
FACTA UNIVERSITATIS (NIŠ)
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ENERGY DECAY RATES FOR THE BRESSE-CATTANEO

SYSTEM WITH WEAK NONLINEAR BOUNDARY DISSIPATION

Taklit Hamadouche and Ammar Khemmoudj

Abstract. In this paper, we consider a one-dimensional Bresse system with Cattaneo’s
type heat conduction and a nonlinear weakly dissipative boundary feedback localized on
a part of the boundary. We show the well-posedness, using the semigroup theory, and
establish an explicit and general decay rate result without imposing a specific growth
assumption on the behavior of damping terms near zero.
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1. Introduction

In [3] a simple one dimensional Bresse model is usually considered in studying
the elastic structures of the arcs type whose motion is governed by the following
system of three wave equations:

(1.1)















ρ1ϕtt − κ (ϕx + ψ + lw)x − κ0l (wx − lϕ) = 0, in (0, L)× (0,∞)

ρ2ψtt − bψxx + κ (ϕx + ψ + lw) = 0, in (0, L)× (0,∞)

ρ1wtt − κ0 (wx − lϕ)x + κl (ϕx + ψ + lw) = 0, in (0, L)× (0,∞)

where the coefficients ρ1, ρ2 denote respectively the mass per unit length, the mass
moment of inertia of a cross-section of the beam and the coefficients κ0, κ, b and l are
equal to EA, κ

′

GA, EI and R−1, respectively, where E is the Young’s modulus, I is
the moment of inertia of a cross-section of the beam, G is the modulus of elasticity
in shear, A is the cross sectional area, κ

′

is the shear factor and R for the radius of
the curvature. The functions ϕ, ψ and w represents the vertical, rotation angle, and
longitudinal displacements, respectively, of the point x of the beam at the instant
t.

Remark 1.1. We note that when R → ∞, then l → 0 and then this model reduces to
the well-known Timoshenko beam equations (see [24]).
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There exist a few results about the stability of the Bresse system where the authors
consider the different kinds of the dissipative mechanism. The case of one fric-
tional damping has already been considered by Alabau Boussouira et al. [1], Noun
and Wehbe [17] where the authors proved that the semi-group associated with the
following Bresse system

(1.2)















ρ1ϕtt − κ (ϕx + ψ + lw)x − κ0l (wx − lϕ) = 0, in (0, L)× (0,∞)

ρ2ψtt − bψxx + κ (ϕx + ψ + lw) + γψt = 0, in (0, L)× (0,∞)

ρ1wtt − κ0 (wx − lϕ)x + κl (ϕx + ψ + lw) = 0, in (0, L)× (0,∞)

with boundary conditions of the Dirichlet-Dirichlet-Dirichlet type or mixed bound-
ary conditions is polynomially stable provided

(1.3)
ρ1

ρ2
=
κ

b
and κ = κ0.

(i.e., the equal-speed wave propagation condition) and moreover they proved the
lack of exponential stability when they considered the Dirichlet-Neumann-Neumann
type boundary condition. The equal-speed wave propagation condition has been
used in many works in order to establish exponential decay rates. Fatori and Mon-
teiro [6] showed the optimality of the polynomial decay rate for the Bresse system
(1.2) with the Dirichlet-Neumann-Neumann type boundary condition. In [23], the
authors considered the Bresse system with indefinite damping mechanism acting on
the equation about the shear angle displacement. Under the equal speeds condition
and only with Dirichlet.Neumann.Neumann boundary condition type, they proved
the exponential stability of the system. Wehbe and Youssef [25]; Santos and Junior
[20] showed the asymptotic stability without impose conditions about the equal-
speed wave propagation for the Bresse system with linear dissipation by different
methods. Soriano et al. [22] and Charles et al. [5] gave the asymptotic stability for
the following Bresse system with nonlinear dissipation















ρ1ϕtt − κ (ϕx + ψ + lw)x − κ0l (wx − lϕ) + α1(x)g1(ϕt) = 0,

ρ2ψtt − bψxx + κ (ϕx + ψ + lw) + α2(x)g2(ψt) = 0,

ρ1wtt − κ0 (wx − lϕ)x + κl (ϕx + ψ + lw) + α3(x)g3(wt) = 0,

in (0, L)× (0,∞) by energy methods. However, to obtain the energy decay rate
estimate, the authors required that αi and the damping terms gi(.) satisfy the
following growth rate:

(1.4)

{

αi = αi(x) ∈ L∞(0, L), αi(x) ≥ C > 0,

gi(s)s > 0, for s 6= 0, cs ≤ gi(s) ≤ ds for |s| > 1, i = 1, 2, 3.

where C, c, d are constants. Li et al [11] extend the behavior of αi, gi(.) to more
general cases which does not necessarily satisfy (1.4) and get the explicit energy
decay rate estimate for the system.
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Concerning stabilization via heat effect, Liu and Rao [12] considered the Bresse
system with two different dissipative mechanism, given by two temperatures coupled
to the system. The authors considered the problem

(1.5)



































ρ1ϕtt − κ (ϕx + ψ + lw)x − κ0l (wx − lϕ) + lκ1θ
1 = 0,

ρ2ψtt − bψxx + κ (ϕx + ψ + lw) + κ1θ
3
x = 0,

ρ1wtt − κ0 (wx − lϕ)x + κl (ϕx + ψ + lw) + κ1θ
1
x = 0,

ρ3θ
1
t − αθ1xx + κ1 (wx − lϕ) = 0,

ρ3θ
3
t − αθ3xx + κ1ψtx = 0,

in (0, L) × R
+ and they proved that the exponential decay exists only when the

velocities of the wave propagations are the same. If the wave speeds are different
they showed that the energy of the system decays polynomially to zero with the
rate t−1/2 or t−1/4, provided that the boundary conditions is of Dirichlet-Neumann-
Neumann or Dirichlet-Dirichlet-Dirichlet type, respectively.

If θ1 = 0 in (1.5) Fatori and Munoz Rivera [7] analyzed the exponential stability
of the obtained Bresse-Fourier system they showed that, in general, the system is
not exponentially stable but that there exists polynomial stability with rates that
depend on the wave propagations and the regularity of the initial data. Recently,
Najdi and Wehbe in [16] extended and improved the results of [7] when the thermal
dissipation is locally distributed.

In system (1.5), the heat equation is governed by Fourier’s law of heat conduc-
tion, which states that the heat flux is proportional to the gradient of temperature.
Moreover, it is well known that the model using the classic Fourier’s law leads to
the physical paradox of infinite speed of heat propagation. In other words, any
thermal disturbance at one point will be instantaneously transferred to the other
parts of the body. However, experiments showed that heat conduction in some di-
electric crystals at low temperatures propagates with a finite speed [9]. To overcome
this physical paradox but still keeping the essentials of a heat conduction process,
many theories have subsequently emerged. One of which is the advent of the sec-
ond sound effects observed experimentally in materials at a very low temperature.
Second sound effects arise when heat is transported by a wave propagation process
instead of the usual diffusion. This theory suggests replacing the classic Fourier’s
law

(1.6) q + γθx = 0

where q is the heat flux and γ is the coefficient of thermal conductivity by a modified
law of heat conduction called Cattaneo’s law

(1.7) τqt + q + γθx = 0

Here, the parameter τ > 0 represents the relaxation time describing the time lag in
the response of the heat flux to a gradient in the temperature. The obtained heat
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system is of hyperbolic type and hence, automatically, eliminates the paradox of
infinite speeds.

The coupling of the Bresse system (1.1) with the aforementioned theory is given
by

(1.8)



































ρ1ϕtt − κ (ϕx + ψ + lw)x − κ0l (wx − lϕ) = 0, 0 < x < 1, t > 0

ρ2ψtt − bψxx + κ (ϕx + ψ + lw) + δθx = 0, 0 < x < 1, t > 0

ρ1wtt − κ0 (wx − lϕ)x + κl (ϕx + ψ + lw) = 0, 0 < x < 1, t > 0

ρ3θt + qx + δψtx = 0, 0 < x < 1, t > 0

τqqt + βq + θx = 0, 0 < x < 1, t > 0

When thermal effects are considered, the asymptotic behavior of the Bresse system
may become more complicated because of the coupling between the elasticity and
heat conduction. Concerning to system (1.8), we found several papers that studies a
reduced version which is known as Timoshenko system. Fernandez Sare and Racke
[8] considered the following Timoshenko-Cattano system

(1.9)



























ρ1ϕtt − k (ϕx + ψ)x = 0, 0 < x < 1, t > 0

ρ2ψtt − bψxx + k (ϕx + ψ) + δθx = 0, 0 < x < 1, t > 0

ρ3θt + qx + δψtx = 0, 0 < x < 1, t > 0

τqqt + βq + θx = 0, 0 < x < 1, t > 0

with some initial and Dirichlet-Neumann-Dirichlet boundary conditions and proved
that the system is not exponentially stable even if the propagation speeds are equal.
Moreover, they showed that the presence of viscoelastic damping term of the form
∞
∫

0

g(s)ϕxx(t − s)ds in the second equation of (1.9) is also not sufficient to obtain

exponential stability. Recently, Santos et al. [21] considered (1.9), and introduced
a new stability number in the form

µ =

(

τ −
ρ1

kρ3

)

(ρ2

b
−
ρ1

k

)

−
τρ1δ

2

kbρ3

and used the semi-group method to obtain exponential decay result for µ = 0 and
a polynomial decay for µ 6= 0. Also, a stability result, using this new number, was
obtained by Said-Houari and Hamadouche in [19] by considering the Cauchy prob-
lem for the one-dimensional Bresse system coupled with heat conduction governed
by the Cattaneo law.

In [2] Ayadi et al considered the nonlinear Timoshenko-Cattaneo system of the
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form


























ρ1ϕtt − k (ϕx + ψ)x = 0, 0 < x < 1, t > 0

ρ2ψtt − bψxx + k (ϕx + ψ) + δθx + α(t)h(ψt) = 0, 0 < x < 1, t > 0

ρ3θt + qx + δψtx = 0, 0 < x < 1, t > 0

τqqt + βq + θx = 0, 0 < x < 1, t > 0

and proved an explicit and general decay results which depend on the stability
number µ as identified previously by Santos et al. in [21].

The boundary feedback with a time-dependent coefficient has been used by
Mustafa [15] for a wave equation.

In the present paper, we consider the Bresse-Cattaneo (1.8) under the following
initial data:

(1.10)







ψ (x, 0) = ψ0 (x) , ϕ (x, 0) = ϕ0 (x) , w (x, 0) = w0 (x)
ψt (x, 0) = ψ1 (x) , ϕt (x, 0) = ϕ1 (x) , wt (x, 0) = w1 (x)
θ (x, 0) = θ0 (x) , q (x, 0) = q0 (x) ,

and the following boundary conditions

(1.11) ψ(0, t) = 0, ϕ(0, t) = 0, w(0, t) = 0, θ(0, t) = θ(1, t) = 0 t > 0

(1.12)















(ϕx + ψ + lw) (1, t) = −α(t)h(ϕt(1, t)), t > 0

ψx(1, t) = −α(t)h(ψt(1, t)), t > 0

(wx − lϕ) (1, t) = −α(t)h(wt(1, t)), t > 0

The boundary conditions (1.11)-(1.12) states that the system is fixed at x = 0
and the other end is subjected to the effect of a nonlinear time-dependent frictional
damping.

Our aim in this paper is to investigate (1.8),(1.10)-(1.12), in which the damp-
ing considered is modulated by a time-dependent coefficient α(t), and establish an
explicit and general decay result, depending on h and α. The proof is based on
the multiplier method and makes use of a lemma by Martinez [13]. This paper is
organized as follows. In Section 2, we present some notations and materials needed
for our work and establish the well-posedness of system (1.8),(1.10)-(1.12) by using
the semi-group theory. The statement and the proof of our main result are given
in Section 3. In the last section, we investigate some special cases.

2. Preliminaries and Well-posedness

In this section, we present some material needed for the proof of our main result
and we prove the existence and the uniqueness of the solution of system (1.8),(1.10)-
(1.12).
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We consider the following hypotheses:

(A1) α : [0,+∞) → R
+ are non-increasing C1-function satisfying

∞
∫

0

α(t)dt = +∞

(A2) h : R → R is a nondecreasing C0 function such that there exists a strictly
increasing differentiable function h0 ∈ C1([0,+∞)), with h0(0) = 0, and positive
constants c1, c2 and M such that

{

h0(|t|) ≤ |h(t)| ≤ h−1
0 (|t|), |t| ≤M,

c1|t| ≤ |h(t)| ≤ c2|t|, |t| > M

Remark 2.1. Hypothesis (A1) implies that α is bounded and (A2) implies that sh(s) >
0, for all s 6= 0.

We now discuss the well-posedness of (1.8),(1.10)-(1.12). For this purpose, we
introduce the following spaces:























V =
{

v ∈ H1
0 (0, 1) : v(0) = 0

}

L2
∗(0, 1) =

{

w ∈ L2(0, 1) :
1
∫

0

w(s)ds = 0

}

,

H1
∗ (0, 1) = H1(0, 1) ∩ L2

∗(0, 1)

Introducing the vector function

(2.1) U = (ϕ, u, ψ, v, w, z, θ, q)T

where u = ϕt, v = ψt, z = wt. The phase space of our problem is

(2.2) H = V × L2(0, 1)× V × L2(0, 1)× V × L2(0, 1)× L2(0, 1)× L2
∗(0, 1)

equipped with the inner product

(U, Ũ)H =

1
∫

0

κ(ϕx + ψ + lw)(ϕ̃x + ψ̃ + lw̃)dx +

1
∫

0

bψxψ̃xdx

+

1
∫

0

κ0(wx − lϕ)(w̃x − lϕ̃)dx +

1
∫

0

ρ1uũdx+

1
∫

0

ρ2vṽdx

+

1
∫

0

ρ1zz̃dx+

1
∫

0

ρ3θθ̃dx+

1
∫

0

τqqq̃dx.
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and the corresponding norm is

‖ϕ, u, ψ, v, w, z, θ, q‖2H = κ‖ϕx + ψ + lw‖2 + b‖ψx‖
2 + κ0‖wx − lϕ‖2 + ρ1‖u‖

2 + ρ2‖v‖
2

+ρ1‖z‖
2 + ρ3‖θ‖

2 + τq‖q‖
2.

System (1.8),(1.10)-(1.12) can be written as a linear ordinary differential equation
in H of the form

(2.3)
d

dt
U(t) +AU(t) = 0, U0 = (ϕ0, ϕ1, ψ0, ψ1, w0, w1, θ0, q0)

T

where the domain D(A) of the linear operator A : D(A) ⊂ H → H is given by

D(A)=

{

U ∈ H : ϕ, ψ,w ∈ H2(0, 1) ∩ V, u, v, z ∈ V, θ ∈ H1
0 (0, 1), q ∈ H1

∗ (0, 1)
(ϕx + ψ + lw)(1)=α(t)h(u(1)), ψx(1)=α(t)h(v(1)), (wx − lϕ)(1)=α(t)h(z(1))

}

and

AU =



























−u

− κ
ρ1
(ϕx + ψ + lw)x − κ0l

ρ1
(wx − lϕ)

−v
− b

ρ2
ψxx + κ

ρ2
(ϕx + ψ + lw) + δ

ρ2
θx

−z
−κ0

ρ1
(wx − lϕ)x + κl

ρ1
(ϕx + ψ + lw)

1
ρ3
qx + δ

ρ3
vx

β
τq
q + 1

τq
θx



























It is not difficult to see that H is a Hilbert space and that D(A) is dense in H.

We have the following existence and uniqueness result.

Theorem 2.1. The operator A is the infinitesimal generator of C0-semigroup S(t)
of contraction in H. Thus for any initial data U0 ∈ H, there exists a unique
solution U ∈ C(R+,H) of problem (1.8),(1.10)-(1.12). Moreover if U0 ∈ D(A),
then U ∈ C(R+, D(A)) ∩ C1(R+,H).

Proof. To prove Theorem 2.1, we use the semigroup approach. For this purpose, we
show firstly that the operator A is monotone in the phase space H. Indeed, for any
U ∈ D(A), by definition of the operator A and the scalar product of H, we have

(AU,U)H = β

1
∫

0

q2dx+ κα(t)h(u(1))u(1) + bα(t)h(v(1))v(1)

+κ0α(t)h(z(1))z(1) ≥ 0.(2.4)

which implies that A is monotone in H. Next, we prove that the operator I −A is
surjective. Given

(2.5) G = (g1, g2, g3, g4, g5, g6, g7, g8)
T ∈ H
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we prove that there exists U ∈ D(A) satisfying,

(2.6) (I +A)U = G.

Equation (2.6) is equivalent to

(2.7)















































−u+ ϕ = g1
−κ(ϕx + ψ + lw)x − κ0l(wx − lϕ) + ρ1u = ρ1g2

−v + ψ = g3
−bψxx + κ(ϕx + ψ + lw) + δθx + ρ2v = ρ2g4

−z + w = g5
−κ0(wx − lϕ)x + κl(ϕx + ψ + lw) + ρ1z = ρ1g6

qx + δvx + ρ3θ = ρ3g7
(β + τq)q + θx = τqg8.

From the first, the third and the fifth equations of (2.7), we obtain

(2.8) u = ϕ− g1, v = ψ − g3, z = w − g5.

From the eighth equation, we have

(2.9) θ = −(β + τq)

x
∫

0

q(y)dy + τq

x
∫

0

g8(y)dy

with

(2.10) θ(0, t) = θ(1, t) = 0

Substitutig u, v, z, θ into the second , the fourth, the sixth, the seventh equations
in (2.7), we get

(2.11)























−κ(ϕx + ψ + lw)x − κ0l(wx − lϕ) + ρ1ϕ = ρ1(g1 + g2)
−bψxx + κ(ϕx + ψ + lw)− δ(β + τq)q + ρ2ψ = ρ2(g3 + g4)− δτqg8

−κ0(wx − lϕ)x + κl(ϕx + ψ + lw) + ρ1w = ρ1(g5 + g6)

−qx + ρ3(β + τq)
x
∫

0

q(y)dy − δψx = ρ3τq
x
∫

0

g8(y)dy − ρ3g7 − δg3x

The variational formulation corresponding to (2.11) takes the form

(2.12) a((ϕ1, ψ1, w1, q1), (ϕ2, ψ2, w2, q2)) = ℓ(ϕ2, ψ2, w2, q2)
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where the bilinear form a is defined as follows:

a((ϕ1, ψ1, w1, q1), (ϕ2, ψ2, w2, q2))

= κ

1
∫

0

(ϕ1,x + ψ1 + lw1)(ϕ2,x + ψ2 + lw2)dx+ b

1
∫

0

ψ1,xψ2,xdx

+ κ0

1
∫

0

(w1,x − lϕ1)(w2,x − lϕ2)dx + (β + τq)

1
∫

0

q1q2dx

+ ρ1

1
∫

0

ϕ1ϕ2dx+ ρ2

1
∫

0

ψ1ψ2dx+ ρ1

1
∫

0

w1w2dx

− δ(β + τq)

1
∫

0

q1ψ2dx− δ(β + τq)

1
∫

0

ψ1x

x
∫

0

q2(y)dydx

+ ρ3(β + τq)
2

1
∫

0





x
∫

0

q1(y)dy

x
∫

0

q2(y)dy



 dx

and the linear form

ℓ((ϕ2, ψ2, w2, q2)) = ρ1

1
∫

0

(g1 + g2)ϕ2dx+ ρ2

1
∫

0

(g3 + g4)ψ2dx− δτq

1
∫

0

g8ψ2dx

+ ρ1

1
∫

0

(g5 + g6)w2dx− δ(β + τq)

1
∫

0

g3x

x
∫

0

q2(y)dydx

+ ρ3τq(β + τq)

1
∫

0





x
∫

0

g8(y)dy − ρ3g7





x
∫

0

q2(y)dydx

+ κα(t)h(u(1))ϕ2(1) + bα(t)h(v(1))ψ2(1) + κ0α(t)h(z(1))w2(1).

Now, we set X = V 3 × L2
∗(0, 1) equipped with norm

(2.13) ‖(ϕ, ψ,w, q)‖X = ‖(ϕx + ψ + lw)‖22 + ‖ψx‖
2
2 + ‖(wx − lϕ)‖22 + ‖q‖22

It is clear that a is bounded and coercive and that ℓ is bounded. Then, using Lax-
Milgram theorem ,we deduce that (2.12) has a unique solution (ϕ, ψ,w, q) ∈ X .
Thus, using (2.8)-(2.9) and classical regularity arguments, we conclude that (2.6)
admits a unique solution U ∈ D(A). Consequently, the operator A is maximal.
Hence, the result of Theorem (2.1) follows (see [4]).
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3. The main result

In this section, we state and prove our main result. For this purpose, we establish
several lemmas.

The energy associated to the solution of system (1.8), (1.10)-(1.12) is given by
the following formula:

E (t)=
1

2

1
∫

0

{

ρ1ϕ
2
t+ρ2ψ

2
t+ρ1w

2
t+κ0 (wx−lϕ)

2
+κ (ϕx + ψ+lw)

2
+bψ2

x+ρ3θ
2+τqq

2
}

dx

We can prove that the system (1.8), (1.11), (1.12) is dissipative as stated below

Lemma 3.1. Let (ϕ, ψ,w, θ, q) be a global solution to problem (1.8), (1.10)-(1.12)
on [0,+∞[. Then we have

E
′

(t) = −β

1
∫

0

q2dx− κα(t)h(ϕt(1, t))ϕt(1, t)− bα(t)h(ψt(1, t))ψt(1, t)

−κ0α(t)h(wt(1, t))wt(1, t) ≤ 0(3.1)

Proof. By multiplying the first, the second, the third, the fourth and the fifth
equations of (1.8) by ϕt, ψt, wt, θ and q respectively, integrating by parts over
(0, 1),adding these equalities and using hypotheses (A1)-(A2) and some manipula-
tions we obtain (3.1). That is, the energy function E(t) is nonincreasing.

The following lemma will be of essential use in establishing our main results.

Lemma 3.2. ([13]) Let E: R
+ → R

+ be a nonincreasing function and σ: R
+ →

R
+ be a strictly increasing C1-function, with σ(t) → +∞ as t→ +∞. Assume that

there exist p, q > 0 and c > 0 such that

(3.2)

+∞
∫

T

σ
′

(t)E(t)1+pdt ≤ cE1+p(T ) + c
E(T )

σq(T )
, 0 ≤ T < +∞.

Then there exist positive constants k and ω such that

(3.3)

{

E(t) ≤ ke−ωσ(t), if p = 0,

E(t) ≤ kσ(t)
1+q

p , if p > 0.
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Lemma 3.3. Let (ϕ, ψ,w, θ, q) be a global solution of (1.8), (1.10)-(1.12), then
for any N > 0 the energy function satisfies

E(t) ≤ −(N + 1)
dL1

dt
− (N + 1)

dL2

dt
+
N

2

dL3

dt
+

(N + 1)

2
κ0

1
∫

0

(wx − lϕ)2dx

+
(N+1)

2
κ

1
∫

0

(ϕx + ψ + lw)2dx+
(N+1)

2
c1ρ1

1
∫

0

ϕ2
t dx+

(N+1)

2
c2

1
∫

0

ψ2
xdx

+
(N + 1)

2
c3ρ1

1
∫

0

w2
t dx+

(N + 1)

2
ρ1

1
∫

0

ψ2
t dx +

(N + 1)

2
α2(t)κ2h2(ϕt(1, t))

+
(N + 1)

2
c4

1
∫

0

q2dx+
(N + 1)

2
c5

1
∫

0

θ2dx+
(N + 1)

2
α2(t)bh2(ψt(1, t))

+
(N + 1)

2
α2(t)κ20h

2(wt(1, t))−
N

2
κh(ϕt(1, t))ϕ(1, t)−

N

2
bhψt(1, t))ψ(1, t)

−
N

2
κ0h(wt(1, t))w(1, t) +

(N+1)

2

(

ρ1κϕ
2
t (1, t) + ρ2ψ

2
t (1, t)+ρ1κ0w

2
t (1, t)

)

.(3.4)

where ci, (i = 1, ..., 5) are positive constants and the functionals Li, (i = 1, ..., 3)are

L1(t) =

1
∫

0

ρ1κx(ϕx + ψ + lw)ϕtdx+

1
∫

0

ρ1κ0x(wx − lϕ)wtdx,

L2(t) =

1
∫

0

ρ2xψxψtdx+

1
∫

0

ρ3τqxθqdx,

L3(t) =

1
∫

0

ρ1ϕtϕdx +

1
∫

0

ρ2ψtψdx+

1
∫

0

ρ1wtwdx.

Proof. Multiplying the first equation in (1.8) by κ(N +1)x(ϕx+ψ+ lw)− N
2 ϕ, and
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integrating it over (0,1) with respect to x, we have

0 = (N + 1)ρ1κ

1
∫

0

x(ϕx + ψ + lw)ϕttdx−
N

2
ρ1

1
∫

0

ϕϕttdx

−κ2
1

∫

0

(N + 1)x(ϕx + ψ + lw)(ϕx + ψ + lw)xdx

+κ
N

2

1
∫

0

(ϕx + ψ + lw)xϕdx+ κ0l
N

2

1
∫

0

(wx − lϕ)ϕdx

−κκ0l(N + 1)

1
∫

0

x(ϕx + ψ + lw)(wx − lϕ)dx(3.5)

By using integration by parts and using the boundary conditions, we get the fol-
lowing estimation

−
κ2

2

1
∫

0

(ϕx + ψ + lw)2dx = ρ1κ(N + 1)

1
∫

0

d

dt
[x(ϕx + ψ + lw)ϕt] dx

+
ρ1[κ(N + 1) +N ]

2

1
∫

0

ϕ2
tdx−

N

2
ρ1

1
∫

0

d

dt
[ϕtϕ] dx

−ρ1κ(N + 1)

1
∫

0

x(ψt + lwt)ϕtdx−
κN

2

1
∫

0

(ϕx + ψ + lw)ϕxdx

−κκ0l(N + 1)

1
∫

0

x(ϕx + ψ + lw)(wx − lϕ)dx

+κ0l
N

2

1
∫

0

(wx − lϕ)ϕdx − ρ1
κ(N + 1)

2
ϕ2
t (1, t)

−
κN

2
α(t)h(ϕt(1, t))ϕ(1, t)−

κ2

2
(N + 1)α2(t)h2(ϕt(1, t))(3.6)

Next, multiplying the second equation in (1.8) by (N+1)xψx−
N
2 ψ, and integrating
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it over (0, 1) with respect to x, we obtain

0 =

1
∫

0

[

(N + 1)xψx −
N

2
ψ

]

(ρ2ψtt − bψxx + κ (ϕx + ψ + lw) + δθx) dx

= ρ2(N + 1)

1
∫

0

xψxψttdx−
N

2
ρ2

1
∫

0

ψttψdx

−b(N + 1)

1
∫

0

xψxψxxdx+ b
N

2

1
∫

0

ψxxψdx

+κ(N + 1)

1
∫

0

xψx(ϕx + ψ + lw)dx − κ
N

2

1
∫

0

ψ(ϕx + ψ + lw)dx

+δ(N + 1)

1
∫

0

xψxθxdx−
N

2
δ

1
∫

0

ψθxdx(3.7)

Multiplying the fifth equation in (1.8) by δ(N +1)xψx and integrating it over (0, 1)
with respect to x, we obtain

(3.8) δ(N + 1)

1
∫

0

xψxθxdx = −δ(N + 1)τq

1
∫

0

xqtψxdx− β(N + 1)δ

1
∫

0

xqψxdx

We have

(3.9)

1
∫

0

xqtψxdx =

1
∫

0

d

dt
[xqψx] dx −

1
∫

0

xqψxtdx

Multiplying the fourth equation in (1.8) by τq(N+1)xq and integrating it over (0, 1)
with respect to x, we obtain

(3.10) ρ3τq(N + 1)

1
∫

0

xθtqdx = −τq(N + 1)

1
∫

0

xqxqdx− δτq(N + 1)

1
∫

0

xψtxqdx

We can rewrite the term in the left hand side of the last equation as follows

(3.11)

1
∫

0

xθtqdx =

1
∫

0

d

dt
[xθq] dx−

1
∫

0

xθqtdx

Next, multiplying the fifth equation in (1.8) by ρ3(N +1)xθ and integrating it over
(0, 1) with respect to x, we obtain

(3.12) ρ3(N + 1)τq

1
∫

0

xqtθdx + βρ3(N + 1)

1
∫

0

xqθdx + ρ3(N + 1)

1
∫

0

xθθxdx = 0
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Substituting (3.9)-(3.12) in (3.8), we obtain

δ(N + 1)

1
∫

0

xψxθxdx = −δ(N + 1)τq

1
∫

0

d

dt
[xqψx] dx− β(N + 1)δ

1
∫

0

xqψxdx

+
τq(N + 1)

2

1
∫

0

q2dx− ρ3τq(N + 1)

1
∫

0

d

dt
[xθq] dx

−ρ3β(N + 1)

1
∫

0

xqθdx +
ρ3(N + 1)

2

1
∫

0

θ2dx.(3.13)

Replacing (3.13) in (3.7), using integration by parts and boundary conditions, we
get

−
b

2

1
∫

0

ψ2
xdx = ρ2(N + 1)

1
∫

0

d

dt
[xψxψt] dx−

ρ2(N + 1)

2
ψ2
t (1, t)

+ρ2
N + 1

2

1
∫

0

ψ2
t dx−

N

2
ρ2

1
∫

0

d

dt
[ψtψ] dx

−b
(N + 1)

2
α2(t)h2(ψt(1, t))− b

N

2
α(t)h(ψt(1, t))ψ(1, t)

+κ(N + 1)

1
∫

0

xψx(ϕx + ψ + lw)dx − κ
N

2

1
∫

0

ψ(ϕx + ψ + lw)dx

−δ(N + 1)τq

1
∫

0

d

dt
[xqψx] dx− β(N + 1)δ

1
∫

0

xqψxdx

+
τq(N + 1)

2

1
∫

0

q2dx− ρ3τq(N + 1)

1
∫

0

d

dt
[xθq] dx

−ρ3β(N + 1)

1
∫

0

xqθdx +
ρ3(N + 1)

2

1
∫

0

θ2dx+
N

2
δ

1
∫

0

ψxθdx(3.14)

Finally, multiplying the third equation in (1.8) by κ0(N + 1)x(wx − lϕ)− N
2 w and
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integrating it over (0, 1) with respect to x, we obtain

0 =

1
∫

0

ρ1κ0(N + 1)x(wx − lϕ)wttdx−
N

2
ρ1

1
∫

0

wwttdx

−κ20

1
∫

0

(N + 1)x(wx − lϕ)(wx − lϕ)xdx

+κ0
N

2

1
∫

0

(wx − lϕ)xwdx −
N

2
κl

1
∫

0

(ϕx + ψ + lw)wdx

+κ0κl

1
∫

0

(N + 1)x(wx − lϕ)(ϕx + ψ + lw)dx(3.15)

Integrating by parts and using boundary conditions, we obtain

−
κ20
2

1
∫

0

(wx − lϕ)2dx = ρ1κ0(N + 1)

1
∫

0

d

dt
[x(wx − lϕ)wt] dx

−ρ1κ0(N + 1)

1
∫

0

x(wxt − lϕt)wtdx

−
N

2
ρ1

1
∫

0

d

dt
[wtw] dx−

κ20(N + 1)

2
α2(t)h2(wt(1, t))

−
κ0N

2
α(t)h(wt(1, t))w(1, t)−

κ0N

2

1
∫

0

(wx − lϕ)wxdx

−
N

2
κl

1
∫

0

(ϕx + ψ + lw)wdx +
N

2
ρ1

1
∫

0

w2
t dx

+κ0κl

1
∫

0

(N + 1)x(wx − lϕ)(ϕx + ψ + lw)dx(3.16)

Combining (3.6), (3.14) and (3.16), we obtain the inequality (3.4). This completes
the proof of Lemma3.3.

Lemma 3.4. Let (ϕ, ψ,w, θ, q) be a global solution of (1.8), and Γ : R+ → R
+

be a concave nondecreasing C2-class function. Then, for any constant p ≥ 0 the
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energy function E(t) satisfies the following estimation, 0 < T < S

S
∫

T

Γ
′

(t)Ep+1dt ≤ CEp+1(T ) + C

S
∫

T

Γ
′

Ep

1
∫

0

q2dxdt

+C

S
∫

T

Γ
′

Ep(t)
(

ϕ2
t (1, t) + α2(t)h2(ϕt(1, t))

)

dt

+C

S
∫

T

Γ
′

Ep(t)
(

ψ2
t (1, t) + α2(t)h2(ψt(1, t))

)

dt

+C

S
∫

T

Γ
′

Ep(t)
(

w2
t (1, t) + α2(t)h2(wt(1, t))

)

dt.(3.17)

Proof. Using the inequality (3.4), we have

S
∫

T

Γ
′

(t)Ep+1dt ≤
N + 1

2

S
∫

T

Γ
′

Ep(t)
(

ρ1κϕ
2
t (1, t) + κ2α2(t)h2(ϕt(1, t))

)

dt

+
N + 1

2

S
∫

T

Γ
′

Ep(t)
(

ρ2ψ
2
t (1, t) + bα2(t)h2(ψt(1, t))

)

dt

+
N + 1

2

S
∫

T

Γ
′

Ep(t)
(

ρ1κ0w
2
t (1, t) + κ20α

2(t)h2(wt(1, t))dt
)

dt

+I1 + I2 + I3 + I4 + I5 + I6(3.18)

where

I1 =

S
∫

T

Γ
′

(t)Ep(t)
N

2

1
∫

0

d

dt
[ρ1ϕtϕ+ κψtψ + ρ1wtw] dxdt

I2 =

S
∫

T

Γ
′

Ep(t)(N + 1)

1
∫

0

d

dt
[ρ1κx(ϕx + ψ + lw)ϕt + ρ2xψxψt + ρ1κ0x(wx − lϕ)wt + ρ3τqxθq] dx

I3 =

S
∫

T

Γ
′

(t)Ep(t)
N + 1

2
ρ1

1
∫

0

(

c1ϕ
2
t + ψ2

t + c2w
2
t + c5θ

2
)

dx.
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I4 =

S
∫

T

Γ
′

(t)Ep(t)

(

N

2
κh(ϕt(1, t))ϕ(1, t)

)

dt

I5 =

S
∫

T

Γ
′

(t)Ep(t)

(

N

2
κh(ψt(1, t))ψ(1, t)

)

dt

I6 =

S
∫

T

Γ
′

(t)Ep(t)

(

N

2
κh(wt(1, t))w(1, t)

)

dt

to estimate the terms I1 − I6 as follows

I1 =

S
∫

T

[

Γ
′

Ep(t)

(

N

2
(ρ1ϕtϕ+ κψtψ + ρ1wwt)

)

dx

]S

T

+

S
∫

T

(Γ
′′

Ep + pΓ
′

Ep−1E
′

)

1
∫

0

N

2
(ρ1ϕtϕ+ κψtψ + ρ1wwt)dxdt

≤ C
[

Γ
′

Ep+1
]T

S
+ CEp+1(T )

∣

∣

∣

∣

∣

∣

S
∫

T

Γ
′′

(t)dt

∣

∣

∣

∣

∣

∣

+ CΓ
′

(t)

∣

∣

∣

∣

∣

∣

S
∫

T

EpE
′

dt

∣

∣

∣

∣

∣

∣

≤ CΓ
′

(T )Ep+1(T ).(3.19)

We have by similar procedure

(3.20) I2 ≤ CΓ
′

(T )Ep+1(T )

Also we estimate I3 by

(3.21) I3 ≤ C

S
∫

T

Γ
′

(t)Ep+1dt.

By boundary conditions we have

(3.22) ϕ2(1, t) ≤

1
∫

0

ϕ2
xdx, ψ2(1, t) ≤

1
∫

0

ψ2
xdx, w2(1, t) ≤

1
∫

0

w2
xdx

Then

I4 + I5 + I6 ≤ ε

S
∫

T

Γ
′

(t)Ep+1(t)dt

+C

S
∫

T

Γ
′

Ep(t)
(

h2(ϕt(1, t)) + h2(ψt(1, t)) + h2(wt(1, t))
)

(3.23)
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By inserting (3.19),(3.20), (3.21) and (3.23) in estimation (3.18), we obtain the
estimation (3.4).

We are now ready to state and prove our main result.

Theorem 3.1. Assume that (A1)− (A2) hold. Then, there exist a constant c > 0
such that, for t large, the solutions of (1.8),(1.10)-(1.12) satisfy

(3.24) E(t) ≤ c











H−1
0











1
t
∫

0

α(s)ds





















2

, t ≥ t0

where H0(t) = th0(t). Moreover, if h0 is strictly convex on [0,M ] and h
′

0(0) = 0,
then we have the improved estimate

(3.25) E(t) ≤ c











h−1
0











1
t
∫

0

α(s)ds





















2

, t ≥ t0

Proof. Let us define the following function

(3.26) γ(t) = 1 +

t
∫

1

1

h0(
1
s )
ds t ≥ t

′

for some t
′

> max{1, 1
M }. Then

(3.27) γ
′

(t) =
1

h0(
1
t )

∀t ≥ t
′

It follows from assumption (A2) that γ
′

(t) is strictly increasing and γ
′

(t) → ∞ as
t → ∞. Thus γ is a convex and strictly increasing C2-function, with γ(t) → ∞ as
t→ ∞.

Now we set

(3.28) σ(t) = γ−1(

t
∫

0

α(s)ds).

then it is easy to cheak that σ is strictly increasing concave C2-function, with
σ(t) → ∞ as t→ ∞ and

σ
′

(t) = h0(
1

σ(t)
)α(t)
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is strictly decreasing.

Now, we take Γ(t) = σ(t) in Lemma 3.4, we obtain

S
∫

T

σ
′

(t)Ep+1dt ≤ CEp+1(T ) + C

S
∫

T

σ
′

Ep(t)

1
∫

0

q2dxdt+ C

S
∫

T

σ
′

Ep(t)ϕ2
t (1, t)dt

+C

S
∫

T

σ
′

Ep(t)
(

h2(ϕt(1, t)) + h2(ψt(1, t)) + h2(wt(1, t))
)

dt

+C

S
∫

T

σ
′

Ep(t)
(

ψ2
t (1, t) + w2

t (1, t)
)

dt(3.29)

Estimation for
S
∫

T

σ
′

(t)E(t)ϕ2
t (1, t) By considering the following cases:

C1 : |ϕt(1, t)| > M,

C2 : |ϕt(1, t)| ≤M, and |ϕt(1, t)| ≤
1

σ(t)
,

C3 : |ϕt(1, t)| ≤M, and |ϕt(1, t)| >
1

σ(t)

According to hypothesis (A2), we obtain for t ≥ t
′

in case C1:

(3.30) σ
′

(t)ϕ2
t (1, t) ≤ σ

′

(t
′

)
1

c1
h(ϕt(1, t))ϕt(1, t) ≤ −CE

′

(t).

in case C2

(3.31) σ
′

(t)ϕ2
t (1, t) ≤ σ

′

(t)
1

σ2(t)
.

in case C3: we use the definition of σ(t), we obtain

σ
′

(t)ϕ2
t (1, t) ≤ Mσ

′

(t)ϕt(1, t) =Mh0(
1

σ(t)
)α(t)ϕt(1, t)

≤ Mh0(|ϕt(1, t)|)α(t)|ϕt(1, t)| ≤Mα(t)h(ϕt(1, t))ϕt(1, t)

≤ −CE
′

(t).(3.32)



678 T. Hamadouche and A. Khemmoudj

By using the estimations (3.30), (3.31) and (3.32), we arrive at

S
∫

T

σ
′

(t)E(t)ϕ2
t (1, t)dt ≤ −C

S
∫

T

E(t)E
′

(t)dt+

S
∫

T

σ
′

(t)E(t)
1

σ(t)2
dt

≤ CE2(T ) + E(T )

σ(S)
∫

σ(T )

1

s2
ds

= CE2(T ) + E(T )

(

1

σ(T )
−

1

σ(S)

)

.(3.33)

Similarly, we estimate

S
∫

T

σ
′

(t)E(t)ψ2
t (1, t) ≤ CE2(T ) + E(T )

(

1

σ(T )
−

1

σ(S)

)

(3.34)

S
∫

T

σ
′

(t)E(t)w2
t (1, t) ≤ CE2(T ) + E(T )

(

1

σ(T )
−

1

σ(S)

)

(3.35)

Estimation for
S
∫

T

σ
′

(t)E(t)h2(ϕt(1, t)) By considering the following cases:

C
′

1 : |ϕt(1, t)| > M,(3.36)

C
′

2 : |ϕt(1, t)| ≤M, and |ϕt(1, t)| ≤ σ
′

(t),(3.37)

C
′

3 : |ϕt(1, t)| ≤M, and |ϕt(1, t)| > σ
′

(t)(3.38)

According to hypothesis (A2), we obtain for t ≥ t1 in case C
′

1:

(3.39) σ
′

(t)h2(ϕt(1, t)) ≤ σ
′

(t
′

)c2hϕt(1, t))ϕt(1, t) ≤ −CE
′

(t).

in case C
′

2: Since σ
′

(t) = h0(
1

σ(t) )α(t), we get

h−1
0 (|ϕt(1, t)|) ≤ h−1

0 (σ
′

(t)) =
1

σ(t)
α(t),

so

(3.40) σ
′

(t)h2(ϕt(1, t)) ≤ σ
′

(t)α2(t)
1

σ2(t)
≤ Cσ

′

(t)
1

σ2(t)
.

in case C
′

3: Since

σ
′

(t) < |ϕt(1, t)| and h(ϕt(1, t)) ≤ h−1
0 (|ϕt(1, t)|) ≤ h−1

0 (M)
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we obtain

σ
′

(t)h2(ϕt(1, t)) ≤ |ϕt(1, t)|h
−1
0 (M)h(ϕt(1, t))

≤ h−1
0 (M)ϕt(1, t)h(ϕt(1, t)) ≤ −CE

′

(t).(3.41)

By using the estimations (3.39), (3.40) and (3.41), we arrive at

S
∫

T

σ
′

(t)E(t)h2(ϕt(1, t))dt ≤ −C

S
∫

T

E(t)E
′

(t)dt+ C

S
∫

T

σ
′

(t)E(t)
1

σ(t)2
dt

≤ CE2(T ) + CE(T )

σ(S)
∫

σ(T )

1

s2
ds

= CE2(T ) + CE(T )

(

1

σ(T )
−

1

σ(S)

)

.(3.42)

Similarly, we estimate

S
∫

T

σ
′

(t)E(t)h2(ψt(1, t)) ≤ CE2(T ) + CE(T )

(

1

σ(T )
−

1

σ(S)

)

(3.43)

S
∫

T

σ
′

(t)E(t)h2(wt(1, t)) ≤ CE2(T ) + CE(T )

(

1

σ(T )
−

1

σ(S)

)

(3.44)

Finally, inserting (3.33), (3.34), (3.35), (3.42), (3.43) and (3.44) into (3.29) as S →
+∞, we find that

(3.45)

+∞
∫

T

σ
′

(t)E2(t) ≤ CE2(T ) +
C

σ(T )
E(T )

Hence, we deduce from Lemma 3.2 that

(3.46) E(t) ≤ kσ(t)−2, t ≥ t1.

In order to obtain (3.24), we take s0 > t
′

such that h0(
1
s0
) ≤ 1. Since h0 is increasing

and H0 = sh0(s) then we have

γ(s) = 1 +

s
∫

1

1

h0(
1
τ )
dτ ≤ 1 + (s− 1)

1

h0(
1
s )

≤
s

h0(
1
s )

=
1

H0(
1
s )
, s ≥ s0.(3.47)
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So, with t = 1
H0(

1
s
)
, we easily see that

(3.48)
1

σ(t)
≤ H−1

0 (
1

t
), ∀t ≥ t

′

.

Therefore, using (3.46) and (3.48) ,we obtain estimate (3.24). To prove (3.25), we
define a new function K as follows:

(3.49) K(t) =
h0(t)

t
, t ≥ t

′

.

According to the strict convexity of h0 on [0,M ] and the mean value theorem, we
easily deduce that K(t) is strictly increasing on (0,M). Now, we take σ = γ−1,
where

(3.50) γ(t) = 1 +

t
∫

1

1

K(1s )
ds t ≥ t

′

.

Then by the same procedure, one derives (3.25). This compeltes the proof of The-
orem 3.1.

As in [14] we give some examples to illustrate the energy decay rates obtained
by our results.

Example1. Exponential growth

If h0(t) = e
−1

t near zero. Then by according to Theorem 3.1, we obtain the
energy decay estimate

E(t) ≤ k(ln(

t
∫

0

α(s)ds))−2, t ≥ t0

Example 2. Between polynomial and exponential growth

If h0(t) = e(−lnt)2 near zero. Then by according to Theorem 3.1, we obtain the
energy decay estimate

(3.51) E(t) ≤ ke
−2(ln(

t∫

0

α(s)ds)))
1
2

Example 3. Faster than exponential growth:

If h0(t) = e−e
1
t near zero. Then by according to Theorem 3.1, we obtain the

energy decay estimate

E(t) ≤ kln(ln(

t
∫

0

α(s)ds))−2, t ≥ t0
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4. Special cases

In this section, we consider the situation of polynomial growth rate near zero h0(t) =
tr, r ≥ 1. In other words, instead of (A2) we will give the following condition:

(A3) h : R → R are differentiable functions satisfying

(4.1) c1 min{|t|, |t|r} ≤ |h(t)| ≤ c2 min{|t|, |t|
1
r }

where the constants c1, c2 > 0 and r ≥ 1.

According to Theorem 3.1, we obtain the energy decay estimate

(4.2) E(t) ≤ C





t
∫

0

α(s)ds





−
2
r

However, this estimate can be improved as follows:

Theorem 4.1. Assume that (A1) and (A3) hold. Then there exist two constants
k1, k2 > 0 such that for all t ≥ 0,

(4.3)























E(t) ≤ k1 exp

{

−k2
t
∫

0

α(s)ds

}

, ifr = 1

E(t) ≤ k1

(

t
∫

0

α(s)ds

)−
2

r−1

, ifr > 1.

Proof. We take Γ(t) =
t
∫

0

α(s)ds in Lemma 3.4 and furthermore the estimation

(3.17) becomes

S
∫

T

α(t)Ep+1dt ≤ CEp+1(T ) + C

S
∫

T

α(t)Ep

1
∫

0

q2dxdt

+C

S
∫

T

α(t)Ep(t)
(

ϕ2
t (1, t) + ψ2

t (1, t) + w2
t (1, t)

)

dt

+C

S
∫

T

α(t)Ep(t)
(

h2(ϕt(1, t)) + h2(ψt(1, t)) + h2(wt(1, t))
)

dt.(4.4)

We distinguish two cases related to the parameter r to establish the energy decay
rate.

Case (I): r = 1. We choose p = 0. According to the hypothesis (A3), we know
that for t ≥ 0,

(4.5) t2 ≤
1

c1
h(t)t, h(t)2 ≤ c2h(t)t.
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Hence, from inequality (4.4) and energy identity, we deduce that

(4.6)

S
∫

T

α(t)E(t)dt ≤ CE(T ) + C

S
∫

T

−E
′

dt ≤ CE(T ).

Then by using Lemma (3.2), we obtain the first estimate in (4.3).

Case (II): r > 1. The hypothesis (A3) implies that

(4.7)











t2 ≤
(

1
c1
h(t)t

)
2

r+1

, if |t| < 1

t2 ≤ 1
c1
h(t)t, if |t| ≥ 1.

It follows from energy identity (3.1),

(4.8) ϕ2
t (1, t) ≤

[

−
1

c1
E

′

(t)

]
2

r+1

−
1

c1
E

′

(t)

Then using Young’s inequality and the fact that E(t) is nonincreasing, we obtain,
for any ε > 0

S
∫

T

α(t)Ep(t)ϕ2
t (1, t)dt ≤

S
∫

T

α(t)Ep(t)

[

−
1

c1
E

′

(t)

]
2

r+1

dt−
1

c1

S
∫

T

α(t)Ep(t)E
′

(t)dt

≤ α(0)
r + 1

r − 1
ε

r+1

r−1

S
∫

T

Ep r+1

r−1 (t)dt+ α(0)
r + 1

2
ε−

r+1

2

S
∫

T

−
1

c1
E

′

(t)dt+
Ep+1(T )

c1(p+ 1)

≤ Cε
r+1

r−1

S
∫

T

Ep r+1

r−1 (t)dt+ C(ε−
r+1

2 + 1)E(T ).(4.9)

Similarly, we obtain, for any ε > 0

(4.10)

S
∫

T

α(t)Ep(t)ψ2
t (1, t)dt ≤ Cε

r+1

r−1

S
∫

T

Ep r+1

r−1 (t)dt+ C(ε−
r+1

2 + 1)E(T ).

and

(4.11)

S
∫

T

α(t)Ep(t)w2
t (1, t)dt ≤ Cε

r+1

r−1

S
∫

T

Ep r+1

r−1 (t)dt+ C(ε−
r+1

2 + 1)E(T ).

Also we have from energy identity (3.1),

(4.12)

1
∫

0

q2dx ≤ −cE
′

(t) ≤ −cE
′

(t) +
[

−cE
′

(t)
]

2
r+1
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then we obtain

(4.13)

S
∫

T

α(t)Ep(t)

1
∫

0

q2dxdt ≤ Cε
r+1

r−1

S
∫

T

Ep r+1

r−1 (t)dt+ C(ε−
r+1

2 + 1)E(T ).

On the other hand, the hypothesis (A3) implies that

(4.14)

{

h2(t) ≤
(

c2r2 h(t)t
)

2
r+1 , if |t| < 1

h2(t) ≤ c2h(t)t, if |t| ≥ 1.

Then, similarly to (4.9), we obtain, for ε > 0

(4.15)

S
∫

T

α(t)Ep(t)
(

h2(ϕt(1, t)) + h2(ψt(1, t)) + h2(wt(1, t))
)

dt

≤ Cε
r+1

r−1

S
∫

T

Ep r+1

r−1 (t)dt+ C(ε−
r+1

2 + 1)E(T ).

Finally, inserting (4.9)-(4.15) into (4.4), we get

(4.16)

S
∫

T

α(t)Ep+1(t)dt ≤ CEp+1(T )+Cε
r+1

r−1

S
∫

T

Ep r+1

r−1 (t)dt+C(ε−
r+1

2 +1)E(T ).

Now we choose p = r−1
2 , then p + 1 = p r+1

r−1 = r+1
2 . Choosing ε small enough, we

find

(4.17)

S
∫

T

α(t)Ep+1(t)dt ≤ CEp+1(T ) + CE(T ).

Finally, by using Lemma (3.2), we obtain the second estimate in (4.3). This com-
pletes the proof of Theorem 4.1.
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