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ECONOMIC-EMISSION DISPATCH WITH SEMIDEFINITE
PROGRAMMING AND RATIONAL FUNCTION
APPROXIMATIONS
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Abstract. The emission function associated with the economic-emission dispatch prob-
lem contains exponential functions that model the emission pollutants. This paper
presents a strategy of solving the economic-emission dispatch problem whereby the ex-
ponential function is approximated by a rational function that permits reduction to
a standard polynomial optimization problem. This is reformulated as a hierarchy of
semidefinite relaxation problems using the moment theory and the resulting SDP prob-
lem is solved. Different degrees of rational functional approximation were considered.
The approach was tested on the IEEE 30-bus test systems to investigate its effectiveness.
Solutions obtained were compared with those from some of the well known evolutionary
methods. Results showed that SDP has inherently good convergence property and a
lower but comparable diversity property.
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1. Introduction

Concern for the environmental impact of power plants and the high cost of retrofitting
have made emission-economic dispatch (EED) a very promising option for optimiz-
ing their operation. In practice, the emission and fuel cost of generating stations are
simultaneously minimized in a multi-objective optimization formulation [1]. Sev-
eral methods have been proposed to solve the resulting multi-objective problem
and notably most recent approaches revolve around the use of evolutionary algo-
rithms [1, 2, 3, 4, 5, 6, 7, 8]. A drawback of evolutionary algorithms is the high
computational burden which results in large time consumption and possible pre-
mature convergence [2]. There are few examples of the application of semidefinite
programming (SDP) to emission dispatch (ED) problems where the objectives and
constraints are either linear or quadratic [9], [10] and [11]. A straightforward ap-
plication of the SDP to EED problem will necessitate dealing with an emission
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objective consisting of polynomial function (of at least second degree) and expo-
nential functions when it is accurately modelled.

It is reasonable to express the exponential part of the objective as a power series
and take advantage of algorithms that guarantee the infimum of the class of poly-
nomial functions [12]. However, the exponential function is embedded in an infinite
dimensional polynomial space. Using the results of Devolder et al. [13], the prob-
lem can be projected unto a finite dimensional space. Such projection reduces the
infinite dimensional polynomial problem to the standard polynomial optimization
problem (POP) form which can be efficiently solved via SDP [14]. Mostly, a good
approximation can be achieved using a relatively high degree polynomial. However,
the size of the matrix of the resulting SDP program grows prohibitively large with
the degree of the polynomial. This also tends to increase the computational cost
associated with solving the resulting semidefinite program. The problem can be
mitigated by using an alternative found in rational function approximation. This
achieves high accuracy and at the same time uses a rational function having lower
degree of numerator and denominator.

A key motivation for the approach adopted in this paper is the ability of opti-
mal rational approximating function to achieve higher accuracy than the optimal
polynomial approximation with same number of coefficients [15]. Furthermore, re-
cent advances in rational function optimization [12, 16] allow the reduction of the
problem to a constrained polynomial optimization problem (POP) which can be
solved using the semidefinite program. Although POPs are generally non-convex
and difficult to solve, various hierarchy of convex relaxation of the problem have
been proposed which monotonically converge to the exact global optimal solution
[14, 17]. This simplifies and allows non-convex problems to be solved by convex
optimization techniques. Furthermore, unlike most multiobjective evolutionary al-
gorithms (MOEA) which are stochastic optimizers and which find it difficult or even
impossible to attain the ideal Pareto surface, SDP provides a cheaply computable
lower bound of the minimum value [18]. Therefore, it has a very good ability to
converge to solution set that are close to the ideal Pareto surface.

It is noteworthy that the SDP applications considered in [9], [10] and [11] are
limited to problems with quadratic constraint and objective functions. The con-
tribution of this paper is the solution of EED problem that includes exponential
function in the emission objective through the application of SDP. Specifically, the
exponential function is projected unto a finite dimensional rational function space
and the resulting problem is transformed into a POP.

The organization of the paper is as follows. In Section 2. of the paper, the
formulation of the multiobjective dispatch problem is presented. A sketch of the
solution of the problem is provided in Section 3.. The vector objective is convex-
ified through semidefinite relaxations and then scalarized using the weighted sum
method. This reduces the dispatch problem to a convex optimization problem. By
employing the nonlinear weight selection method proposed earlier in [20], the SDP
algorithm was guided to provide a better capture of the solution set. In order to
make the paper self-contained, in Section 4. semindefinite programming is briefly
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reviewed along with the notations. In Section 5. rational function approximation
and SDP relaxation methods are reviewed and key results presented. This paves
the way for a formulation of the emission part of the EED taking into consideration
the rational function approximation of the exponential function in Section 6.. In
Section 7. performance of the method is evaluated by comparing its solution set
with that generated by Non-dominated Sorting Genetic Algorithm -II (NSGA-II).
The two methods are employed to solve the IEEE 30-bus 6-generator test system
with the fuel cost and the transmission loss as the objectives to be minimized.

2. Problem Statement

The multiobjective economic-emission dispatch problem is formulated, for s gen-
erating plants, as follows:

minimize [C(x),
(2.1) subject to:  h(x)
)

g(x

where x, the decision variable, is the vector of generated power, C' is the fuel cost
objective, F is the pollutant emission objective, g and h are the respective equality
and the inequality constraints of the system. Further elaboration of the problem is
now provided.

T

E( )]
= x=[z1,...,24]
S

2.1. Problem Objectives

2.1.1. Total Fuel Cost, C(x)
The generator costs are represented by quadratic functions. and the total fuel cost,
C(z), can be expressed as

(2.2) C(CL‘)ZZO&Z'-FBZ'CL‘i-F%I

i=1

th

where z; is the real power output of the i*" plant, and «;, 5;, and ; are the

corresponding fuel cost coefficients of the plant.

2.1.2. Pollutant Emission

The total emission of atmospheric pollutants (e.g. SO,, NO,) in ton/h can be
expressed as

(2.3) Z 10~ 2 aZ +b;r; +ex ) + Ciexp(Aizy),
1=1

where a;, b;, ¢;, \; and (; are the coefficients of emission characteristics of the i
plant .
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2.2. Problem Constraints

2.2.1. Generation capacity constraints
The real power output of each generating unit is constrained between an upper and
lower limit as follows:

(2.4) i < gy < @MAT gL s.

This defines the inequality constraint g(z).

2.2.2. Power balance constraint

The power balance constraint is given by
(2.5) inZPD-f—PL(I),
i=1

where Pp is the total load demand, and Pr(z) is the transmission loss, which is
given, by the Kron’s loss formula, as

S S

(2.6) Pr(z) = Z Zilh Bij xj + ZBiOI 2; + Boo,

i=1 j=1 i=1

where B;;, Bio1 and By are the Kron’s loss coefficients. Equation (2.6) defines the
equality constraint h(z).

3. Multiobjective Optimization

Scalarization is a class of methods of solving the multiobjective optimization prob-
lem (MOP). In one of the approaches, it reduces the vector objective function into
a single objective (scalar) optimization problem by forming a weighted sum of ob-
jectives.

Consider the weight vector w = (wy,...,ws)T € R*, the vector objective func-
tion f(z) = (fi(x),...,fs(z))T € R® and the map é(z,w) : R® x R® — R.
The weighted sum method involves a convex combination of the objectives f;(x),
i=1,...,s to give the scalar objective ¢(x, w):

Pz, w) = sz‘fi(x)

(3.1)
= w’ f(x)
where
(3.2) dwi=1,w>0i=1,..s
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This transforms the vector optimization to a scalar of the form:

(3.3) minimize  ¢(z, w)
' subject to x € X; XCR"”
This process maps the s-dimensional objective space onto the positive real line
R and all the optimal (nondominated) points are mapped to the same point on the
line.

For illustrative purpose, consider the bi-objective problem with s = 2, equations
(3.1) and (3.2), respectively, reduce to

(3.4) d(x, w) = wy fr(x) + wa f2(x)
and
(35) wy +we =1, wy,ws =0

The weighted sum method is the commonly used scalarization method because
of its simplicity, ease of use, and direct translation of weights into the relative
importance of the objectives [19]. However, it is known to miss solution points on
the non-convex part of the Pareto surface, and even distribution of weights does not
translate to uniform distribution of the solution points. If the weights in (3.4) are
parameterized by A, such that w; = A and we = 1 — A, a uniform spacing on A\ does
not produce a uniform spacing on the Pareto front. Furthermore, the distribution
of solution points is highly dependent on the relative scaling of the objectives.

It was observed in [20], that the weight can be parameterized by A and con-
strained on the surface of an ellipsoid, so that

M
K

A
(3.6) + 2= 1.

2
where k1 and ko are the axes of the ellipsoid. The parametrization has led to
an improvement in distribution of the points on the Pareto front. The expression
can be normalized by setting k2 = 1. Variation in k; allows for the control of
the curvature of the ellipsoidal surface. Thus, the non-linear weight selection gives
a higher sensitivity and provides for further sensitivity improvement through the
free parameter k;. This parameter can be used to efficiently explore the Pareto
surface. Further, it aids the control of the slope of the weight factor such that
clustered points can be spread out, thereby improving computational efficiency of

the weighted sum method.

4. Semidefinite programming

A semidefinite program (SDP) is a type of convex optimization that generalizes the
linear program (LP) with the vector variables replaced by matrix variables and the
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element-wise nonnegativity replaced by positive semidefiniteness of the matrices.
Of the various forms of SDP, this paper uses the primal form in its formulation.
Thus, the optimization problem is defined as

minimize (A4p, X)
(4.1) subject to (A;, X) =b;, i=1,....,m
X220

and the associated dual SDP is

(4.2) maximize (b,y)
: subject to Y0, y;A; < Ag, y €R™

where X € 8™ is the decision variable, b € R™ and Ay, A; € S™ (the set of all

symmetric matrices in R™*™). Let p* and d* be the optimal values of (4.1) and (4.2)

respectively. Efficient interior point method has been developed for the primal/dual

program [22, 23, 24]. More details on SDP can be found in [21].

5. SDP Relaxation for FPOP and Rational Functions

In this section, a brief overview of the rational function approximation and results
of different convex SDP relaxations methods found in the literature are presented.
We start with notations and objects from real algebra.

Let R[z] denotes the ring of all real polynomials in the variables z1,xa, ..., 2,
and P denote the R-vector space spanned by the infinite monomial basis v € P,
given by

9 T
(5.1) v= [1,901,902, ey Ty T, T1T 2y . T Ty, T2 X3, - ]
v is a finite monomial basis in v with deg(vg) < k and defines a polynomial sub-
space Pr C P. The subset of R[z] consisting of the sums of squares of polynomials
is denoted by Zz[x] A quadratic module, M (g1, ..., gm), generated by the poly-

nomial g;(z) € R[z], i = 1,2,...,m is defined as:
(5.2) M(g1,..-gm) = UO—FZUjgj}Jj € ¥%[z]
j=1

The truncated quadratic module of degree 2k, My(g1,-..,9m) C M(g1,...,9m)
have deg(oo) < 2k, deg(o;9;) < 2k,i=1,...,m.
5.1. Rational Polynomial Function Approximation of e*

The sum of an infinite geometric series (or rather an infinite degree polynomial),
s(r) = a+axr+ar’+...ax" + ... can be compactly written as a rational function
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s(x) = a/(1 —x), || < 1. This is an example of low degree rational function
representing very high degree (even infinite degree) polynomial accurately.

The Padé approximant is a rational function whose power series expansion agrees
with a given power series to the highest possible order [15]. Given an arbitrary
function f(x) which can be described by an infinite series

(5.3) f(z) = Z cix!
i=1

the Padé approximate rational function, z(x), of degree [m,n] to function f(x) is
given as

k=1
with
(5:5) z(0) = £(0)
and
d* d*
(56) wZ’(l’) - = wf(!f) m:zo,k=1,2,...,m+n

The point x = x, is the point about which the series expansion is done. The
unknown coefficient of both the numerator polynomial, p(x), and the denominator
polynomial, ¢(x), are determined from equations (5.5) and (5.6).

Optimal determination of the coefficients of the rational function can be achieved
by minimizing the £.-norm of the residual |f(z) — z(z)| . Thus,

(5.7) min maz 4(z)so |f(2) — z(z)|
(a,b)eD
with the constraint
D = {(a,b) e R™*"|q(z) > 0, < = < B}

where [a, 8] defines the interval over which ¢(z) is positive. This improved approx-
imation is called Chebychev-Padé approximation.
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5.2. Rational Function Optimization Problem (RFOP)

The rational function optimization is of the form

. .. pl)

5.8 z¥= inf —=%

(5.8) q(z)#0 q(x)
cK

x

where p(z), ¢(x) € R[z] are relative primes, K is a basic closed semialgebraic
set,

(5.9) K={zeR"|gi(z) >0,i=1,...,s}

defined by polynomial g;(z) € R[z],i=1,...,s.
The above rational function optimization reduces to a polynomial optimization
problem if the denominator function, ¢(x), is 1, i.e.

(5.10) p* =inf {p(x) |z € K}

In order to optimize the rational function, one might turn to global optimiza-
tion techniques. However, several of these techniques are inapplicable because the
Lipschitz continuity requirement for global convergence does not hold in general for
rational functions [25]. Recent techniques to mitigate this difficulty involve convex
relaxation of the problem and aim to compute a tight lower bound on the objective
function. Two of these convex relaxation approaches are usually considered and
both proceed by reformulating the rational function objective as constrained poly-
nomial objective, thus reducing the problem to a POP. A semidefinite program is
then used to solve the resulting POP.

Jibetean [12], in a reformulation, considered the function f(z) = 5(—3 > « and

showed that if ¢(z) changes sign in K, then

n M = —00
(5.11) f o)

Otherwise, the problem reduces to
(5.12) f*=sup{alp(z) —aq(z) 20,V € K}

which is in the form (5.10). This was further reduced to a sum-of-squares (SOS)
problem and solved through semidefinite program. The nonnegative polynomial
p(z) — a q(x) > 0 is then written as quadratic module

(5.13) p" =sup a|p(z) —aqlx) =00+ Z oig; € X[
j=1
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where o; € ¥%[z], j = 0,...,r.This is transformed into an SDP form
sup a
(5.14) subject to p(z) — ag(x) =(Q,V)
V=0

where @ is a positive semidefinite matrix and V = v;vf is a positive semidefinite
variable. Various hierarchy of SDP relaxation (approximation) is introduced by
setting the polynomial to the truncated quadratic modules M;(¢g1, ..., g,-) such that
deg(oo) < 2t, deg(o;g;5) < 2t

(5.15) p;” = sup {a |p(z) — o q(x) = v Qu; }

It follows that pf°® can be computed through a semidefinite program. And
as t — oo, p;°° — p* provided that there exists a number N € N such that
N —||z||* € M(g1,...,9r) [25]-

In a second approached proposed by Bugarin et al.[26] the problem is reduced
to a generalized moment problem:

(5.16) = min{ [ pa)dnln € M5 [ aterdn =1

This formulation defines a probability measure M(K) on K, and replaces every
point & € K by its Dirac probability measure d, at x. The probability measure
1 € M is equipped with the properties (@) =0 and pu(K) = 1. As a representing
measure, u defines the sequence y = {y, }, named the moment of order «, as

(5.17) Yo :/ x%dp Yo € N
K

The sequences y is characterized by its moment matriz, M(y), and the localizing
matriz, M(g;y). Every polynomial p(z) € P can be identified by its vector p =
{Pa}taenn of coefficients in the infinite basis v. To define the above two matrices,
consider a linear mapping, L, : P — R:

(5.18) Lyp) = (p,y) = Y Paba
aeN”

and a bilinear mapping (-, ~>y ! Pa X Pa — R:

(5.19) a0, =me=/mw@mMM>

/(p,vaq> du—<p,/vadlu q>
(5.21) = (p,M(y) q)

The moment matrix M(y) = [vvTdy is indexed in the infinite basis v. Let vy
denote the finite basis of the subspaces Py C P of real polynomial with deg(Py) <

(5.20)
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k. Then, for all p(z),q(x) € Pr, Mr(y) = [vgvfdu. It follows that if y has
a representing measure, then My(y) > 0, k = 0,1,...,. Consider g(z) € P,
g(z) =", gax®. The bilinear mapping associated with gy
(5.22) (P, q),, = Ly(gpq) = (p, M(9y) @)

where M (gy) is called the localizing matrix associated with y and g. For all poly-
nomials in Py, M(gy) > 0 for all k.

A finite-dimensional relaxation of the problem can now be defined. For max (deg p(x), max g;) <

2k, a semidefinite program equivalent of (5.10) is

Pt = infyTp
(5.23) s.t. yo=1,My(y) =0
Mkfdi(gz )= 0,i N

where d; = deg(g;). The problem in (5.23) can be clearly seen as an SDP relaxation
of order k of the problem in (5.16) by writing My (y) = >, Baya and My_q,(9:y) =
>0 Ciya, i =1,...,r with appropriate symmetric matrices By, C%,. The SDP dual
of (5.23) is the LMI problem [27, 28, 29|

max A
NX,Z;

st. (Bo, X >+i<cg, Z;) = p(a) — A

(Ba,X> E< > Past=1,...,1; || < 2k
=1
OZ}O,Z ce,T

(5.24)

and with X, Z; € X?[z], problem (5.24) can be written as problem (5.15). The two
programs (5.15) and (5.16) give the dual formulation for the polynomial (5.10), while
the programs (5.23) and (5.24) are SDP dual. By weak duality p;®® < pi*°™ < p*,
and equality p;°° = pi*°™ when the set K is strictly feasible.

6. EED Problem Formulated as POP

In the EED problem of (2.1), the emission pollutant objective contain exponential
terms that can be expressed as a power series using the Maclaurin series expansion:

xr = Ii
(6.1) e =Y o
i=1

The expansion indicates that the function resides in an infinite dimensional space

spanned by the infinite monomial basis {1, I I L }

Using (5.7), a Chebychev-Padé approximant of reasonable degree [m,n] for ex-
ponential function can be determined such that

Iy iC)
(6.2) " q(w)
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Fixing the degree [m, n|, Chebychev-Padé approximants, p;(x)/q;(x), for each weighted
exponential function ¢; exp(\;z;) in E;(x), can be computed with Maple Chebyshev-
Pade approximation function chebpade().

Replacing the weighted exponential function in E;(z;) by the rational function
approximation, gives

N N
i=1 i=1 A

Equation (6.3) is observed to have mixed parts, namely: polynomial and rational
parts. This is different from most of the problems tackled in the literature which may
have all-polynomial or all-rational functions. However, because of these fractional
parts, the whole optimization problem can be reduced to an all-rational polynomial
optimization problem by combining the polynomial and the rational function in each
E;(z;) into fractional polynomial function and then sum them to a single fractional
function E(x). This is observed to increase the degree of both the numerator and
the denominator polynomials, and consequently the complexity of the problem.

Another approach, namely the epigraph approach [26], introduces additional
lifting variables r;, for each unit, with associated constraints

(6.4) Ty > ' , or rigi(x;) —pi(x) 20, i=1,...,s
A minimum r; is selected such that (6.4) is satisfied.

Using the epigraph approach, (6.3) becomes

(6.5) 210_ a; +bjx; +c;x )—i—mlnn,
=1

with the new feasible set K,
(6.6) K = {(z,7) € R*|K; riqi(x;) — pi(2:) > 0;i=1,...,s}

This approach is noted to preserve the pattern of the problem [26]. To ensure
that r;s are minimized in the program, a regularization term M||r||? is added to
E(z). Thus the EED problem reduces to a multiobjective polynomial optimization
problem (MOPOP) as

minimize [C(x), ( ), All7]|?]

subject to:  h(x) =

g(x) <0

rigi(z;) —pi(x;)) 20 i=1,...,p

(6.7)

The MOPOP is further reduced to a scalar (or standard) POP by aggregating
the objectives into one in ¢(z) = w1 C(z) +we EY(x)+ A||r||* using the weighted sum
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method. The problem thus reduces to the standard POP form with a regularization
term:

minimize  ¢(x) = w1C(x) + wa Ex(z) + \|r||?
subject to: ) <0; h(x) >0
(6.8) 7 (( ))20 he) 2
Tz‘]z(xz) pz(xi) 20;i=1,...,p

SDP relaxation of the resulting POP was performed using Gloptipoly; an efficient
SDP parser for POP.

Gloptipoly is a freely available MATLAB software that implements POP solu-
tion algorithm based on the theory of moments [30]. It builds hierarchy of SDP
relaxations of increasing dimension whose associated monotone sequence of opti-
mal values converges to the global value and provides theoretical guarantee of the
asymptotic convergence to the global optimum at low relaxation order. It also gives
the global optimal value and can extract the global optimizer. It solves the resulting
SDP using SeDuMi solver [31].

7. Simulations, results and discussion

The algorithm was tested on the standard IEEE 30-bus 6-generator test system to
investigate the effectiveness of the approach. The total real load on the system is
283.4 MW. Details of the bus and line data of the test system, including the cost
coefficients, emission coefficients and power generation limits, can be found in [32].

The rational polynomial approximation is compared with polynomial approxi-
mations. Two degrees of polynomial approximation (degree 4 and 6) and two ratio-
nal polynomial approximations of degrees [m,n] = [1,1] and [2, 2], were considered
for the emission function using the Chebychev-Pade approximation in (5.7).

The resulting multiobjective POP was reduced to single objective POP using
the weighted sum method. Gloptipoly was applied to solve each of the resulting
POPs. Table 7.1 shows the simulation results for the extreme points of the Pareto
front for the different approximations. It is interesting to note in Table 7.1, that
although the polynomial approximations had greater number of coefficients to be
determined, the computational time is less than that required by the problems
with rational approximations. This is contrary to expectations. Analysis of the
matrix of the semidefinite program generated by Sedumi [31], see Table 7.2, showed
that, apart from the degree of the polynomials and the number of variables in
the polynomial, the number of constraints which determines the sparsity of the
resulting SDP matrix is a major factor determining the complexity of the resulting
SDP problem. In Table 7.2, the sparsity of the matrix is measured by the number
non-zero (nnz) elements in the matrix, while m and n specify the size of the matrix.
For the polynomial approximations, while the size of the matrix did not change,
nnz is observed to almost double by the inclusion of the transmission losses in the
power balance equality constraint. This large change can also be observed for the
rational approximations, too. Also to be noted in (6.6) is that for any number
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Table 7.1: Best Solutions Comparison between Rational and Polynomial Approxi-

mations
Case Rational Rational Polynomial  Polynomial
[m,n] (1,1] (2,2] [4,0] [6,0]
Minimum Fuel Cost Case I
Cost ($/h) 600.1114 600.1114 600.1114 600.1114
Emi 0.2219 0.2219 0.2222 0.22214
Time (s) 37.33 32.17 0.45 19.75
Minimum Emission Case I
Cost ($/h) 638.721 638.3375 638.300 638.269
Emi 0.1944 0.1942 0.1942 0.1942
Time (s) 67.30 60.81 0.56 20.83
Minimum Fuel Cost Case II
Cost ($/h) 606.2348 606.2348 606.2348 606.2348
Emi 0.2194 0.2196 0.2196 0.2196
Time (s) 40.90 48.45 0.45 26.01
Minimum Emission Case I
Cost (8/h)  644.5435  644.1825 644.1087 644.1105
Emi 0.19438 0.19419 0.194192 0.194183
Time (s) 76.88 67.69 0.56 24.32

Table 7.2: The sparsity of the resulting SDP matrix

deg m n nnz
4,0 w/out losses 209 127 1455
4,0 with losses 209 127 2631
6,0 w/out losses 923 477 18983
6,0 with losses 923 477 36035
1,1  w/out losses 1819 276 9807
1,1 with losses 1819 276 13629
2,2 w/out losses 1819 276 8091
2,2 with losses 1819 276 11913
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Table 7.3: Best Solutions for Fuel Cost without Transmission Losses

SDP SDP LP NPGA SPEA NSGA-II
mo] (L] 2.2]
Py, 0.1097 0.1097 0.1500 0.1080 0.1062 0.1050
Py, 0.2998 0.2998 0.3000 0.3284 0.2897 0.3177
Py, 0.5243 0.5243 0.5500 0.5386 0.5289 0.5216
Py, 1.0161 1.0161 1.0500 1.0067 1.0025 1.0146
Py, 0.5243 0.5243 0.4600 0.4949 0.5402 0.5159
Py, 0.3597 0.3597 0.3500 0.3574 0.3664 0.3583
Cost 600.1114 600.1114 604.15 600.259 600.15 600.155
Emi 0.2219 0.2219 0.2233 0.22116 0.2215 0.22188

Table 7.4: Best Solutions for Emission without Transmission Losses
SDP SDP LP NPGA SPEA NSGA-II

n]  [11] 2,2]

L 0.4020  0.4058  0.4000  0.4002  0.4116 0.4077
0.4605  0.4587  0.4500  0.4474  0.4532 0.4577
0.5371  0.5387  0.5500  0.5166  0.5329 0.5389
4 0.3783  0.3818  0.4000  0.3688  0.3832 0.3837
s 0.5371  0.5387  0.5500  0.5751  0.5383 0.5352
o 0.5190  0.5103  0.5000  0.5259  0.5148 0.5110
Cost  638.721 638.338 639.600 639.182 638.51  638.269
Emi  0.1944 0.1942 0.1942 0.1943 0.1942 0.1942

[

2

w

eI T

of lifting variables introduced, there is the same number of inequality constraints
added to the problem. This may be responsible for the exceptional increase in the
computational time and complexity of problems with rational approximation.

The results for the best fuel cost and the best emission objectives against those
reported using Linear Programming (LP) [33], Strength Pareto Evolutionary Al-
gorithm (SPEA) [3], Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [34]
and Niched Pareto Genetic Algorithm (NPGA) [1], with and without the transmis-
sion losses, are shown in Tables 7.4 -7.6. Notice that the solutions with rational
approximations were not dominated. It actually dominated most of the reported
results. This is indicative of the effectiveness of the approximation.

In order to explore the Pareto front generated using the rational approximation
considered, twenty one runs were carried out on the problem using the bi-quadratic
rational approximation. The generated Pareto fronts, both with and without the
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transmission losses, using the weighted sum with nonlinear weight selection in [20],

are as shown in Figure 7.1. In Figure 7.1, a typical value of 12.123 was used for the
free parameter introduced in [20].

0.22
0.215%

* without losses
+ with losses

%
* +
__021F * %
< *
= +
s * +
S 0.205} * +
8 o
UEJ * +
0.2- * +
* +
* +
0.1951 * T e 1
0.19 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
600 605 610 615 620 625 630 635 640 645

Fuel Cost ($/h)

FiG. 7.1: Pareto fronts for the bi-quadratic rational approximation with and without
Transmission Losses

Table 7.5: Best Solutions for Fuel Cost with Transmission Losses

SDP SDP NPGA SPEA  NSGA-II
[m,n] L] 2,2]
Py, 0.1134 0.1134 0.1245 0.1086 0.1182
Py, 0.2990 0.2990 0.2797 0.3056 0.3142
Py, 0.5977 0.5977 0.6284 0.5818 0.5910
Py, 0.9736 0.9737 1.0264 0.9846 0.9710
Py, 0.5218 0.5218 0.4693 0.5288 0.5172
Py, 0.3546 0.3546 0.3993 0.3584 0.3548
Cost 606.2348 606.2348 608.147 607.807 608.147
Emi 0.2194 0.2196 0.22364  0.22015  0.22364
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Table 7.6: Best Solutions for Emission with Transmission Losses

SDP SDP NPGA SPEA NSGA-II
[m, n] [1,1] 2,2]
Py, 0.4055 0.4097 0.3923 0.4043 0.4141
Py, 0.4639 0.4624 0.4700 0.4525 0.4602
Py, 0.5419 0.5430 0.5565 0.5525 0.5429
Py, 0.3941 0.3876 0.3695 0.4079 0.4011
Py, 0.5420 0.5431 0.5599 0.5468 0.5422

e

96 0.5227 0.5143 0.5163 0.5005 0.5045
Cost  644.544  644.182  645.984 642.603 644.133
Emi:  0.19439 0.19419 0.19424 0.19422 0.19419

8. Conclusion

In this paper, a multiobjective economic-emission dispatch problem with transmis-
sion losses is formulated as a convex optimization problem through SDP relaxation
technique, and solved. Although the problem is an infinite-dimensional polynomial
problem, a finite dimensional rational polynomial approximation was computed.
Aggregation of the objectives using the non linear weight selection weighted sum
reduced the multiobjective problem into a scalar form. A free MATLAB software,
Gloptipoly, that efficiently solves POP was employed. The SDP-based weighted
sum shows good convergence property and better exploration of the Pareto front
was achieved through non linear weight selection.

A numerical example is considered which shows that the proposed formulation
is efficient. And when compared with well known evolutionary algorithms, it was
observed to have better convergence properties.

REFERENCES

1. M. A. ABIDO: A niched pareto genetic algorithm for multiobjective environmental/
economic dispatch Int. Jour. Elect. Power Ener. Sys.,25(2),2003, 97-105.

2. ——, A novel multiobjective evolutionary algorithm for environmental/economic power
dispatch, Elec. Power Sys. Res., 65(1), 2003, 71-81.

3. ——, Environmental/economic power dispatch using multiobjective evolutionary algo-
rithms, IEEE Trans. Power Syst.,18(4), 2003, 1529-1537.

4. J. B. PARk, K. S. LEE, J. R. SHIN, AND K. Y. LEE: A particle swarm optimization for
economic dispatch with nonsmooth cost function, IEEE Trans. Power Syst. 20(1),2005,
34-42.



o

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

EED with SDP and Rational Approximations 581

J. G. VLACHOGIANNIS AND K. Y. LEE: Economic load dispatch: a comparative study
on heuristic optimization techniques with an improved coordinated aggregationbased
pso, IEEE Trans. Power Syst.24(2), 2009, 99-1001.

I. A. FARHAT AND M. E. EL-HAWARY: Multi-objective economic-emission optimal load
dispatch using bacterial foraging algorithm. In ser. 25th IEEE Canadian Conf. Elect.
and Comp. Eng. (CCECE), 2012, pp. 1-5.

R. ALLAH HOOSHMAND, M. PARASTEGARI, AND M. J. MORSHED: Emission , reserve
and economic load dispatch problem with non-smooth and non-conver cost functions
using the hybrid bacterial foraging-nelder- mead algorithm, Appl. Ener. 89(1),2012,
443-453.

K. K. MANDAL AND N. CHAKRABORTY: Effect of control parameters on differen-
tial evolution based combined economic emission dispatch with valve-point loading and
transmission loss, Int J. Emerg. Elect Power Sys. 9(4),2008, 1-18.

M. MADRIGAL AND H. QUINTANA: Semidefinite programming relaxations for 0,1 power
dispatch problems. In Proc. IEEE Power Eng. Soc. Summer Meeting Conf., Edmonton,
Canada, July 1999, pp. 697-701.

R. FUENTES-LOYOLA AND V. H. QUINTANA: Medium-term hydothermal coordination
by semidefinite programming, IEEE Trans. Power Syst.,18(4),2003, 1515-1522.

X. Bar, H. WEIL, K. Fujisawa, AND Y. WANG:Semidefinite programming for optimal
power flow problem, Int. Jour. Elect. Power Ener. Sys. 30,2008, 383-392.

D. JIBETEAN: Global optimization of rational multivariate functions Centrum voor
Wiskunde en Informatica, PNA, Tech. Rep. PNA-R0120, October 2001.

O. DEVOLDER, F. GLINEUR, AND Y. NESTEROV: Solving infinite-dimensional op-
timization problems by polynomial approximation, Universite catholique de Louvain,
Center for Operations Research and Econometrics, Belgium, discussion paper 2010/29,
June 2010.

J. B. LASSERRE: Global optimization with polynomials and the problem of moments,
SIAM Jour. Opt.,11(3),2001, 796-817.

B. P. FLANNERY, S. TEUKOLSKY, W. H. PrRESS, AND W. T. VETTERLING: Numerical
Recipes in C: The Art of Scientific Computing, Cambridge University Press, 1992.

F. Guo, L. WANG, AND G. ZHOU: Minimizing rational functions by exact jacobian sdp
relazation applicable to finite singularities, Tech. Rep. arXiv:1205.6442v1 [math.OC],
May 2012.

P. A. PARRILO AND B. STURMFEL: Minimizing polynomial functions. In DIMACS
Workshop on Algorithmic and Quantitative Aspects of Real Algebraic Geometry in
Mathematics and Computer Science, Basu and L. Gonzalez-Vega, Eds., 60. American
Mathemtical Society, March 2003, pp. 83—100.

S. BoyD AND L. VANDENBERGHE: Semidefinite programming relaxations of mon-
convex problems in control and combinatorial optimization In: Communications, Com-
putation, Control and Signal Processing: A Tribute to Thomas Kailath, A. Paulraj,
V. Roychowdhuri, and C. Schaper, Eds., Kluwer, 1997, ch. 15, pp. 279-288.

R. T. MARLER AND S. J. ARORA: The weighted sum method for multiobjective op-
timization: New insights, Structural and Multidisciplinary Optimization, 41(6),2009,
853-862.

A. M. JUBRIL: A nonlinear weight selection in weighted sum for convex multiobjective
optimization, FACTA UNIV.(NIS) Series Maths. and Inform. 27(3),2013,357-372.



582 AM. Jubril and P. O. Ogunbona

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

L. VANDENBERGHE AND S. BOyD: Semidefinite programming, STAM Review, 38,1996,
49-95.

I. A. FARHAT AND M. E. EL-HAWARY: Interior point methods application in optimum
operational scheduling of electric power systems, IET Gen., Trans. and Distr., 3()11,
2009,1020-1029.

F. ALIZADEH: Interior point methods in semidefinite programming with application to
combinatorial optimization,SIAM Jour. Opt. 5, 1995, 13-51.

A. S. NEMIROVSKI AND M. J. ToDD: Interior-point methods for optimization Acta
Numerica, 2008, 191-234.

D. JIBETEAN AND E. DE KLERK: Global optimization of rational functions: a semidef-
inite programming approach, Math. Program. Ser. A(106), 2006, 93-109.

F. BUGARIN, D. HENRION, AND J.-B. LASSERRE: Minimizing the sum of many ratio-
nal functions, arXiv.1102.4954v1 [math.OC], Tech. Rep., February 2011.

D. HENRION AND J.-B. LASSERRE: Convergent relazations of polynomial matriz in-
equalities and static output feedback, 51(2), 2006, 192—202.

M. LAURENT: Sums of Squares, Moment Matrices and Polynomial Optimization ser.
Emerg. Appl. Alge. Geom. IMA, 2009. 149, ch. 3, pp. 157-270.

——, “Semidefinite programming in combina- torial and polynomial optimization,”
NAW, vol. 5, no. 4, pp. 256-262, December 2008.

D. HENRION, J.-B. LASSERRE, AND J. LOFBERG: GloptiPoly 3: Moments, Optimiza-
tion and Semidefinite Programming, 3rd ed., May 2007.

J. F. STURM AND THE ADVANCED OPTIMIZATION LABORATORY AT MCMASTER UNI-
VERSITY CANADA, SeDuMi version 1.1R3, Advanced Optimization Laboratory at Mc-
Master University, Canada, October 2006.

M. A. ABIDO: Multiobjective evolutionary algorithms for electric power dispatch prob-
lem IEEE Trans. Evol. Comput. 10(3),2006, 315-329.

A. FARAG, S. AL-BarvaT, AND T. C. CHENG. Economic load dispatch multiobjective

optimization procedures using linear progamming techniques. IEEE Trans. Power Syst.,
10(2),May 1995,731-738.

R. T.F. A. King, H. C. S. RucgHOOPUTH, AND K. DEB: Evolutionary multi-objective
environmental/ economic dispatch: Stochastic vs deterministic approaches. KanGAL,
Tech. Rep. 2004019, 2004.

Abimbola M. Jubril

Department of Electronic and Electrical Engineering
Obafemi Awolowo University

Ile-Ife, Nigeria

ajubril@oauife.edu.ng

Philip O. Ogunbona
School of Computer Science and Software Engineering
University of Wollongong, Australia

philipoQuow.edu.au



