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Abstract. In this paper, we established some common fixed point theorems for types
of cyclic contractions in the setting of dislocated quasi-metric spaces. Using the type
of contraction defined by C-class functions in [2] and the class of continuous functions
G3 in [23] we extend, generalize and unify some results in the existing literature.
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1. Introduction

There are a lot of generalizations of the concept of metric space. Some of them are
the concept of dislocated metric space and dislocated quasi-metric space which were
introduced by Hitzler [6, 7] and F. Zeyada [21]. These metrics have the property “
nonzero self-distance” of points and play a very important role not only in topology,
but also in other branches of science involving mathematics and, especially, logic
programming and electronic engineering. In sequel many researchers have studied,
generalized and extended the results on the existence of fixed points and common
fixed points, in many directions in dislocated spaces (see e.g. [1, 6, 8, 9, 21, 22, 23,
24]).

In 2003 Kirk et al. [16] introduced cyclic contractions in metric spaces and
investigated the existence of proximity points and fixed points for cyclic contraction
mappings. Since then, many authors have proved common fixed point theorems for
self-mappings satisfying a different type of contractive conditions in some spaces
(see results in [5, 11, 12, 13, 14, 16]).

In this paper, we introduce some notions of dq–cyclic contractions and use the
concepts of altering distance function [15], concept of C-class functions introduced
by Ansari [2] and a class of continuous functions G3 and also establish common
fixed point theorems for cyclic mappings and cyclic contractions in the framework
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of dislocated quasi–metric spaces. Our main theorems extend, generalize and unify
most of the existing metrical fixed point results in literature.

Definition 1.1. [6, 21] Let X be a non-empty set and d : X ×X → [0,∞) be a
function, called a distance function if for all x, y, z ∈ X , satisfies:

d1 : d(x, x) = 0

d2 : d(x, y) = d(y, x) = 0 ⇒ x = y

d3 : d(x, y) = d(y, x)

d4 : d(x, y) ≤ d(x, z) + d(z, y).

If d satisfies the condition d1 − d4, then d is called a metric on X . If it satisfies the
conditions d1, d2 and d4 it is called a quasi–metric space. If d satisfies conditions
d2, d3 and d4 it is called a dislocated metric (or simply d–metric). If d satisfies only
d2 and d4 then d is called a dislocated quasi–metric (or simply dq–metric) on X .

Definition 1.2. [21] A sequence (xn)n∈N in a dq–metric space (X, dq) dislocated
quasi–converges (for short, dq –converges) to x ∈ X if lim

n→∞

dq(xn, x) = lim
n→∞

dq(x, xn)

= 0. In this case x is called a dq–limit of (xn)n∈N and we write xn → x.

Definition 1.3. [21] A sequence (xn)n∈N in a dq–metric space (X, dq) is said to
be Cauchy if for every ε > 0, ∃n0 ∈ N such that ∀m,n ≥ n0, dq(xm, xn) < ε and
dq(xn, xm) < ε.

Definition 1.4. [21] A dq–metric space (X, dq) is complete if every Cauchy se-
quence is dq–convergent in X .

Example 1.1. Let X = [0, 1] and dq (x, y) = max {x, y}. Then the pair (X, dq) is a
dislocated metric space, but it is not a metric space.

Lemma 1.1. [21] Every subsequence of dq–convergent sequence to a point x0 is
dq–convergent to x0.

Definition 1.5. [21] Let (X, dq) be a dq–metric space. A mapping T : X → X is
called contraction if there exists 0 ≤ λ < 1 such that dq(Tx, T y) ≤ λdq(x, y) for all
x, y ∈ X .

Lemma 1.2. [21] The dq–limit point in a dq–metric space is unique.

Let K and H be nonempty subsets of a metric space (X, d) . A map T : K ∪H →
K ∪H is called cyclic map if T (K) ⊆ H and T (H) ⊆ K.

Definition 1.6. [16] Let K and H be nonempty subsets of a metric space (X, d).
A cyclic map T : K ∪H → K ∪H is said to be a cyclic contraction if there exists
k ∈ (0, 1) such that d(Tx, T y) ≤ kd(x, y) for all x ∈ K and y ∈ H .
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Definition 1.7. [10] Let H and K be nonempty subsets of a metric space (X, d).
A cyclic map T : K ∪ H → K ∪ H is called a Kannan type cyclic contraction if
there exists k ∈

(

0, 12
)

such that d(Tx, T y) ≤ k [d(Tx, x) + d(Ty, y)] for all x ∈ K
and y ∈ H .

In [10] Karapinar et al. has been shown that the Kannan-type cyclic contraction
and cyclic contraction are independent of each other.

Definition 1.8. [10] Let K and H be nonempty subsets of a metric space (X, d).
A cyclic map T : K ∪H → K ∪H is called a Chatterjee-type cyclic contraction if
there exists k ∈ (0, 12 ) such that d(Tx, T y) ≤ kmax [d (x, y) , d(Tx, x), d(Ty, y)] for
all x ∈ K and y ∈ H .

Definition 1.9. [16] Let K and H be nonempty subsets of a dislocated metric
space (X, d). A cyclic map T : K ∪ H → K ∪ H is called a d-cyclic contraction if
there exists k ∈ (0, 1) such that d(Tx, T y) ≤ kd(x, y) for all x ∈ K and y ∈ H .

Example 1.2. [22] Let X = [0, 1] and d (x, y) = |x− y| + 3 |x| + 3 |y|. Then (X, d)
is a dislocated metric space, but not a metric space. Let K = H = [0, 1] and define
T : K ∪ H → K ∪ H by Tx = 1

3
for x = 1 and Tx = 1 for x ∈ [0, 1). Then T is a d-

cyclic contraction in the dislocated metric space (X, d). We note that in the usual metric
d (x, y) = |x− y| the self map T is not cyclic contraction because for x = 11

12
and y = 1

the cyclic contraction fails.

Hence the class of d–cyclical contractions in dislocated metric space is larger than the
class of cyclical contractions in usual metric.

Definition 1.10. [22] Let K and H be nonempty subsets of a dislocated quasi–
metric space (X, dq). A cyclic map T : K∪H → K∪H is called a Geraghty-type dq–
cyclic contraction if there exists β ∈ S such that dq (Tx, T y) ≤ β (dq (x, y)) dq (x, y)
for all x ∈ K and y ∈ H .

In 2014 the concept of C–class functions (see Definition 1.11) was introduced by
Ansari [2], for example see numbers (1), (2), (9) and (15) from Example 1.3. Also
see [8] and [3] .

Definition 1.11. [2] A continuous function F : [0,∞) × [0,∞) → R is called
C–function if for any s, t ∈ [0,∞), the following conditions hold:

(1) F (s, t) ≤ s;

(2) F (s, t) = s implies that either s = 0 or t = 0.

The letter C will denote the class of all C–functions.

PROBLEM: this is an open problem, we can say that for all F ∈ C, F (0, 0) = 0.

Example 1.3. [2] The following examples show that the class C is nonempty.
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1. F (s, t) = s− t.

2. F (s, t) = ms, 0 < m < 1.

3. F (s, t) = s
(1+t)r for some r ∈ (0,∞).

4. F (s, t) = log(t+ as)/(1 + t), for some a > 1.

5. F (s, t) = ln(1 + as)/2, for a > e. Indeed F (s, 1) = s implies that s = 0.

6. F (s, t) = (s+ l)(1/(1+t)r) − l, l > 1, for r ∈ (0,∞).

7. F (s, t) = s logt+a a, for a > 1.

8. F (s, t) = s− (1+s
2+s )(

t
1+t ).

9. F (s, t) = sβ(s), where β : [0,∞) → [0, 1).

10. F (s, t) = s− t
k+t .

11. F (s, t) = s − ϕ(s), where ϕ : [0,∞) → [0,∞) is a continuous function such
that ϕ(t) = 0 if and only if t = 0.

12. F (s, t) = sh(s, t), where h : [0,∞)× [0,∞) → [0,∞) is a continuous function
such that h(t, s) < 1 for all t, s > 0.

13. F (s, t) = s− (2+t
1+t )t.

14. F (s, t) = n
√

ln(1 + sn).

15. F (s, t) = φ(s), where φ : [0,∞) → [0,∞) is an upper semicontinuous function
such that φ(0) = 0 and φ(t) < t for t > 0.

16. F (s, t) = s
(1+s)r ; r ∈ (0,∞).

Definition 1.12. [15] A function ψ : [0,∞) → [0,∞) is called an altering distance
function if the following properties are satisfied:

(i) ψ is non-decreasing and continuous,

(ii) ψ (t) = 0 if and only if t = 0.

We denote altering distance functions as Ψ.

Definition 1.13. [2] An ultra altering distance function is a continuous, nonde-
creasing mapping ϕ : [0,∞) → [0,∞) such that ϕ(t) > 0, t > 0.

We denote ultra altering distance functions as Φu.
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2. Main results

Lemma 2.1. Let (X, dq) be a dq−metric space and let {xn} be a sequence in X
such that

(2.1) lim
n→∞

dq(xn+1, xn) = lim
n→∞

dq(xn, xn+1) = 0.

If {xn} is not a Cauchy sequence, then there exist ε > 0 and two subsequences
{xmk

} and {xnk
} of {xn}n∈N with nk ≥ mk ≥ k ,(positive integers ) such that the

following four sequences tend to ε for k → ∞:

dq(xmk
, xnk

), dq(xmk
, xnk+1), dq(xmk+1, xnk

), dq(xmk+1, xnk+1).

Proof. If suppose that {xn} is a sequence in X satisfying condition (2.1) which is
not Cauchy then there exist ε > 0 for which we can find subsequences {xmk

} and
{xnk

} of {xn}n∈N such that nk is the smallest index for which

(2.2) nk ≥ mk ≥ k, dq(xmk
, xnk

) ≥ ε, dq(xmk
, xnk−1) < ε.

Then from triangular inequality,

ε ≤ dq(xmk
, xnk

) ≤ dq(xmk
, xnk−1) + dq(xnk−1, xnk

)(2.3)

≤ ε+ dq(xnk−1, xnk
).

Taking the limit as k → ∞ in (2.3), using the condition (2.4) we conclude that

(2.4) lim
k→∞

dq(xmk
, xnk

) = ε.

Again

ε ≤ dq(xmk
, xnk

) ≤ dq(xmk
, xnk+1) + dq(xnk+1, xnk

)(2.5)

≤ dq(xmk
, xnk

) + dq(xnk
, xnk+1) + dq(xnk+1, xnk

).

Taking the limit as k → ∞ in (2.5), using the condition (2.1) and the result (2.4)
we conclude that

(2.6) lim
k→∞

dq(xmk
, xnk+1) = ε.

Further

ε ≤ dq(xmk
, xnk

) ≤ dq(xmk
, xmk+1) + dq(xmk+1, xnk

)

≤ dq(xmk
, xmk+1) + dq(xmk+1, xmk

) + dq(xmk
, xnk

).

In the two inequalities above the taking limit as k → ∞ and using the condition
(2.1) and the results (2.4) we obtain:

(2.7) lim
k→∞

dq(xmk+1, xnk
) = ε.
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By triangular inequality, we have

dq(xmk
, xnk

) ≤ dq(xmk
, xmk+1) + dq(xmk+1, xnk+1) + dq(xnk+1, xnk

)

≤ dq(xmk
, xmk+1) + dq(xmk+1, xnk

)

+dq(xnk
, xnk+1) + dq(xnk+1, xnk

).

In the above inequality, taking the limit as k → ∞ and using the condition (2.1)
and the results (2.4), (2.7) we obtain

(2.8) lim
k→∞

dq(xmk+1, xnk+1) = ε,

this completes the proof.

Theorem 2.1. Let K and H be nonempty subsets of a complete dislocated quasi–
metric space (X, dq). Let T : K ∪H → K ∪H be a cyclic mapping that satisfies the
condition

dq (Tx, T y) ≤ F (max {dq (x, y) , dq (x, Tx) , dq (y, T y)} ,

ϕ(max {dq (x, y) , dq (x, Tx) , dq (y, T y)}))
(2.9)

for all x ∈ A and y ∈ B and F ∈ C,ϕ ∈ Φu. Then, T has a unique fixed point in
K ∩H.

Proof. Taking a point x ∈ K and using (2.9), we have

dq
(

T 2x, Tx
)

= dq(T (Tx) , T x)

≤ F (max
{

dq (Tx, x) , dq
(

Tx, T 2x
)

, dq (x, Tx)
}

,

ϕ(max
{

dq (Tx, x) , dq
(

Tx, T 2x
)

, dq (x, Tx)
}

))

≤ max
{

dq (Tx, x) , dq
(

Tx, T 2x
)

, dq (x, Tx)
}

= max {dq (Tx, x) , dq (x, Tx)} .

In the same way we have,

dq
(

Tx, T 2x,
)

= dq
(

Tx, T 2x,
)

≤ F
(

max
{

dq (x, Tx) dq (x, Tx) , dq
(

Tx, T 2x
)}

,

ϕ(max
{

dq (x, Tx) , dq (x, Tx) , dq
(

Tx, T 2x
)}

)
)

≤ max
{

dq (x, Tx) , dq (x, Tx) , dq
(

Tx, T 2x
)}

= max {dq (Tx, x)}

≤ max {dq (Tx, x) , dq (x, Tx)} ,

so,

(2.10) max
{

dq
(

T 2x, Tx
)

, dq
(

Tx, T 2x
)}

≤ max {dq (Tx, x) , dq (x, Tx)} .
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Using (2.9) and (2.10) we get,

(2.11) max
{

dq
(

T 3x, T 2x
)

, dq
(

T 2x, T 3x
)}

≤ max
{

dq
(

T 2x, Tx
)

, dq
(

Tx, T 2x
)}

.

Inductively, using this process for all n ∈ N we have

max
{

dq
(

T n+1x, T nx
)

, dq
(

T nx, T n+1x
)}

≤ max
{

dq
(

T nx, T n−1x
)

,

dq
(

T n−1x, T nx
)}

.
(2.12)

The sequence {max
{

dq
(

T n+1x, T nx
)

, dq
(

T nx, T n+1x
)}

} is decreasing, so it tends
to r ≥ 0 now with n→ ∞ in the above and using (2.9) we have

(2.13) r ≤ F (r, ϕ(r)).

So, r = 0 or ϕ(r) = 0, therefore lim
n→∞

dq
(

T nx, T n−1x
)

= 0 and lim
n→∞

dq
(

T n−1x, T nx
)

= 0. Now, we shall prove that {xn} is a Cauchy sequence, If {xn} is not a Cauchy
sequence, then by Lemma 2.1 there exist ε > 0 and two sequences {mk} and {nk}
of positive integers such that the following four sequences tend to ε when k → ∞,

dq(xmk
, xnk

), dq(xmk
, xnk+1), dq(xmk+1, xnk

), dq(xmk+1, xnk+1).

So

dq(xmk+1, xnk+1) = dq(Txmk
, T xnk

)

≤ F (max{dq(xmk
, xnk

), dq(xnk
, T xnk

), dq(xmk
, T xmk

)},

ϕ(max{dq(xmk
, xnk

), dq(xnk
, T xnk

), dq(xmk
, T xmk

)}))

= F (max{dq(xmk
, xnk

), dq(xnk
, xnk+1), dq(xmk

, xmk+1)},

ϕ(max{dq(xmk
, xnk

), dq(xnk
, xnk+1), dq(xmk

, xmk+1)})).(2.14)

Letting k → ∞, we get

ε ≤ F (ε, ϕ(ε)).

So, ε = 0 or ϕ(ε) = 0, that is; ε = 0. Thus (T nx) is a Cauchy sequence. Since
(X, dq) is complete, we have (T nx) dq –converges to some z ∈ X . We note that
(

T 2nx
)

is a sequence in K and
(

T 2n−1x
)

is a sequence in H in a way that both
sequences tend to the same limit z.

Since K and H are closed then we have that z ∈ K ∩H . Hence K ∩H 6= Ø.

We claim that Tz = z.

Considering the condition (2.9) we have:

dq
(

T 2nx, T z
)

= dq
(

TT 2n−1x, T z
)

≤ F (max
{

dq
(

T 2n−1x, z
)

, dq
(

T 2n−1x, T 2nx
)

, dq (z, T z)
}

, ϕmax
{

dq
(

T 2n−1x, z
)

, dq
(

T 2n−1x, T 2nx
)

, dq (z, T z)
}

).



100 A. H. Ansari and K. Zoto

By n→ ∞ in the above inequality, we have

dq (z, T z) ≤ F (dq (z, T z) , ϕ(dq (z, T z))).

So, dq (z, T z) = 0 or ϕ(dq (z, T z)) = 0. This implies that dq (z, T z) = 0.

Similarly, considering (2.9) we have,

dq
(

Tz, T 2nx
)

= dq
(

Tz, TT 2n−1x
)

≤ F (max
{

dq
(

z, T 2n−1x
)

, dq (z, T z) , dq
(

T 2n−1x, T 2nx
)}

, ϕmax
{

dq
(

z, T 2n−1x
)

, dq (z, T z) , dq
(

T 2n−1x, T 2nx
)}

).

Similarly, by n→ ∞ above we obtain dq (Tz, z) = 0.

Hence dq (z, T z) = dq (Tz, z) = 0, so Tz = z and z is a fixed point of T .

We shall prove that z is a unique fixed point of T . Clearly, from (2.9) if u and
v are the fixed points of T we have dq (u, u) = 0, dq (v, v) = 0.

Then we have,

dq(u, v) = dq(Tu, T v)

≤ F (max{dq(u, v), dq(u, u), dq(v, v)} ,

ϕ (max{dq(u, v), dq(u, u), dq(v, v)}))

= F (dq(u, v), ϕ(dq(u, v))),

so, dq(u, v) = 0 or ϕ(dq (u, v)) = 0 , therefore dq (u, v) = 0. Similarly, we can prove
that dq (v, u) = 0, now from dq (u, v) = dq (v, u) = 0 we deduce that u = v. Hence
the proof is completed.

Theorem 2.2. Let K and H be nonempty closed subsets of a complete dislocated
quasi–metric space (X, dq) and T : K∪H → K∪H be a cyclic mapping that satisfies
the condition:

(2.15) dq (Tx, T y) ≤ F (dq (x, y) , ϕ(dq (x, y)))

for all x ∈ K and y ∈ H where F ∈ C,ϕ ∈ Φu.Then T has a unique fixed point in
K ∩H.

Proof. If for all a, b ∈ [0,∞) with a ≤ b we have that F (a, ϕ(a)) ≤ F (b, ϕ(b)). In
this case the theorem is a corollary of Theorem 2.1, because

dq (Tx, T y) ≤ F (dq (x, y) , ϕ(dq (x, y)))

≤ F (max {dq (x, y) , dq (x, Tx) , dq (y, T y)} ,

ϕ(max {dq (x, y) , dq (x, Tx) , dq (y, T y)})).

Now assume that there is a < b such that F (a, ϕ(a)) > F (b, ϕ(b)). In this case,
fix a point x ∈ A. If T nx = T n+1x for some n ∈ N , then T n+1x = T n+2x and so
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(T nx) converges to some z ∈ X . Suppose that T nx 6= T n+1x. Using the condition
(2.15) we have,

d
(

T n+1x, T nx
)

≤ F (d
(

T nx, T n−1x
)

, ϕ(d
(

T nx, T n−1x
)

)) ≤ d
(

T nx, T n−1x
)

.

Thus the sequence d
(

T n+1x, T nx
)

is decreasing and bounded from below, thus
it converges to some z ≥ 0, then from (2.15) taking the limit as n→ ∞, we get

r ≤ F (r, ϕ(r)).

So, r = 0 or ϕ(r) = 0, therefore lim
n→∞

dq
(

T nx, T n−1x
)

= 0. In a similar way we

obtain lim
n→∞

dq
(

T n−1x, T nx
)

= 0.

Now, we shall prove that {xn} is a Cauchy sequence, If {xn} is not a Cauchy
sequence, then there exist ε > 0 and two sequences {mk} and {nk} of positive
integers such that the following four sequences tend to ε when k → ∞,

dq(xmk
, xnk

), dq(xmk
, xnk+1), dq(xmk+1, xnk

), dq(xmk+1, xnk+1),

so

(2.16) dq(xmk+1, xnk+1) ≤ F (dq(xmk
, xnk

), ϕ(dq(xmk
, xnk

)))

then from(2.16) taking the limit as k → ∞, we get

ε ≤ F (ε, ϕ(ε)).

So, ε = 0 or ϕ(ε) = 0, that is; ε = 0, our supposition fail from this contradiction.
Hence, this proves that (T nx) is a Cauchy sequence. Since (X, dq) is complete, we
have (T nx) dq-converges to some z ∈ X . Note that

(

T 2nx
)

is a sequence in K and
(

T 2n−1x
)

is a sequence in H in a way that both sequences tend to the same limit
z ∈ K ∩H .

Considering the condition (2.15) we have,

(2.17)
dq(z, T z) ≤ dq

(

z, T 2nx
)

+ dq
(

T 2nx, T z
)

≤ dq
(

z, T 2nx
)

+ F (dq
(

T 2n−1x, z
)

, ϕ(dq
(

T 2n−1x, z
)

)).

By n → ∞ in (2.17), we have dq (Tz, z) = 0 and, similarly, we have dq (z, T z) = 0
as a result Tz = z.

Uniqueness: Let u and v be two fixed points of T . Then

dq(u, v) = dq(Tu, T v)
≤ F (dq (u, v) , ϕ(dq (u, v)))
≤ dq(u, v) ,

dq(v, u) = dq(Tv, Tu)
≤ F (dq (v, u) , ϕ(dq (v, u)))
≤ dq(v, u) ,

so, dq(u, v) = 0 or ϕ(dq (u, v)) = 0, and dq(v, u) = 0 or ϕ(dq (v, u)) = 0, so from
those we get dq (u, v) = dq (v, u) = 0 and also, by property d2 we have u = v.



102 A. H. Ansari and K. Zoto

Example 2.1. Let X = [0, 1] and T : X → X be given as T (x) = x

8
. Let K = H =

[0, 1]. Define the function dq : X × X → [0,∞) by d (x, y) = max {x, y} . The function
F (s, t) = s

1+t
: [0,∞) → [0, 1) and ϕ(t) = 1. Considering all the cases and the general

cases if x ≤ y,∀x, y ∈ X

dq(Tx, Ty) = dq

(x

8
,
y

8

)

= max
{x

8
,
y

8

}

=
y

8
≤

y

1 + 1
=

max{x, y}

1 + ϕ(max{x, y})

=
dq(x, y)

1 + ϕ(dq(x, y))

Clearly, all conditions of Theorem 2.2 are satisfied and x = 0 is a unique fixed point of T .

We consider the set G3 of all continuous functions [foe some examples for these
functions see [23]] g : [0,∞)× [0,∞)× [0,∞) → [0,∞) with the following properties:

(i) g is non-decreasing with respect to each variable.

(ii) g (t, t, t) ≤ t, for t ∈ [0,∞).

Theorem 2.3. Let K and H be nonempty closed subsets of a complete dislocated
quasi–metric space (X, dq) and T : K∪H → K∪H be a cyclic mapping that satisfies
the following condition:

d(Tx, T y) ≤F (g [dq (x, y) , dq (x, Tx) , dq (y, T y)] ,

ϕ(g [dq (x, y) , dq (x, Tx) , dq (y, T y)]))
(2.18)

for all x ∈ K and y ∈ H, where F ∈ C,ϕ ∈ Φu, g ∈ G3.Then T has a unique fixed
point in K ∩H.

Proof. Let x be a fixed point in X . By condition (2.18) and the properties of g we
have,

dq(T
2x, Tx) ≤ F (g

[

dq (Tx, x) , dq
(

Tx, T 2x
)

, dq (x, Tx)
]

,

ϕ(g
[

dq (Tx, x) , dq
(

Tx, T 2x
)

, dq (x, Tx)
]

))

≤ dq (Tx, x) ,

similarly, we have

dq(T
3x, T 2x) ≤ F (g

[

dq
(

T 2x, Tx
)

, dq
(

T 3x, T 2x
)

, dq
(

Tx, T 2x
)]

,

ϕ(g
[

dq
(

T 2x, Tx
)

, dq
(

T 3x, T 2x
)

, dq
(

Tx, T 2x
)]

))

≤ dq
(

T 2x, Tx
)

.

Generally, from the above inequalities we have,

dq
(

T n+1x, T nx
)

≤ dq
(

T nx, T n−1x
)
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for n ∈ N .

Thus the sequence {dq
(

T n+1x, T nx
)

} is decreasing and bounded from below,
thus it converges to some z ≥ 0 , then from (2.15) taking the limit as n → ∞, we
get

r ≤ F (r, ϕ(r)).

so, r = 0 or ϕ(r) = 0, therefore lim
n→∞

dq
(

T nx, T n−1x
)

= 0. In a similar way we

obtain lim
n→∞

dq
(

T n−1x, T nx
)

= 0.

Easily, as in the above theorems, we can show that the sequence (T nx) is a
Cauchy sequence in a complete dislocated quasi-metric space (X, dq). So there
exists z ∈ X such that (T nx) dislocated quasi converges to z. Note that

(

T 2nx
)

is a sequence in K and
(

T 2n−1x
)

is a sequence in H in a way that both sequences
tend to the same limit z ∈ K ∩H . To prove that z is a fixed point of T we reuse
the contractive condition (2.18),

dq(z, T z) ≤ dq(z, T
2nx) + dq(T

2nx, T z)
≤ dq(z, T

2nx) + F (g
[

dq(T
2n−1x, z), dq(T

2n−1x, T 2nx), dq(z, T z)
]

,
ϕg

[

dq(T
2n−1x, z), dq(T

2n−1x, T 2nx), dq(z, T z)
]

).

In this inequality passing the limit as n → ∞ and since g is non-decreasing and
continuous we get,

dq (z, T z) ≤ F (dq (z, T z) , ϕ(dq (z, T z)))

so,

dq (z, T z) = 0 or ϕ(dq (z, T z)) = 0

therefore, we obtain dq (z, T z) = 0. Again, from (2.18) we get dq (Tz, z) = 0. As a
result z = Tz.

Uniqueness, Let us suppose that u and v are two fixed points of T where Tu = u
and Tv = v.

From the condition of the theorem we have,

dq(Tu, T v) ≤F (g [dq(u, v), dq(u, Tu), dq(v, T v)] ,

ϕ(g [dq(u, v), dq(u, Tu), dq(v, T v)])).
(2.19)

If we replace v = u in (2.19) then we obtain,

dq(u, u) = dq(Tu, Tu)

≤ F (g [dq(u, u), dq(u, Tu), dq(u, Tu)] ,

ϕ(g [dq(u, u), dq(u, Tu), dq(u, Tu)]))

= F (g [dq(u, u), dq(u, u), dq(u, u)] , ϕ(g [dq(u, u), dq(u, u), dq(u, u)]))

≤ F (dq (u, u) , ϕ(dq(u, u))).
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Thus dq (u, u) = 0 or ϕ(dq (u, u)) = 0, therefore we get dq (u, u) = 0. Similarly we
have that dq (v, v) = 0. Therefore, using the condition (2.18) we have:

dq (u, v) = dq (Tu, T v)
≤ F (g [dq (u, v) , dq (u, u) , dq (v, v)] , ϕ(g [dq (u, v) , dq (u, u) , dq (v, v)]))
≤ F (dq (u, v) , ϕ(dq (u, v))).

And also,

dq (v, u) = dq (Tv, Tu)
≤ F (g [dq (v, u) , dq (v, v) , dq (u, u)] , ϕ(g [dq (v, u) , dq (v, v) , dq (u, u)]))
≤ F (dq (v, u) , ϕ(dq (v, u))).

So dq (u, v) = 0 or ϕ(dq (u, v)) = 0, and dq (v, u) = 0 or ϕ(dq (v, u)) = 0, from these
two we have dq (u, v) = dq (v, u) = 0, and the property d2 implies v = u. Hence,
the fixed point is unique.

Taking F (s, t) = ks, 0 < k < 1, in Theorem 2.1 we have the following remark

Remark 2.1. [22] Let K and H be nonempty subsets of a complete dislocated quasi–
metric space (X, dq). Let T : K ∪ H → K ∪ H be a cyclic mapping that satisfies the
condition

(2.20) dq (Tx, Ty) ≤ kmax {dq (x, y) , dq (x, Tx) , dq (y, Ty)}

for all x ∈ K and y ∈ H and 0 ≤ k < 1.Then, T has a unique fixed point in K ∩H .

Taking F (s, t) = β (s) s, in Theorem 2.2 we have the following remark

Remark 2.2. [22] Let K and H be nonempty closed subsets of a dislocated quasi–metric
space (X, dq) and T : K ∪ H → K ∪ H be a cyclic mapping that satisfies the Geraghty
type condition:

(2.21) dq (Tx, Ty) ≤ β (dq (x, y)) dq (x, y)

for all x ∈ K and y ∈ H where β ∈ S.Then T has a unique fixed point in K ∩H .

Taking F (s, t) = ks, 0 < k < 1, in Theorem 2.3 we have the following remark

Remark 2.3. [22] Let K and H be nonempty closed subsets of a dislocated quasi–
metric space (X, d) and T : K ∪ H → K ∪ H be a cyclic mapping that satisfies the
following condition:

(2.22) dq (Tx, Ty) ≤ kg [dq (x, y) , dq (x, Tx) , dq (y, Ty)]

for all x ∈ K and y ∈ H , and 0 < k < 1, where g ∈ G3.Then T has a unique fixed point
in K ∩H .
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Example 2.2. Let X = [−1, 1] and T : X → X be given as Tx = −x

5
. Let K = [−1, 0]

and H = [0, 1]. Define the function dq : X ×X → [0,∞) by dq (x, y) = |x− y|+ |x|. We
note that dq is a dislocated quasi–metric on X and the map T is cyclic on X.

If we consider from G3 the function g (t1, t2, t3) = max {t1, t2, t3} we see

dq (x, y) = |x− y|+ |x|

dq (Tx, Ty) =
∣

∣

∣

−x

5
−

−y

5

∣

∣

∣
+

∣

∣

∣

−x

5

∣

∣

∣
=

1

5
|x− y|+

1

5
|x| .

Then, clearly, we have,

dq (Tx, Ty) =
∣

∣

∣

−x

5
−

−y

5

∣

∣

∣
+

∣

∣

∣

−x

5

∣

∣

∣

=
1

5
(|x− y|+ |x|) =

1

5
d (x, y)

≤ kg [dq (x, y) , dq (x, Tx) , dq (y, Ty)] .

So for the constant 1

5
≤ k < 1 the map T satisfies the condition (2.18) of Theorem 2.3 and

0 is a unique fixed point of T .

From the general character of Theorems 2.1, 2.2, and 2.3, and because of the
class C and G3, we can give many corollaries as follows using the functions

g (t1, t2, t3) = [max {tp1, t
p
2, t

p
3}]

1

p , p > 0

g (t1, t2, t3) = [max {t1t2, t2t3, t1t3}]
1

2 , p > 0

g (t1, t2, t3) = gmax {t1 + t2, t2 + t3, t1 + t3} .

Corollary 2.1. Let K and H be nonempty closed subsets of a dislocated quasi–
metric space (X, d) and T : K ∪H → K ∪H be a cyclic mapping that satisfies the
following condition:

dp (Tx, T y) ≤ kmax {dp (x, y) , dp (x, Tx) , dp (y, T y)}

for all x ∈ K and y ∈ H, and 0 ≤ k < 1.Then T has a unique fixed point in K ∩H.

Proof. Taking F (s, t) = ks, 0 < k < 1 and g (t1, t2, t3) = [max {tp1, t
p
2, t

p
3}]

1

p , p > 0
in Theorem 2.3.

Corollary 2.2. Let K and H be nonempty closed subsets of a dislocated quasi–
metric space (X, dq) and T : K ∪H → K ∪H be a cyclic mapping that satisfies the
following condition:

dq
2 (Tx, T y) ≤ kmax {dq (x, y) dq (x, Tx) , dq (x, y) dq (y, T y) , dq (x, Tx) dq (y, T y)}

for all x ∈ K and y ∈ H, and 0 ≤ k < 1.Then T has a unique fixed point in K ∩H.

Proof. Taking F (s, t) = ks, 0 < k < 1 and g (t1, t2, t3) = [max {t1t2, t2t3, t1t3}]
1

2 ,
p > 0 in Theorem 2.3.
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Corollary 2.3. Let K and H be nonempty closed subsets of a dislocated quasi–
metric space (X, dq) and T : K ∪H → K ∪H be a cyclic mapping that satisfies the
following condition:

dq(Tx, T y) ≤ kmax{dq(x, y) + dq(x, Tx), dq(x, y)

+ dq(y, T y), dq(x, Tx) + dq(y, T y)}

for all x ∈ K and y ∈ H, and 0 ≤ k < 1.Then T has a unique fixed point in K∩H.

Proof. Taking F (s, t) = ks, 0 < k < 1 and g (t1, t2, t3) = max {t1 + t2, t2 + t3, t1 + t3},
p > 0 in Theorem 2.3.

Further, as common applications of fixed point theorems we provide some corol-
laries for cyclic maps for integral type contraction (taking K = H = X).

Corollary 2.4. Let (X, dq) be a complete dislocated quasi–metric space and T :
X → X be a mapping such that for any x, y ∈ X,

∫ dq(Tx,Ty)

0

ρ (t) dt ≤ r

∫ β(dq(x,y))dq(x,y)

0

ρ (t) dt

where the function φ ∈ Φ, the constant r ∈ [0, 1) and ρ : [0,∞) → [0,∞) is Lesbegue-
integrable mapping satisfying

∫ ε

0
ρ (t) dt > 0 for ε > 0. Then, T has a unique fixed

point in X.

Remark 2.4. Theorem 2.3 generalizes and unifies the results for the Kannan-type cyclic
contraction, Chatterjea cyclic contraction, C–cyclical contraction, Zamfirescu contraction
and some existing results in dislocated–metric spaces [1, 5, 23, 24]. Statements of many
theorems and results can be obtained by taking K = H = X.
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