(2.4) R(X,8)Y =k[n(Y)X — g(X,Y)¢] = —R(¢, X)Y,
(2.5) R(§, X)§ = k[n(X)€ — X],

(2.6) Q¢ = k(n—1),

(2.7) n(R(X,Y)Z) = kn(X)g(Y, Z) = n(Y)g(X, Z)]

for arbitrary vector fields X, Y and Z.

The projective curvature tensor P [3], concircular curvature tensor C' ([1], [2])
and m—projective curvature tensor W* [34] on the Riemannian manifold (M, g)
are defined as

(2.8) PX,Y)Z=R(X,Y)Z — ﬁ [SY,Z2)X — S(X,2)Y],
(29)  OXV)Z=RXY)Z ~ gy oV 2)X — o(X,2)Y),
and

WHX,Y)Z = R(X,Y)Z—W[S(Y,Z)X

(2.10) - S(X,2)YY +9(Y,Z2)QX — g(X, Z)QY]
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respectively, for arbitrary vector fields X, Y, Z; where S(X,Y) = ¢(QX,Y). Here
@ denotes the Ricci operator of the Riemannian manifold. The properties of this
curvature tensor have been noticed in ([35], [36], [37], [38], [39], [40], etc.).

The curvature conditions P.R, P.C' and P.W* are defined by

(P(W,X).R)(Y,Z)U = P(W,X)R(Y,Z)U - R(P(W,X)Y,Z)U
(2.11) —R(Y,P(W,X)Z)U — R(Y, Z)P(W, XU,
(P(W,X).C)Y,Z2)U = PW,X)C(Y,Z)U - C(P(W,X)Y, Z)U
(2.12) —C(Y, P(W, X)Z)U — C(Y, Z)P(W, XU,
and
(P(W, X)W (Y, 2)U = P(W,X)W*(Y,Z)U - W*((P(W,X)Y,Z)U
(2.13) —W*(Y, P(W,X)Z)U — W*(Y, Z)P(W, X)U,

respectively, for all vector fields W, X, Y, Z, U, where P(W, X) acts on R, C and
W* as a deviation.

3. Examples of N(k)—quasi Einstein manifolds

In this section, we prove the existence of N(k)—quasi Einstein manifolds.

Theorem 3.1. Every m—projectively flat quasi Finstein manifold of dimension n

s an N(ﬁg—fi))— quasi Einstein manifold.

Proof. Let us suppose that the quasi Einstein manifold (M,,, g) is m—projectively
flat, i.e., W*(X,Y)Z = 0, therefore, (2.10) gives

1

(3.1) R(X,Y)Z = =T

{S(Y,2)X = S(X, 2)Y +9(Y, 2)QX — g(X, 2)QY}.

In consequence of (1.1) and (1.2), (3.1) becomes

R(X,Y)Z = m%l){gm Z)X - g(X. 2)Y}
(3.2) +ﬁ{n(Y)n(Z)X —n(X)n(2)Y +n(X)g(Y, Z)§ —n(Y)g(X, Z)}

Replacing Z by £ in (3.2) and then using (1.2), we have

2a+0b
(33) ROCY)E = 28 vy x vy,
2(n—1)
which shows that the generator £ belongs to the éfgfi)) —nullity distribution of

N (;?Zfi)) ). Hence the statement of the theorem. The converse part is not true. [
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Remark 3.1. From Theorem (3.1), one natural question arises here as: ”Under what

condition is N(;Zﬂ) )—quasi Einstein manifold m—projectively flat”” .

Theorem (6.1) gives the answer to this question.

Theorem 3.2. An m—projectively flat (WRS),, (n > 2) is an N(3)—quasi Ein-
stein manifolds.

Proof. A non-flat Riemannian manifold (M,,g), n > 2, is called a weakly-Ricci
symmetric if its Ricei tensor S of type (0,2) is not identically zero and satisfies the
relation

(3.4) (Dx )Y, Z) = A(X)g(Y, 2) + B(Y)S(X, Z) + D(2)S(X,Y),

for arbitrary vector fields X, Y and Z [21]. Here, A, B and D are 1—forms associated
with vectors p1, p2 and ps, respectively, i.e.,

A(X) =g(X,p1), B(X)=g(X,p2) and D(X)=g(X, ps).
In consequence of (3.4) and symmetric properties of S, it follows that
(3.5) {B(Y)-D({Y)}S(X,Z)={B(Z) - D(Z)} S(X,Y).
Let 0(X) = B(X) — D(X) for any vector field X, then (3.5) becomes
(3.6) oY)S(X,Z)=0(Z)S(X,Y).

Let {e;},7i=1,2,...,n, be an orthonormal basis of the tangent space at any point
of the manifold. Putting X = Z = ¢; in (3.6) and then taking summation over 4,
1 <1< n, we get

(3.7) ro(Y) = o(QY),

where o(X) = ¢g(X,0) for any vector field X and r is the scalar curvature. From
(3.6), we have

(3.8) d(6)S(X,Z) =0(Z2)S(X,0) =0(Z2)o(QX).
From (3.7) and (3.8), we get
(3.9) S(X,Z) = rH(X)H(Z),

where H(X) = % and ¢g(X, p) = H(X), p is a unit vector field. Let us consider

an m—projectively flat (W RS),, manifold, then (2.10) gives

RXY.ZU) = gos (S0 2)0(X.0) = S(X. Z)g(v.0)

(3.10) +9(Y, 2)S(X,U) — g(X, Z)S(Y,U)].
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In view of (3.9), (3.10) becomes

RXY,ZU) = oS HOYHZ)9(X,U) = HEXOH(Z)g(Y,U)

(3.11) +9(Y,Z)H(X)H(U) — g(X,Z)H(Y)H(U)].

Substituting X = U = ¢; in (3.11) and then taking summation over i, 1 < i < n,
we get

(3.12) S(Y,Z) = ag(¥, Z) + bH(Y)H(Z),
where
B r _r(n—2)

Equation (3.12) shows that the manifold is quasi-Einstein [4]. In view of (3.13) and

lemma (2.1), we get
a+b r

(n—1) 2
Hence the theorem. [

In 2004, P. Alegre, D. E. Blair and A. Carriazo introduced the idea of the
generalized Sasakian space form and they constructed many examples by using
different geometric techniques such as Riemannian submersions, warped products or
conformal and related transformations [41]. A Riemannian manifold of dimension n
equipped with a tensor field ¢ of type (1, 1), a structure vector field £ and a covariant
vector field 7 associated with the Riemannian metric g satisfies the relations

(314) ¢*(X)=-X+nX)E nE) =1, gX,=nX), and ¢£=0

and

(3.15) 9(¢X,9Y) = g(X,Y) —n(X)n(Y),

for arbitrary vector fields X and Y, is called an almost contact metric manifold
(M, 9,&,1n,9) [5]. An almost contact metric manifold (M, ¢,&,n,g) is said to be a
generalized Sasakian space form if the Riemannian curvature tensor R satisfies the
tensorial relation

RX,Y)Z = fi{g(Y,2)X —g(X,2)Y}
+f2{9(X,02)0Y — g(Y,0Z)pX + 29(X, ¢Y ) Z}
(3.16) +f3{n(XOn(2)Y —n(Y)n(2)X + g(X, Z)n(Y)§ — g(Y, Z)n(X)EY,

for arbitrary vector fields X, Y and Z, where f;, fo and f3 are smooth functions
on M. Here we consider that fi # f3. Replacing Z with the structure vector field
¢ in (3.16) and then using Equation (3.14), we get

(3.17) R(X,Y)E = (fr = fa){n(Y)X —n(X)Y},
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which demonstrates that (fi — f3) € (f1 — f3) nullity distribution. Contracting
(3.16) along the vector field X and then using (3.14) and (3.15), we find that

(318) S, Z)={(n—-1)fr+3f2— fs}g(Y,Z) = {3f2+ (n = 2) fs}n(Y)n(Z),

which proves that the generalized Sasakian space form is a certain class of quasi
Einstein manifold with scalar functions a = (n — 1) f1 + 3f2 — f3 and b = —{3fa +
(n —2)f3}. In consequence of lemma (2.1) and equation (3.18), we can calculate
the value of k as

(3.19) k=fi—fs.

This shows that the manifold is an N(f; — f3)—quasi Einstein manifold. Hence
from the above discussions, we can state the following example:

Example 3.1. An n—dimensional generalized Sasakian space form is an N(f1— f3)—quasi
Einstein manifold.

Example 3.2. Let (z',27%,...,2™) € R", where R" denotes n—dimensional real number

space. We consider a Lorentzian metric g on R* = (xl, 22 23, 2t g <zt < g+ 5,4 € Z),

(Z is the set of integer), by
(3.20)  ds® = gijda‘da’ = {sin(z") — tan(z")} [(dar:l)2 + (dz®)® + (dx?’)?} — (dz")?,

where (7,7 = 1,2,3,4). With the help of (3.20), we can see that the non-vanishing com-
ponents of the Lorentzian metric are

(3.21) gi1 = g22 = ¢33 = sin(:cl) — tan(gr:l)7 gaa = —1
and its associated components are

t(:l)l) 44

3.22 n_g22_gss_ o) - _1

(3:22) 9 =9 =9 = a1 Y

In consequence of (3.21) and (3.22), it can be calculated that the non-vanishing components
of Christoffel symbols, curvature tensor, Ricci tensor and scalar curvature are given by

cos®(z") 4 cos(z') + 1 cos®(z') + cos(z') + 1

1 _ 12 _ 3 L B
P =l =1 = sin2(xl) , Doy =T33 = sin2(ah) ,
Riss) — 1- COS(xl))(COSQ(xl) + cos(xl) + 1)2 Su — (COSQ(xl) + cos(xl) n 1)2
2sin2(z!)cos?(z!) ' sin?(2x1) ’
2/..1 1 2
(3.23) r= (cos™(z) + cos(z”) +1) (£0)

-~ 2sin2(x!)sin?(z1)(cos(z!) — 1)

and the components obtained by the symmetric properties. From (3.23), it is clear that the
manifold (R‘ﬂg) is a Lorentzian manifold. Now, we are going to prove that the manifold
(R, g) is a certain class of N(k)—quasi Einstein manifold. For this purpose we take the
associated smooth functions a and b as follows:

(cos?(x') 4 cos(zt) + 1)?

(3.21) 4= b G s (1 cos@)
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Now we define the 1—forms A; as follows:

o tan(z!) — sin(z) , i=3
(3.25) A= { 0 , otherwise

Now, we have to prove the following;:

(3.26) Sij = agij + bAZA]
for 7,7 = 1,2,3,4. For instance, we have to show that

(3.27) S33 = agss + bA3As.

The left-hand side of (3.27) = Ss3 = (cos2(x1)42»cos(x1)+1)2 (from (3.23)). In view of (3.21),

sin2(2z1)
(3.24) and (3.25), the right-hand side of (3.27) = agss + bA3As = (6052(””;2;?;;(1”;1”1)2.
In a similar way, we can verify for other components of S;;. From (1.1), (1.2), (1.3) and
(3.24), it can be easily proven that

a—b _ (cos*(z*) + cos(z') +1)?
n—1  6sin2(z')sin?(z!)(cos(xt) — 1)

and r = 4a—b hold on (R*, g) and, therefore, it is an N ( (cos?(a') feos(z’) +1)° ) —quasi

6sin2(z1)sin2(z1)(cos(zl)—1)

k=

Einstein manifold.

Example 3.3. If R® = (2%, 22, 2%);2" # qn,q € Z), (Z is a set of integers), a a three
dimensional real number space, then we define a Lorentzian metric on R? as

(3.28) ds® = gijda'da’ = —(da")? + e(”"”l)sin(:cl)[(dxz)2 + (dz*)?],

where (7,7 = 1,2,3). It can be seen from (3.28) that the non-vanishing components of the
Lorentzian metric are

1
(3.29) gin = —1, goo = e sin(z") = gas
and its associated components of the Lorentzian metric are
1
(3.30) gt =—1, g2 =¢% = “ese(a?).

From the equations (3.29) and (3.30), it can be easily calculated that the only non-
vanishing components of the Christoffel symbols, curvature tensors and Ricci tensors are
given by the following relations

e(zl)(sin(:cl) + cos(z')) sin(z) + cos(zh)

1 1 2 3
I3y =T33 = 2 , My =T13 = 2sin(a)) ;
21 (1 + sin2(z! 3 + sin2(z"
Ra323 = € (1+ sin2(z )), Ri212 = Ri313 = —eh M )
4 4sin(zt)
in2(xz') — 1
(3.31) 5'11 = M7 522 = 533 = —e(xl)COS(Scl)

2sin?(z1)
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and the components which can be obtained from these by the symmetric properties. Here
Si; represents the components of the Ricci tensor. From equation (3.31), it is clear that
the 3—dimensional space R? with the Lorentzian metric g defined in (3.28) is a Lorentzian
manifold of dimension 3. From (3.29), (3.30) and (3.31), it can be easily seen that the
scalar curvature of the manifold (]RS7 g) is non-zero, i.e.,

csc?(zh) — 6eot(xt)

(3.32) r= 5 £0.

Now, we choose the scalars a and b as follows:

20,1
(3.33) a=—cot(z'), b= _%(x) # 0.
We define the 1—form A as follows:

1, i=1
(3.34) Ai = { 0 , otherwise
Now, we have to prove that
(335) Si]‘ = agij + bAZA]

In consequence of (3.29), (3.31), (3.33), (3.34) and (3.35), it can be easily verified that
S11 = agi1 + bA1 A1 and all the other components of S satisfy the relation (3.35). Hence
(R®,g) is a quasi-Einstein manifold. Now, k = 2=t = 1 {csc*(z") — 2cot(z')} and r =
3a — b hold on (R?, g), therefore (R?, g) be an N (1 (csc®(z") — 2cot(z"))) —quasi Einstein

manifold.

Let us consider a conformally flat perfect fluid space time (M*, g) satisfying Ein-
stein’s equation without cosmological constant. Further, let £ be the unit time like
velocity vector of the fluid. The Einstein equation without cosmological constant
can be written as

(3.36) S(X,Y) - %Tg(X, Y) = kT(X,Y),

where « is the gravitational constant and T is the energy momentum tensor of type
(0,2). In the present case (3.36) can be written as

S(XY) ~ Lrg(X,Y) = sl(o + pn(X)n(¥) + pg(X, V)],

where o is the energy density and p is the isotropic pressure of the fluid. Then we
have from the above equation

(3.37) S(X,Y) = </§p + %T) g(X,Y) + k(o + p)n(X)n(Y),

which gives
r = k(o — 3p).
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Putting the value of r in (3.37), we get

SOLY) = (50 =) 9(X.Y) + k(o +pIn(X)n(Y),

which is of the form (1.2), where a = §(0 — p) and b = x(o + p). Since the space

time is conformally flat, therefore it is a N(k)—quasi Einstein manifold. Hence we
state the following example:

Example 3.4. [12] A conformally flat perfect fluid space time (M*,g) satisfying Ein-

stein’s equation without cosmological constant is an N(W)—quasi Einstein manifold.

Again we consider a conformally flat perfect fluid space time (M?, g) satisfying
Einstein’s equation with the cosmological constant . If £ is the unit time like
velocity vector of the fluid, then Einstein’s equation takes the form

1
SX,Y) + (A= 5n)g(X,Y) = sl(o + p)n(X)n(Y) + pg(X,Y)],

which is equivalent to

1
(3.38) S(X,Y) = (Iip +5r - )\) 9(X,Y)+ k(o +p)n(X)nY).
From (3.38), it can be seen that

r =4\ + k(o — 3p).
On substituting the value of r in (3.38), we find

K
S(X,)Y) = (A b G p)) 9(X,Y) + w(o + p)n(X)n(Y)

, where a = A+ (0 — p) and b = k(0 + p). Now,

k:a—l—b:é_'_m(o—i—p)'
3 3 6

Hence we state the following example:

Example 3.5. [12] A conformally flat perfect fluid space time (M?,g) satisfying Ein-
stein’s equation with the cosmological constant A is an N (% + @)—quasi Einstein
manifold.

In [14], we viewed the following examples:

Example 3.6. [14] A special para-Sasakian manifold with a vanishing D—concircular
curvature tensor is an N (k)—quasi Einstein manifold.

Example 3.7. [14] A perfect fluid pseudo Ricci symmetric space time is an N(%)—quasi
Einstein manifold.
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4. N(k)—quasi Einstein manifolds satisfying P(¢,X).R =0

From (1.1), (1.2), (2.1), (2.3), (2.4), (2.8) and lemma (2.1), it follows that

b

(41) PEY)Z = —= [g(Y, 2) = (Y In(Z) .

Let us assume that P(£, X).R = 0, then from (2.11) we have
P(&, X)R(Y, Z)U - R(P(&, X)Y, Z)U
(4.2) ~R(Y, P(§,X)Z)U - R(Y. Z)P(¢, X)U = 0.
In view of (1.2), (1.3), (2.3), (2.4), (2.7) and (4.1), Equation (4.2) becomes
b

—1[/R(Yv 27 UvX) + k(g(Xv Z)g(Y, U) - g(X, Y)Q(Zv U)

(4.3) +n(U)n(2)g(X,Y) = n(U)n(Y)g(X, Z))] =0,
where 'R(Y, Z,U, X) = g(R(Y, Z)U, X). Since b # 0, therefore, (4.3) gives

'R(Y, Z,U, X) + k(g9(X, Z)g(Y,U) — g(X,Y)g(Z,U)
(4.4) +n(U)n(2)g(X,Y) —nU)n(Y)g(X, Z)) = 0.

379

Let {{e;},i=1,2,...,n}, be an orthonormal basis of the tangent space at any point
of the manifold. Then putting X =Y =¢; in (4.4) and taking summation over 4,

1 <1< n, we get

(4.5) 5(2,U) = k(n = 1[g(Z,U) = n(Z)n(U)]-

Since, on a quasi-Einstein manifold the smooth functions a and b are unique, as if
S =a1g+bn®mn, then (a —ai)g + (b — b1)n ® n=0 and thus g is of rank < 1, a

contradiction. Hence we can state the following theorem:

Theorem 4.1. There exists no N(k)—quasi Einstein manifold (M,, g) satisfying

the condition P(&,X).R = 0.

5. N(k)—quasi Einstein manifolds satisfying P(¢, X).C' = 0

From (1.3), (2.2), (2.7) and (2.9) it follows that

(5.1) n(CY,2)U) =olg(Z,U)n(Y) — g(Y,U)n(2)],
b(n—3)—2a 75 0.

where o0 = m=D(n=2)

Let us suppose that the N (k)—quasi Einstein manifold satisfies P(¢, X).C' = 0,

then (2.12) gives

(5.2) —C(Y,P(&,X)Z)U — C(Y, Z)P(£, X)U = 0.
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In view of (1.2) and (4.1), (5.2) becomes
b

n —

({10, 2,0, X) = n(X)n(C(¥, 2)U) } € — {9(X,Y) = n(Xm(¥)} C (&, 2)U

—{9(X, Z) = n(X)n(2)} C(Y,OU — {g(X,U) —n(X)n(U)} C(Y, Z)¢] = 0,

where 'C(Y, Z,U, X) = g(C(Y, Z)U, X). Since b # 0, therefore the above equation
becomes

{{C.2.0,%) —n(Xm(CY.2)U) } €~ {g(X.Y) = n(X)n(¥)} C(€. 2)U
—{9(X, 2) = n(X)n(2)} C(Y, U — {g(X,U) = n(X)n(U)} C(Y, Z)¢ = 0,
which becomes
'C(Y, Z,U,X) = {g(X,Y) = n(X)n(Y)} n(C(&, Z)U)

—{9(X,Z) —n(X
(5.3) —{9(X,U) —n(X

Using (5.1) in (5.3), we find
'C(Y,2,U,X) = og(X,Y)g(Z,U)

(5.4) —9(X, 2)g(Y, U) +n(Y)n(U)g(X, Z) = n(U)n(Z)g(X, Y)].
In consequence of (2.2) and (2.9), (5.4) becomes

IR(Yv Z, UvX) = k {Q(Xv Y)Q(Zv U) - g(X, Z)g(Y, U)}
(5.5) +o {nU)n(Y)g(X, Z) —n(U)n(2)g(X,Y)}.

Let {e;}, i = 1,2,...,n, be an orthonormal basis of the tangent space at any point
of the manifold. Then putting X =Y = ¢; in (5.5) and taking summation over 4,
1 <7< n, we get

(5.6) S(Z.U) = d'g(Z.U) +bn(U)n(Z),

where o/ = (a+b), ¥/ = —(n—1)o. Since, on a quasi-Einstein manifold the smooth

functions a and b are unique, as if S = a1g+b1n®mn, then (a —a1)g+ (b—b1)n@n=0
and thus g is of rank < 1, a contradiction. Hence we can state the following theorem:

Theorem 5.1. There exists no N(k)—quasi Einstein manifold (M, g) satisfying
the condition P(&,X).C = 0.

6. N(k)—quasi Einstein manifolds satisfying P(¢, X).W* =

In view of equations (1.1), (1.2), (1.3), (2.7) and (2.10), we can find that
WY, Z,U,X) = —ﬁ[n(Z)n(U)g(Xa Y) =nU)n(Y)g(Z, X)
+9(Z, Un(X)n(Y) = (Y, U)n(X)n(Z)]

(6.1) +(k = —){9(Z.U)g(Y. X) = (Y, U)g(Z, X)}.



Existence of N(k)-quasi Einstein Manifolds 381

and
(6.2) n(W*(X,Y)Z) = Mg(Y, Z)n(X) — g(X, Z)n(Y)},
where A = (k — %5 — ﬁ) and 'W*(Y,Z,U,X) = g(W*(Y,Z)U,X). Let us

suppose that N(k)—quasi Einstein manifold satisfies P(£, X).W* = 0, then (2.13)
gives

In consequence of (1.2) and (4.1), the above equation becomes

LWV, 2,0, X0~ n(X)n(W (Y, 2)U)E — (X, V)W (6 2)U

(XY )W (&, 2)U — g(X, Z)W* (Y, U + n(X)n(Z)W*(Y,§)U
—g9(X, D)WY, Z)§ + n(X)n(U)W*(Y, Z)¢] =0,
which is equivalent to

LWV, Z,U,X) (X)W (Y, 2)U) — (XY (W (€, 2)U)

+n(X)n(Y)n(W*(€, 2)U) — g(X, Z)n(W*(Y, E)U) + n(X)n(Z)n(W* (Y, §)U)

(
(6.3) —g(X, U)n(W*(Y, 2)§) + n(X)n(U)n(W*(Y, Z)§)] = 0,
Since b # 0, therefore (6.3) becomes

WY, Z,U, X) = n(X)n(W* (Y, 2)U) — g(X, Y )n(W* (¢, Z)U)
+n(X)n(Y)n(W*(€, 2)U) — g(X, )(W*(Yé) )+ n(X)n(Z)n(W*(Y,§)U)
(6.4) —g(X, U)n(W*(Y, Z)€) + n(X)n(U)n(W*(Y, 2)§) = 0.
With the help of (1.2), (6.1) and (6.2), (6.4) becomes

— ~ M2, U)g(X,Y) = g(Y,U)g(Z, X)}

M(Zn0)g(X,Y) —=n(Y)n(U)g(Z, X) +n(X)n(Y)g(Z,U)

(k -~

b
" 2(n—1)
6.5)  —n(X)n(2)g(Y,U)] = Aln(Y)n(U)g(X, Z) —n(U)n(Z2)g(X,Y)] = 0.

Let {e;}, i = 1,2,...,n, be an orthonormal basis of the tangent space at any point
of the manifold. Then putting X =Y = ¢; in (6.5) and taking summation over 4,
1 <7< n, we get

b(n — 2) b -2

9(Z, U)+{(n—1)k—a——(1+

(6.6) 2(n—1)7 2V -1

n(U)n(Z) = 0.

Replacing Z by £ in equation (6.6) and using (1.2), we get

2a + b
2(n—1)

(6.7) k=
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From the equations (6.2) and (6.7), we obtain
(6.8) n(W*(X,Y)Z) = 0.

In consequence of (6.4) and (6.8), we can prove that W* = 0. Hence we can state
the following theorem:

Theorem 6.1. An N(k)—quasi Einstein manifold (M,, g) satisfies P(§, X).W* =
0 if and only if it is m—projectively flat.

7. Pseudo Ricci symmetric quasi Einstein manifold

R. N. Sen and M. C. Chaki [30] obtained the following expressions of covariant
derivative of Ricci tensor during the study of certain curvature restrictions on a
certain kind of conformally flat space of class one:

(7.1) Sij,l = 2)\1S¢j + )\iSlj + /\jSil,

where )\; is a non-zero covariant vector and ’,” denotes covariant differentiation with
respect to the metric g;;.

A non-flat Riemannian manifold (M,,g) is called a pseudo Ricci symmetric
(briefly (PRS),) [29] if its Ricci tensor of type (0,2) is not identically zero and
satisfies (7.1), that is (in index free notation),

(7.2) (VxS)Y,Z)=2A(X)S(Y,Z)+ A(Y)S(Z,X) + A(Z)S(X,Y),
where V denotes the Levi-Civita connection and A is a non-zero 1—form such that
A(X) =g(X,p)

for all vector fields X; p is the basic vector field of (M,,g) associated with the
1—form A. It is a particular case of weakly Ricci symmetric manifold introduced
by Tamassy and Binh [21].

Theorem 7.1. If M,, is a pseudo Ricci symmetric quasi Einstein manifold, then
(7.3) X(a+0) = (a+b) {AX) + 20(X)n(p)} -
Proof. Using (7.2) in
(VxS Y, Z2)=XS(Y,Z2)—- S(VxY,Z) - S(Y,VxZ),
we get
2A(X)S(Y, Z)+A(YV)S(Z, X)+A(Z)S(X,Y) = XS(Y, Z)-S(VxY, Z)-S(Y,Vx Z).

Putting Y = Z = ¢ in the above equation and using (1.3) and (2.1), we get (7.3).
Hence the theorem. O
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If (a + b)(# 0) is a constant, then (7.3) gives A(X) = —2n(X)n(p). Hence we can
state the following corollary:

Corollary 7.1. If M, is a pseudo Ricci symmetric quasi Einstein manifold, then
A(X) = =2n(X)n(p) if and only if (a + b) is non-zero constant.

Remark 7.1. If an n—dimensional generalized Sasakian space form is pseudo Ricci sym-
metric and satisfies the condition fi = f3, then from the equation (3.18) we can easily
observe that a + b = 0 and, therefore, the theorem (7.1) is verified.

Acknowledgments. The author wants to express his sincere thanks and gratitude
to the editor and the anonymous referees for their valuable comments which led to
the improvement of the paper.

REFERENCES

1. K. YaNo: Concircular geometry I. concircular transformations. Proc. Imp. Acad.
Tokyo 16 (1940), 195-200.

2. K. YANO and S. BOCHNER: Curvature and betti numbers. Annals of Mathematics
studies 32 (Princeton University Press), 1953.

3. K. YANO and M. KoON: Structures on manifolds. Series in Pure Mathematics,
World Scientific Publishing Co., Singapore, 1984.

4. M. C. CHAKI and R. K. MAITHY: On quasi Einstein manifolds. Publ. Math.
Debrecen 57, no. 3-4 (2000), 297-306.

5. D. E. BLAIR: Riemannian geometry of contact and symplectic manifolds. Progress
in Mathematics 203, Birkhauser Boston , Inc., Boston, MA, 2002.

6. M. OKUMURA: Some remarks on space with a certain contact structure. Tohoku
Math. J. 14 (1962), 135-145.

7. S. TANNO: Ricci curvatures of contact Riemannian manifolds. Tohoku Math. J.
40 (1988), 441-417.

8. U. C. DE and G. C. GHOSH: On quasi Einstein manifolds II. Bull. Calcutta
Math. Soc. 96, 2 (2004), 135-138.

9. M. M. TrrpaTHI and J. S. KiM: On N(k)—quasi Einstein manifolds. Commun.
Korean Math. Soc. 22, no. 3 (2007), 411-417.

10. OzGUR CiHAN and M. M. TRIPATHI: On the concircular curvature tensor of an
N (k)—quasi Einstein manifolds. Math. Pann. 18, 1 (2007), 95-100.

11. OzGiUR CiHAN and SIBEL SULAR: On N(k)—quasi Einstein manifolds satisfying
certain conditions. Balkan J. Jeom. Appl. 13, 2 (2008), 74-79.

12. OzcURrR CmHAN: N(k)—quasi Einstein manifolds satisfying certain conditions.
Chao, Solitons Fractals 38, 5 (2008), 1373-1377.

13. R. N. SINGH, M. K. PANDEY and D. GAUTAM: On N(k)—quasi Finstein mani-
folds. Novi Sad J. Math. 40, 2 (2010), 23-28.

14. A.Dg, U. C. DE and A. K. GAz1: On a class of N(k)—quasi Einstein manifolds.
Commun. Korean Math. Soc. 26, 4 (2011), 623-634.



384

15

16

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

S. K. Chaubey

A. Ywpiz, U. C. DE and A. CENTINKAYA: N(k)—quasi Fin-
stein  manifolds satisfying certain curvature conditions. (2011) [http
//www.emis.de/journals/BMMSS/pdf /acceptedpapers/2011—10—043r 1.pdf].

A. TALESHIAN and A. A. HOSSEINZADEH: Inwvestigation of some conditions on
N (k)—quasi Einstein manifolds. Bull. Malays. Math. Sci. Soc. 34 3 (2011), 455-
464.

A. TALESHIAN and A. A. HOSSEINZADEH: On Wa curvature tensor N(k)—quasi
Einstein manifolds. J. Math. Comp. Sci. 1 (2010), 28-32.

U. C. DE and G. C. GHOSH: On quasi Finstein and special quasi Finstein man-
ifolds. In: Proc. of the Int. conf. of Mathematics and its applications, Kuwait
University, April 5-7, 2004, 178-191.

R. DEszcz, M. HOTLOS and Z. SENTURK: On curvature properties of quasi-
Einstein hypersurfaces in semi-Euclidean spaces. Soochow J. Math. 27 (2001),
375-389.

C. A. ManTICcA and Y. J. SuH: Conformally symmetric manifolds and quasi
conformally recurrent Riemannian manifolds. Balkan Journal of Geometry and
its Applications 16 (2011), 66-77.

L. Tamassy and T. Q. BINH: On weak symmetries of Finstein and Sasakian
manifolds. Tensor N. S. 53 (1993), 140-148.

Y. YANG and S. Xu: Some conditions of N(k)—quasi Einstein manifolds. Int. J.
Dig. Cont. Tech. Appl. 6, 8 (2012), 144-150.

A. A. HOSSEINZADEH and A. TALESHIAN: On conformal and quasi conformal
curvature tensors of an N(k)—quasi Einstein manifolds. Commun. Korean Math.
Soc. 27, 2 (2012), 317-326.

M. K. DWIVEDL: A study of Wa curvature tensor of a N(k)—quasi Einstein man-
ifold. 5-1JSET 1 (2010), 1-3.

P. DEBNATH and A. KONAR: On quasi Einstein manifold and quasi FEinstein
spacetime. Differential Geometry-Dynamical Systems 12 (2010), 73-82.

M. C. CHAKI: On generalized quasi Einstein manifolds. Publ. Math. Debrecen
58 (2001), 683-691.

U. C. DE and G. C. GHOSH: On quasi Einstein manifolds. Period. Math. Hungar.
48 (2004), 223-231.

S. GUHA: On quasi Einstein and generalized quasi Finstein manifolds. Facta Univ.
Ser. Mech. Automat. Control Robot 3 14 (2003), 821-842.

M. C. CHAKIL: On pseudo Ricci symmetric manifolds. Bulg. J. Phisics 15 (1988),
526-531.

R. N. SEN and M. C. CHAKI: On curvature restriction of a certain kind of
conformally flat Riemannian spaces of class one. Proc. Nat. Inst. Sci. India Part
A 33 (1967), 100-102.

SINEM GiLER and SEZGIN ALTAY DEMIRBAG: On Ricci symmetric generalized
quasi-Finstein space times. Miskolc Mathematical Notes 16 (2015), 853-868.

A. A. SHAIKH, DAE WON YOoON and S. K. Hutl: On quasi-Einstein space times.
Tsukuba J. Math. 33 (2009), 305-326.

A. A. SHAIKH, YOUNG Ho KiM and S. K. Hul: On Lorentzian quasi-Finstein
manifolds. J. Korean Math. Soc. 48 (2011), 669-689.



34

35.

36.

37.

38.

39.

40.

41.

Existence of N(k)-quasi Einstein Manifolds 385

G. P. POKHARIYAL and R. S. MisHRA: Curvature tensor and their relativistic
significance II. Yokohama Mathematical Journal, 19 (1971), 97-103.

R. H. OJHA: M —projectively flat Sasakian manifolds. Indian J. Pure Appl. Math.
17 4 (1986), 481-484.

R. H. OJHA: A note on the M —projective curvature tensor. Indian J. Pure Appl.
Math. 8 12 (1975), 1531-1534.

S. K. CHAUBEY and R. H. OJHA: On the m—projective curvature tensor of a
Kenmotsu manifold. Differential Geometry - Dynamical Systems 12 2010, 52-60.

S. K. CHAUBEY: Some properties of LP—Sasakian manifolds equipped with m—
projective curvature tensor. Bulletin of Math. Analysis and Applications 3 (4)
(2011), 50-58.

S. K. CHAUBEY: On weakly m—projective symmetric manifolds. Novi Sad J.
Math. 42 (2012), 67-79.

S. K. CHAUBEY, S. PrRAkASH and R. NIVAS: Some properties of m—prijective
curvature tensor in Kenmotsu manifolds. Bulletin of Math. Analysis and Appli-
cations 4 (3) (2012), 48-56.

P. ALEGRE, DAVID E. BLAIR and A. CARRIAZO: Generalized Sasakian Space
forms. Israel J. of Math. 141 (2004), 157-183.

Sudhakar Kumar Chaubey,

Section of Mathematics,

Department of Information Technology,

Shinas college of technology, Shinas

P.O. Box 77, Postal Code 324, Sultanate of Oman.
sk22_math@yahoo.co.in



