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Abstract. In this paper we are interested in the study of the null controllability for
the one dimensional degenerate nonautonomous parabolic equation

up — M(t)(a(z)us)e = hxw,  (z,t) € Q@ =(0,1) x (0,T),

where w = (x1,22) is a small nonempty open subset in (0,1), h € L?(w x (0,T)), the
diffusion coefficients a(-) is degenerate at x = 0 and M(-) is nondegenerate on [0, 7.
Also, the boundary conditions are considered to be Dirichlet- or Neumann-type related
to the degeneracy rate of a(-). Under some conditions on the functions a(-) and M(:),
we prove some global Carleman estimates which will yield the observability inequality of
the associated adjoint system and, equivalently, the null controllability of our parabolic
equation.

Keywords. Null controllability; nonautonomous parabolic equation; Carleman esti-
mates.

1. Introduction

The purpose of this paper is to establish the null controllability for the linear
nonautonomous degenerate parabolic equation

ur — M(t)(a(2)uz)e = hxw, (z,t) € Q
u(1,t) =u(0,¢) =0, te(0,T)
(1.1) or

u(1,t) = (auy)(0,t) =0, te€(0,7T)
u(z,0) = uo(z), z € (0,1),

where w = (21, z2) is a nonempty open subinterval of (0,1), @ = (0,1) x (0,T), a(-)
and M(-) are time and space diffusion coefficients, the initial condition ug is given
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in L2(0,1), and h € L?(w x (0,7)) is the control function acting on w.

The null controllability of nondegenerate parabolic equations have been widely stud-
ied in the last years (see in particular [6], [13], [14], [18], [20]). On the other hand,
very few results are known in the case of autonomous (M (t) = 1) degenerate equa-
tions; see [3], [4], [5], [8], [19]. The main tool to study the null controllability
of the above parabolic equations is the Carleman estimates. These last estimates
are used to show the observability inequality of the adjoint parabolic equations,
which is equivalent to the null controllability of the above parabolic equations. The
Carleman estimates are the main results of the above references. Recently in [21],
the authors established a new Carleman estimate for the autonomous degenerate
equations under some general conditions on the degenerate diffusion coefficient a.

The main objective of this paper is the null controllability of a one-dimensional
parabolic equation when the diffusion coefficient is allowed to be degenerate at the
boundary point 2 = 0 of the interval I = (0, 1), and it might be non-autonomous.
This can help to study a local null controllability result for a nonlinear degenerate
parabolic PDE with nonlocal nonlinearities which has important physical motiva-
tions. In particular there exists several examples of real world physical models
where nonlocal terms appear naturally:

e In the case of migration of populations, for instance bacteria in a container, we

may have instead of M:
~ 1
M(t) = NI (/ (@, 1) d:c)
0

Other more general M can also be found in practice, for instance

M(t) = NI (/01 w(z, 1) d:c,/ol (2, 1) d:v)

e In the context of reaction-diffusion systems, terms of this kind

M(t) = NI (/01 i (2, )2 d:v)

appear in the parabolic Kirchhoff equation (see [10]).

2. Assumptions and Preliminary Results

In order to study the null controllability of equations 1.1, we make the following
assumptions on the coefficients M (-) and af(-).

Hypothesis 1.

1. M s continuous on (0,T) and there exist two positive constants ag, By inde-
pendent of T such that

0<ap<M(t)<po, te(0,T),
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2. M is derivable on (0,T) and there exists a positive constant o independent
of T such that
|IM'(t)] <70, te(0,T).

Hypothesis 2.
1. a € C([0,1]) N C*((0,1]), a(z) >0 in (0,1] and a(0) =0,
2. there exists o € (0,2) such that za'(x) < aa(zx) for every x € [0, 1],

3. if a € [1,2), there exist m > 0 and g > 0 such that for every x € [0,d¢], we
have
a(z) >m sup a(y).
0<y<z
Remark 2.1. It should be noted that Hypothesis 2 appeared for the first time in [21].
It is weaker than the condition given in [5]. In [21] the author also proved that under

Hypothesis 2 the classical Hardy-inequality does not hold in general, (see [21, Example 3])
and they proposed an improved Hardy inequality (see Proposition 2.2).

As in [5, 21, 24], for the well-posedness of the problem, the natural setting involves
the space

1
H0,1) := {u € L*(0,1) N H.,.(0,1) : /a(z)uidz < o0},
0
which is a Hilbert space for the scalar product
1
(2.1) (u,v) == /uv + a(x)ugv.de, wu,v € H0,1).
0

For any u € H1(0,1), the trace of u at z = 1 obviously makes sense, which allows
us to consider the homogeneous Dirichlet condition at x = 1. On the other hand,
the trace of u at £ = 0 only makes sense when 0 < « < 1. However, for o > 1, the
trace at * = 0 does not make sense anymore, so one chooses a suitable Neumann
boundary condition in this case (see, for example, Lemma 10 of [21]). This leads to
the introduction of the following space H, ((0,1) depending on the value of a:

1. For0<a<1,
H, (0,1) :=={u € H,(0,1) : u(1) = u(0) = 0}.
2. For1 < a <2,

H, (0,1) := {u € H,(0,1) : u(1) = 0}.
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In order to study the well-posedeness of 1.1, we define the operator (A(t), D(A(t)))
by
(2.2) At)u == M(t)Au := M (t)(a(z)uy).,

endowed with the domain
D(A(t)) = D(A) = {u € Hy(0,1) N Hy ((0,1]) : (a(x)us). € L*(0,1)},t € [0,T).
Remark 2.2. The domain D(A) may also be characterized in the case of « € [0,1) by
D(A) == {u € L*(0,1) N Hj,.((0,1]) : a(x)us € H'(0,1)and u(0) = u(1) = 0},
and in the case of a € [1,2) by
D(A) :={u e L*(0,1) N leoc((o’ 1]) : a(x)us € H'(0,1) and  (a(x)us)(0) = 0= u(1)}.
Some properties of the operator A are given in the following proposition, see [7].

Proposition 2.1. The operator (A, D(A)) is closed, self-adjoint and negative with
the dense domain in L?(0,1). Hence A is the infinitesimal generator of a strongly
continuous semigroup e on L%(0,1).

From the assumptions on M (-), we can check that the family of operators

(A(t), D(A(t))),0 < t < T, satisfies the Acquistapace-Terreni conditions (see [1,
2]), thereby generating an evolution family U(¢,s),t > s > 0. More precisely,
for t > s the map (t,s) — U(t,s) € L(L*(0,1)) is continuous and continuously
differentiable in ¢, U (¢, s)L?(0,1) C D(A(t)), and dU (¢, s) = A(t)U(t, s). We further
have U(t, s)U(s,r) = U(t,r) and U(t,t) = I for t > s > r > 0. Moreover, for s € R
and z € D(A(s)), the function ¢ — wu(t) = U(t,s)z is continuous at ¢ = s and
w is the unique solution in C([s, 00), L%(0,1)) N C*((s,0), L?(0,1)) of the Cauchy
problem u'(t) = A(t)u(t),t > s,u(s) = x. These facts have been established in
1, 2].

The problem 1.1 is well-posed in the sense of the following theorem.

Theorem 2.1. For all h € L*(w x (0,T)) and ug € L*(0,1), the problem 1.1 has
a unique weak solution

u € C([0,T]; L*(0,1)) N L*(0,T; H(0,1)).
Moreover, if ug € D(A), then
u € HY0,T;L%(0,1)) N L*(0,T; D(A)) N C([0,T]; HX(0,1)).
Throughout this paper we use the following improved Hardy inequality taken from

[21, Theorem 2.1], which will be the key ingredient in the proof of our Carleman
estimate.

Proposition 2.2. For alln > 0 and 0 < v < 2 — «, there exists some positive
constant Co(a,a,y,n) > 0 such that for all u € Hy} ((0,1), the following inequality
holds

1 1 , L TN

1)(1—
(2.3) /a(m)uidw—i—co/zﬁdx > o )(4 @) / g, dx—i—n/u—,ydac.
« x
0 0 0

T
0
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3. Carleman Estimates

In this section, we prove a crucial Carleman estimate, which will be useful for
proving the observability inequality for the adjoint problem of 1.1. For this purpose,
let us consider the parabolic problem

v+ A(t)v = f, (z,t) € Q

v(1,t) =v(0,t) =0, ¢€(0,T), in the case a € (0,1)
v(1,t) = (avy)(0,t) =0, t € (0,T), in the case a € [1,2),
v(z, T) = vp(x), z € (0,1).

(3.1)

Now, we consider 0 < v < 2 —« and ¢(z,t) = 6(¢t)p(z). Here

x

(32) 6(t)=[HT -t  k=1+2/y, px)= 2c_1a(/%y)dy—62)

where ¢; > 0 and ¢ > m such that p(z) < 0 for all z € [0,1]. Observe that

there exists some constant ¢ = ¢(T") > 0 such that
(3.3) 0] < 0 FVE 10, < 0 FFE in (0,T).
We have the following main result.

Theorem 3.1. Assume that the functions a(-) and M (-) satisfy Hypotheses 1 and
2 and let T > 0. For every 0 < v < 2—« there exists so = so(T, a,a,~, Bo, 2, Y0) >
0 such that for all s > so and all solutions v of (3.1), we have

ﬁ ff93ﬁi)v2e2wdxdt + s [ [ Oa(x)vZe?*Pdadt + sa(1)(1 — a)? ff@z;’—fae%‘/’dxdt
Q Q Q
v? 25 18 2,25 4sa()B2 Ty o 2s0(1,t
+s [ [05e*?dadt < a—g(fff 2P dxdt + =520 [ Ov2(1,t)e? e )dt).
Q Q 0

Proof For the proof, let us define the function w = e*?v, where s > 0 and v is the
solution to (3.1). Then w satisfies

(e=#w) + M () (a(e)(e~*w), ) = f. (z.1) € Q,
w(l,t) =w(0,t) =0, te(0,7), in the case a € (0,1),
w(l,t) = (awy)(0,t) = s(pzraw)(0,t) =0, te (0,T), in the case « € [1,2),
w(z, T) = w(z,0) =0, z € (0,1).
(3.4
Set

Lv:=v + M(t)(a(z)vy)s, Lsw:=e*?L(e™*%w).

Low:= Liw + Low
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where
Liw = M(t)(a(x)ws)r — soiw + s M (t)a(z) 2w,
(3.5) Low :=ws —2sM(t)a(z)pzwy — sM (t)(a(z)ps)zw.
Therefore, we have
(3.6) 2(Lyw, Lyw) < ||Lyw + Low||? = || fe*??,
where || - || and (-,-) denote the usual norm and scalar product in L?(Q), respec-

tively. The proof of Theorem 3.1 is based on the computation of the scalar product
(Lyw, Loyw) which comes in the following lemma.

Lemma 3.1. The scalar product (Liw, Law) may be written as a sum of the dis-
tributed term (d.t) and boundary term (b.t), where the distributed term (d.t) is given

by
(dt) = —2s° //M (2)00,p2wdxdt + = //Httpw dxdt
—|—s//9(2apm—|—a’px)a(:17)M2(t)wid:17dt
Q
(3.7) +83//6‘3 (2ap4e + a'py)a(z)p2 M2 (t)w? dzdt

//M T)w d;vdt——//M )02 a(z)pw?drdt

whereas the boundary term (b.t) is given by

1

(t)0psz(a )wz)z} Odt.

(3.8)

o\ﬁ

Proof To simplify the notation, we will denote by (L;w);, (1 <i < 2,1 <j < 3)
the j** term in the expression of L,w given in (3.5). We will develop nine terms
appearing in the product scalar (Liw, Low). For this, we will integrate by parts
several times respect to the space and time variables. First we have

((Lyw)1, (Low), //M )Wy ) gwidxdt
T

/ wxwt dt //M )Wy Wi dxdt
0

1
1
x)wwwt]odt— %/ {M(t)a(x)wfc dr + = //M' x)w?dxdt.
0

I
St~
~
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Then

(Lyw)a, (Low)) = —s / / prwwydrdt

(3.10) = - [gpth -+

[NCRIVA

2ol
— —
O

N »

o O—__ o

/ cpttw2d:1cdt
Q

T
[gﬁtwﬂ o dx + O, pw?dadt.

N »

We also have

2 1 T
(L1w)s, (Law)1) = s* [ [a(a)M (t)piwwdedt = 5 [ [a Jpzw? de
Q 0
=5 [ [ a(z)M(t)psppiwidzdt — % J [a(z) w2dxdt

Q Q

1
3.11 = [a(2)M#)p2w?| dr — s p2 00, w2 dzdt
(3.11) = [ [a@nit)e }

0

—% [ [a(z) pxw2dxdt.
Q

On the other hand, we have

(Liw)1, (Law)g) = —28//Mz(t)cpw(a(m)wm)(a(x)ww)wdxdt
Q

(3.12) - [A42() 2(a (x)uhﬂz};dt+-SJ/l/“A{QQ)wzzaQ(x)wgdxdt
Q

pﬁm (@M@ﬂwa//@F@%MJQWMMt
Q

We also have

(Liw)a, (Law)g) = 282//M(t)a(x)gomcptwwmd:vdt
Q

T
82/{M(t)a(:v)cptcpw 2 dt—s //M T)Qtppow? drdt
0

= [ [ MOeate)p) w dui

Q
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T
(3.13) 52/ )PPz W dt—s //M 99tp2 2dxdt
0

s | / M(E)p(a(w)ps)swidudt.

Q
Additionally, we find that

(3.14) ((Liw)s, (Law)s2) //M2 )3 pyww,drdt
T
53/ goi 2} dt + s° //M2 )|2ad’ ¢, + 3a cpm} w?dzdt.
0

Let us now consider the scalar product

(3.15) ((Liw)1, (Law)s //M2 We )z (a(X) s ) zwdadt

T
—s/ [M%t)(a(a:)gaz)za(a:)wzw}(l)dt—|—s//M2(t)(a(a:)gaz)ma(:zr)wwmdxdt
0 Q

+s / / M2(t)(a(z) s )sa(z)w dzdt
Q

T
—s/ [MQ(t)(a(x)gaz)za(:r)wwm];dt—|—s//M2(t)(a(a:)gpz)za(:r)widxdt,
0 Q

since (a(x)@z)zz = 0.
Furthemore

(3.16) ((Liw)a, (Law)s) = 52//M(t)cpt(a(x)gom)wwzdxdt.

Q

Finally, we have

(3.17)  ((L1w)s, (Law)s) = —s //M2 (a(x) @y )z widzdt.

Additionally (3.9)-(3.17), we find that

(dt) = —2s° / / M (t)a(x)00p2wdzdt + = / / Oppwdadt
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+s//9(2apm+a’pm)a(x)M2(t)wfcdxdt
Q

(3.18) —|—83//93(2apm + a'p)a(z)p? M? (t)w? dzdt

//M Yw2dxdt — —//M (t)0%a(z)p2widxdt,

T 5 9 1
_ J [SM () (az)w,) }Odt.

The proof of (3.19) is similar to that in [5] and the fact was used that M(-) is a
bounded function. Now we put (d.t) = A+ B, where

A= =25 [ [ M(t)a(x)00p2wdrdt + 5 [ [ Oupw?dzdt
Q Q
+5 [ [0(2apse + a'py)a(z) M?(t)widzdt
Q

(3.20) +83 [ [ 603(2apye + a/pa)al(z)p2 M2 (t)w? dxdt,
Q

and

(3.21) //M Yw2dxdt — —//M’ )02 a(z)piw?dzdt.

Observe that

1
(3.22) A+B< §ers“"||2 — (b.t).
The crucial step is to prove the following estimate.

Lemma 3.2. There exists a positive constant s1 = $1(T,a,a, ag, Bo,¥,%) > 0
such that for all s > s1 we have,

A+ B> 482 ) ff93 Ii)deajdt—I—s%gffﬁa(:z:)wgdxdt

(3.23) 2al(-o)ag ffeﬁ “dwdt + 202 [ [ 0% dwdt.
Q
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Proof By the assumption za'(z) < aa(z) and the fact that p, = T-ajaray and the
observation that

c1 [ 2a(z)—za'(z)

/ _
20pzy + @ Py = E(T)

g (i) .,

one can estimate A in the following way

2s2¢2 22 s
—Wﬂo / / GGthdedt+§ / / 0, pw?dadt
Q

3.3
(3.25) —l—sclag//Ha(x)wfcdxdt—i—(;ciméo//ﬁo’x—w%xdt
—a)
Q

According to the relation (3.3) we know that |06;| < ¢f>+/* < ¢'#* and we obtain

(3.24) >

(3.26) +sclag//9a(x)wgdxdt+ 5//9ttpw2dxdt.
Q Q

Let

(3.27) Ay = 10 / / Oa(z)w?dzdt + / / Oppw? dadt.
Q Q

Therefore

s3ciad 2s2c2¢ x
(3.28) A> ((2 _1032 ~ ! ﬁo //93—w2dxdt

—I—%clag//Ga(x)w?cdxdt—l— %Al.
Q

We apply the improved Hardy inequality (2.3), with 7 = 1, which gives
1

1 1 1
(1 — a)? 2 2
02 [y [tz SO [ e [
0 0 0

0

for suitable ¢o = co(a, a, 7). Therefore, we can write

1)(1 — 2 2 2 2
A > a(1)( a)?craf 0 wf d:vdt—i—cla% Hw—dxdt
4 p2-o 7
Q Q
(3.30) —coclag//9w2dxdt+//GttpMdedt.
Q Q
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Finally, we need to estimate the term

(3.31) Ay = //HttpMdedt —coclag//9w2dxdt.
Q Q

y (3.3), there exists a positive constant cg such that

(3.32) |42| < e3 / / 012/ kw2 dadt.
Q

Now, we consider ¢ = % and ¢ = k, so that % + L = 1. Using the Young

inequality, we have for all ¢ > 0

|A2] < 03//(6‘1+2/k %a%x%’%wa(ﬁf’a%’l’xf’w%)dwdt
(3.33) < 035//9(1+2/k 194 37 w2dxdt+C3c( )//93 ( )w2dxdt,
alx

where ¢(e) = i,(sq) a . Observe that

3

Using the fact that a(-) is continuous on [0, 1], there exists a positive constant ¢4
9
such that (a(z))e < ¢4 for every = € [0,1], and then

(3.35) Ay > —03045//9—d:vdt—03c //93$—w2dxdt

Putting the estimate (3.35) in (3.30) and using (3.28), we obtain

A > ((5201;)% — ey - 503;@)) I fe3 Lwddudt + $103 [ [ Oa(x)wldedt
Q

(3.36) _'_sa(l)(l;a)?claﬁ fgt?mgi dxdt + %(cla% — 03C45) fg@;”—jda:dt.

2
3ag
263C4

Now, take ¢c; = 2 and e = ¢(a, a, ap,7y) =
0 such that for all s > s5

. Thus there exists so = s2(T', a, o, v, o, v) >

(2 a)2 ff93 wi)de:rdt—F sa%ff@a(x)w?cdxdt

(3.37) +2al)ilza) %UHIQ “odrdt + 302 [ [ 0% ddt.
Q



322 A. Benaissa, A. Kainane Mezadek and L. Maniar

On the other hand, we have
|B] < 2ff|M’ 2d3:dt+ ff|M’ (t)|6%a(z)p ind:rdt

< ffa w2dzdt + (gs ;;’2 ff92ﬁi)w2dxdt
<270(ff rywddudt + s ff(ﬂ;(;) widzdt)
< 20570(ff6‘a(:v)w§dxdt + (2f—o¢)2 J e %uﬂdwdt)
Q
309 w2 s 3. 2
: Tz Frea
(3.38) <%i(sy fea 2dadt + s [ g‘e s widudt)

for all s > %. Therefore,

(3.39) B> _S3a0 //6‘a x)w3dzdt — (38 of //93$—w2d:vdt

By adding (3.37) and (3.39), for s > s1(a, @,7, Bo, @0, Y0) > 0, with s; = max{so, 8302;0 ,
0
we obtain the complet proof of Lemma 3.2.

T
Now, using the fact that [ [5M2(t)<pm(a(a:)wz)2} dt is non-negative, the right
0 0
hand of (3.22) becomes

(3.40) = erwn? //ﬂ 250 dt+25“(1)fg/9 2(1,t)dt.

From (3.22), (3.40) and Lemma 3.2, we obtain
Zw?dzdt + s [ [ Qa(x)wdzdt + sa(
Q

T
s [ [ 02de < Z ([ [ [P edudt + 2508 fewg(l,t)dt)
Q °NQ 0

(3.41)

for all s > s1. Finally, we turn back to our original function v = e~*?w. Using that
2 x
(g2 ) —s.
Vg ( sz_aa(x)w—i—wme

by the Young inequality, we find

s//ea(:c 25“"d:cdt<8 //93 T Rdrdt
Q

(3.42) +2s / / a(z)w? dxdt.
Q
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Also, we have
wo(1t) = (spav(1,) + va(1,0))e# 10
(3.43) = v, (1,t)es¢ (D),

Consequently, from 3.41-3.43, we have

ﬁ ff@gﬁ;vzezwdxdt—l— s [ [ 6a(z)vie?s?dxdt + sa(1)(1 — oz)2ff9$;’fa e2s¢dxdt
Q Q Q
T
+sff9;’—ie25‘/’dxdt <1 (fff26259"d:vdt + —453(71{33 f@v%(l,t)e%“"(l’t)dt>
Q °NQ 0

for all s > sg, with sg = s1

4. Observability Inequality and null controllability

In order to prove the controllability of (1.1), we first need to derive the observability
inequality for the following adjoint problem

v + A(t)v =0, (z,t) € Q
41 v(1,t) = v(0,t) =0, in the case  a€(0,1) t€(0,7)
(4.1) v(1,t) = (av;)(0,t) = 0, in the case a€e(l,2) te(0,7)

v(z, T) = vp(z), z € (0,1).
More precisely, we need to prove the following inequality

Proposition 4.1. Assume that the coefficients a(-) and M(-) satisfiy the hypothe-
sis (2) and (1), respectivly, and let T > 0 be given and w be a nonempty subinterval
of (0,1). Then there existe a positive constant C = C(T,a,a, M) such that the
following observability inequality is valid for every solution v of (4.1)

1 T
(4.2) Z)/1)2(:10,0)dgc < Cb/w/v2(x,t)d:vdt.

Now, by standard arguments, a null controllability result follows.

Theorem 4.1. Let T > 0 be given, and w be a nonempty subinterval of (0,1).
Then for all ug € L*(0,1), there exists h € L*(w x (0,T)) such that the solution
u of (1.1) satisfies u(x,T) = 0, for every x € (0,1). Furthermore, we have the
estimate

(4.3) 12l L2 (wx 0,7)) < ClluollL2(0,1

for some constant C.

To prove the observability inequality, we need the following lemma.
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Lemma 4.1. (Caccioppoli’s inequality) Let wy € w be a nonempty open set. Then,
there exists a positive constant ¢ such that for every solution of (4.1)

T T
/ / v2e* P dadt < 5/ /vzd:zdt.
0 wo 0 w

Proof Let us consider a smooth function £ : R — R such that

0<{(z) < Vz € R,
(4.4) §(x) =1, x € wy
&(z) =0, xé¢w

and £ > 0 for € w. Then

2025092 dxdt

o

|
—
&l=

Il
o ©
VA

2pe25Pv2ddt + 2ff§2 2seyupdadt

| \
CIJ

Il
[N}
VA
—_ -
@\@s@so%_‘

£
3
E2pe?sev?dadt — 2ff§2M Ye2v(a(x)v, ) drdt
3

2pie?sPv?drdt + 2ffM )(£2e*5%) pa(x)vvydadt + 2 [ [ M(t)&2a(z)vie? P dadt.
Q

jun
@
=]
Q
@

2 [ [ M(t)&*a(z)vie* Pdadt = —2$ff§2<pt625“’v2dajdt — 2ffM(t)({QEQSW)za(:E)vvzdxdt
Q
< =25 [ [Epe*Pvidadt + 2 i ff (\/_(5 5:5 ) dxdt
Q
(4.5) +ao [ [ (\/Eées‘pvm) dxdt.
Q

In other hand we have

(4.6) 2a0//§2a(x)v§625“"dxdt < 2//M(t)§2a(x)v§ezs“"dxdt.
Q Q

Using (4.5) and (4.6), we obtain

(4.7) ozoff§2a(a:)v§e2s“’d:1:dt
< 28[[52(,07562890’02(1&[:(#4— Bo J"f (\/—(£2 e25%9) ) 2 dt

Due to the definition of £ and the fact that p.e®? and ¢.e®? are bounded functions
on w X (0,T), the inequality (4.7) implies that there exists a positive constant ¢;
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such that

T T
nelin(a(ac))/ / Ufce%“’dxdtg/ / a(x)v? QSdedtS/ v2 e dadt
TEwo 0 wo 0 wo

Q
/ / v2dzdt.

We deduce that

T T
(4.8) / / vZe?Pdrdt < E/ /U2dxdt,
0 wo 0 w

with

- a1
= ———"—"——.
minge., (a(z))

The proof of the observability inequality (4.2). The proof can be derived in
three steps.

Step 1: We consider wy = (z},25) € w = (21,22) and a smooth cut-off function

0 < ¢ <1 such that

&(x) =1, xz € (0,2))
(4.9) { £(x) = 0, v € (2, 1).

The function w := &v, where v is the solution to (4.1), satisfies the following problem

wi + M(t)(a(z)ws)e = M(t)(20(z)€ vz + (a(2)E)'v) := f, (z,1) € @
w(l,t) = w(0,t) =0, te€ (0,7), in the case a € (0,1),
w(l,t) = (awy)(0,t) = te (0,7), in the case a € [1,2),
w(z, T) = wr(zx), x 6 (0,1).

(4.10)

Applying Theorem 4.1 with v = Q’TO‘ and observe that w,(1,t) =0, we get

2
S0 Ow?e?50¥ dxdt S0 022509 gt
xY
Q Q

18 2 ’ Y ) 26250 dg
= (! M2(0)(20(0)€ v, + (a(@))0)e*0% dadt

T
< c/ / (v2 4 v?)e? 0P dadt.
0 wo

According to Lemma 4.1, we obtain

T
30//9w262505"da@dt < é/ /U2d:vdt.
0 w
Q

IN

IN



326 A. Benaissa, A. Kainane Mezadek and L. Maniar

Next, using the definition of £, we obtain

T T é T
/ / Gv2e2%0Pdadt < — /vzdxdt.
o Jo S0 Jo Jw

Using the fact that p(z) and 6 satisfies the following inequality

372\ —*
< -
o(t) < ( 16) € [T/4,3T/4],
and
2¢9
|p(z )|§2_ , forall ze€]0,1].

Then there exists a positive constant ¢ = c(T a, @) such that

3T/4 T2
e cso / / 2d:vdt< / / vidxdt,
which implies
3T /4 2.k T
/ / vidxdt < eCSO(T ) i/ /U2dxdt.
4 S0 0 w

Step 2: We define z = (1 — §)v. Then, z satisfies the folowing problem

2+ M(t)(a(r)22)e = M(t)(2a(z)(1 = §)'ve + (a(z)(1 = &))v) := f,  (,1) € (27,

z(1,t) = z(21,1) =0, te(0,T),

2(x,T) = zp(x), z € (x),1).
(4.11)
In this case, we use classical Carleman estimates, since the operator (a(z)z;). is
nondegenerate on (z7,1). Then v can be estimated on (z2,1) C (27,1) in the same
way, see [14]. Therefore

3T/4
/ / Vdrdt = [p)]" [ vdedt + 3" [ vRdadt+ [o)]" [ v?dadt
(4.12) <C [ [ v*dudt.
Step 3: Multiplying both sides of (4.1) by v and integrate on (0, 1), we obtain

1

1
/ _ /a W2de >0, te(0,T).
0

0

DN | =
Sl

Hence, we deduce that
(4.13) [0(,0)l122(0,1) < [[0(B)lI72(0,1) for all € (0,T).
Then integrate (4.13) on (7'/4,3T/4) and use (4.13) to obtain

1 3T/4
(4.14) /vz(w,O)dac < = / vidadt < C/ / vidadt.
T/4
0

1) x

(0,7)
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