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Abstract. The aim of this paper is to define and discuss the properties of αβ-boundedness,
αβ-topological divisor of zero and αβ-topologically nilpotent elements.
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1. Introduction

Given a topological space (G, τ), Njastad [16] was the first one to talk about α-
open sets and proved that they form a topology finer than τ . Ibrahim [6] introduced
a strong form of α-open sets called αβ-open sets, where β is an operation on the
family of all α-open sets of G. Later Khalaf and Ibrahim [10, 11, 12, 13, 14] contin-
ued studying the properties of such open sets and also introduced α(β,β)-topological
abelian groups, α(β,β)-topological rings and α(β,γ)-topological modules. In recent
years, topological algebra was applied in both harmonic analysis and complex frac-
tional calculus [7, 8, 4]. One of the central definitions of the present paper is that
one of αβ-bounded set for an α(β,β)-topological ring and for an α(β,γ)-topological
module. Several properties are proven, like hereditariness, stability by topological
closure, stability by taking unions and sums. Hereditariness and stability by unions
lead me to think to the definition of boundedness proposed by S. T. Hu, [5]. We
recall some of the well known definitions and results which can be found in most of
text books of abstract algebra we refer to [1], [2], [3], [9], [15] and [17].

2. Preliminaries

Let A be a subset of a topological space (G, τ). We denote the interior and the
closure of a set A by Int(A) and Cl(A), respectively. A subset A of a topological
space (G, τ) is called α-open [16] if A ⊆ Int(Cl(Int(A))). By αO(G, τ), we denote
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the family of all α-open sets of G. An operation β : αO(G, τ) → P (G) [6] is a
mapping from αO(G, τ) in to power set P (G) of G satisfying the condition, V ⊆ V β

for each V ∈ αO(G, τ), where V β denotes the value of β at V . We call the mapping
β an operation on αO(G, τ). A subset A of G is called an αβ-open set [6] if for each
point x ∈ A, there exists an α-open set U of G containing x such that Uβ ⊆ A.
The complement of an αβ-open set is said to be αβ-closed. We denote the set of all
αβ-open sets of (G, τ) by αO(G, τ)β . The αβ-closure [6] of a subset A of G with an
operation β on αO(G) is denoted by αβCl(A) and is defined to be the intersection of
all αβ-closed sets containing A. An operation β on αO(G, τ) is said to be α-regular
if for every α-open sets U and V of each x ∈ G, there exists an α-open set W of x
such that W β ⊆ Uβ ∩ V β .

Definition 2.1. [10] Let (G, τ) be a topological space and x ∈ G, then a subset
N of G is said to be αβ-neighbourhood of x, if there exists an αβ-open set U in G
such that x ∈ U ⊆ N .

Definition 2.2. [6] A topological space (G, τ) with an operation β on αO(G) is
said to be αβT2 if for any two distinct points x, y ∈ G, there exist two αβ-open sets
U and V containing x and y, respectively, such that U ∩ V = φ.

Definition 2.3. [11] A function f : (G, τ) → (G
′

, τ
′

) is said to be α(β,β′)-open if

for any αβ-open set A of (G, τ), f(A) is αβ
′ -open in (G

′

, τ
′

).

Definition 2.4. [6] A mapping f : (G, τ) → (G
′

, τ
′

) is said to be α(β,β′)-continuous

if for each x of G and each αβ
′ -open set V containing f(x), there exists an αβ-open

set U such that x ∈ U and f(U) ⊆ V .

Corollary 2.1. [12] A function f : G → G
′

is α(β,β′)-continuous if and only if

f−1(V ) is αβ-open in G, for every αβ
′ -open set V in G

′

.

Definition 2.5. [13] Let (G,+) be abelian group and τ be a topology on G. A
triple (G,+, τ) is said to be an α(β,β)-topological group if the following conditions
are satisfied:

1. For any two elements a, b ∈ G and U ∈ αO(G, τ)β such that a+ b ∈ U , there
exist V,W ∈ αO(G, τ)β with a ∈ V , b ∈ W and V +W ⊆ U .

2. For any element a ∈ G and U ∈ αO(G, τ)β such that −a ∈ U , there exists
V ∈ αO(G, τ)β with a ∈ V and −V ⊆ U .

Definition 2.6. [14] Let (R,+, ·) be a ring and (R, τ) be a topological space.
Then, (R,+, ·, τ) is called an α(β,β)-topological ring if the following conditions are
satisfied:

1. (R,+, τ) is α(β,β)-topological group.
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2. For each elements a, b ∈ R and U ∈ αO(R, τ)β such that a · b ∈ U , there exist
V,W ∈ αO(R, τ)β with a ∈ V , b ∈ W and V ·W ⊆ U .

Definition 2.7. [14] Let (R,+, ·, τ) be an α(β,β)-topological ring. A left R-module
M is called an α(β,γ)-topological left R-module if on M is specified a topology such
thatM is an α(γ,γ)-topological abelian group and the following condition is satisfied:

For any r ∈ R and m ∈ M and arbitrary αγ-open set U containing the element
r · m in M , there exist an αβ-open set V containing the element r in R and an
αγ-open set W the element m in M such that V ·W ⊆ U .

Proposition 2.1. [13] Let a family B0 of subsets of an α(β,β)-topological abelian
group G be a basis of αβ-neighborhoods of zero in G and β be an α-regular operation
on αO(G). Then, the following conditions are satisfied:

1. 0 ∈
⋂

V ∈B0
V .

2. For any subsets U and V from B0, there exists a subset W ∈ B0 such that
W ⊆ U ∩ V .

3. For any subset U ∈ B0, there exists a subset V ∈ B0 such that V + V ⊆ U .

4. For any subset U ∈ B0, there exists a subset V ∈ B0 such that −V ⊆ U .

Besides, if a ∈ G, then Ba = {a+ V |V ∈ B0} is a basis of αβ-neighborhoods of the
element a.

Proposition 2.2. [14] Let R be an α(β,β)-topological ring, B0 be a basis of αγ-
neighborhoods of zero of an α(β,γ)-topological R-module M and γ be an α-regular
operation on αO(M). Then conditions (1) to (4) of Proposition 2.1, are satisfied
together with the following conditions:

1. For any subset U ∈ B0, there exists a subset V ∈ B0 and an αβ-neighborhood
W of zero in R such that W · V ⊆ U .

2. For any subset U ∈ B0 and any element r ∈ R, there exists a subset V ∈ B0

such that r · V ⊆ U .

3. For any subset U ∈ B0 and any element a ∈ M , there exists an αβ-neighborhood
W of zero in R such that W · a ⊆ U .

Corollary 2.2. [13] Let U and V be αβ-neighborhoods of zero of α(β,β)-topological
abelian group G such that V + V ⊆ U , then αβCl(V ) ⊆ U .

Proposition 2.3. [13] Let G be α(β,β)-topological abelian group, G
′

be α(β′
,β

′)-

topological abelian group and f : G → G
′

be a homomorphic mapping of G to G
′

.
Then:
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1. f is an α(β,β′)-continuous if and only if f−1(U
′

) is an αβ-neighborhood of

zero in G for any αβ
′ -neighborhood U

′

of zero in G
′

.

2. f is an α(β,β′)-open if and only if f(U) is an αβ
′ -neighborhood of zero in G

′

for any αβ-neighborhood U of zero in G.

Corollary 2.3. [14] Let R be an α(β,β)-topological ring, a ∈ R and β an α-regular
operation on αO(R). Let also B0(R) be a basis of αβ-neighborhoods of zero in
R. Then, the element a has a basis of αβ-neighborhoods consisting of αβ-closed
neighborhoods.

Proposition 2.4. [14] Let R be an α(β,β)-topological ring, M an α(β,γ)-topological
R-module, Q a subset in R and B a subset in M . Then αγCl(Q · B) ⊇ αβCl(Q) ·
αγCl(B).

3. αβ-Bounded Sets

Definition 3.1. Let R be an α(β,β)-topological ring, M be an α(β,γ)-topological
R-module. A subset S ⊆ M is called αβ-bounded if for any αγ-neighborhood U of
zero in M , there exists an αβ-neighborhood V of zero in R such that V ·S ⊆ U . An
α(β,γ)-topological R-module M is called αβ-bounded if M is an αβ-bounded subset
of the module M .

Definition 3.2. A subset S of the α(β,β)-topological ring R is called αβ-bounded
from left (right) if S is an αβ-bounded subset of the α(β,β)-topological left (right)
R-module R(+), that is, for any αβ-neighborhood U of zero in R, there exists an
αβ-neighborhood V of zero in R such that V · S ⊆ U (respectively, S · V ⊆ U).
A subset S of the α(β,β)-topological ring R, αβ-bounded from left and from right,
is called αβ-bounded. An α(β,β)-topological ring R is called αβ-bounded from left
(αβ-bounded from right, αβ-bounded) if R is an αβ-bounded from left (respectively,
αβ-bounded from right, αβ-bounded) subset of the ring R.

Corollary 3.1. Any finite subset Q of an α(β,β)-topological ring R is αβ-bounded.

Proof. Considering R as left and right α(β,β)-topological R-modules, we get that Q
is αβ-bounded from left and from right in R.

Proposition 3.1. Let S be a subring of an α(β,β)-topological ring R and A be
an αβ-bounded subset of an α(β,γ)-topological R-module M . Let N be some S-
submodule in M containing A, then A is an αβ-bounded subset of S-module N .

Proof. Let U be an αγ-neighborhood of zero in N . Then U = V ∩N for a certain
αγ-neighborhood V of zero in M . Since A is an αβ-bounded subset in M , then
there exists an αβ-neighborhood W of zero in R such that W ·A ⊆ V . Then W ∩S
is an αβ-neighborhood of zero in S and (W ∩S) ·A ⊆ W ·A∩S ·A ⊆ V ∩N = U .
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Corollary 3.2. Let A be an αβ-bounded from left (αβ-bounded from right, αβ-
bounded) subset of an α(β,β)-topological ring R and Q be a subring of R, which con-
tains A. Then A is an αβ-bounded from left (αβ-bounded from right, αβ-bounded)
subset of the ring Q.

Proof. The statement follows from Proposition 3.1, if we consider R as a left
or right α(β,β)-topological R-module and Q as a left or right its topological Q-
submodule.

Remark 3.1. Let R be an α(β,β)-topological ring, S be an αβ-bounded subset of the
α(β,γ)-topological R-module M . If S1 ⊆ S, then S1 is an αβ-bounded subset of the
α(β,γ)-topological R-module M .

Remark 3.2. Let S be an αβ-bounded from left (αβ-bounded from right, αβ-bounded)
subset of an α(β,β)-topological ring R and S1 ⊆ S. Then S1 is an αβ-bounded from
left (αβ-bounded from right, αβ-bounded) subset of the α(β,β)-topological ring R.

Proposition 3.2. Let M be an α(β,γ)-topological module over an α(β,β)-topological
ring R, B be αβ-bounded subsets of M and γ be an α-regular operation on αO(M).
Then αγCl(B) is αβ-bounded.

Proof. Let U be an αγ-neighborhood of zero in M , then by Proposition 2.2, there
is an αγ-neighborhood V of zero in M such that V + V ⊆ U , and so by Corollary
2.2, we have αγCl(V ) ⊆ U and αγCl(V ) be an αγ-closed αγ-neighborhood of zero
in M . Since B is an αβ-bounded subset of R-module M , then there exists an
αβ-neighborhood W of zero in R such that W · B ⊆ V . Then,

W · αγCl(B) ⊆ αβCl(W ) · αγCl(B) ⊆ αγCl(W ·B) ⊆ αγCl(V ) ⊆ U ,

that is, αγCl(B) is αβ-bounded.

Corollary 3.3. The αβ-closure of an αβ-bounded from left (αβ-bounded from right,
αβ-bounded) subset of an α(β,β)-topological ring is a subset αβ-bounded from left
(αβ-bounded from right, αβ-bounded), where β is α-regular operation on αO(R).

Proof. The proof results from Proposition 3.2.

Proposition 3.3. Let Q be an αβ-bounded from left subset of an α(β,β)-topological
ring R and S be an αβ-bounded subset of an α(β,γ)-topological R-module M , then
Q · S is an αβ-bounded subset of the R-module M .

Proof. Let U be an αγ-neighborhood of zero in M and V be an αβ-neighborhood
of zero in R such that V · S ⊆ U . We can choose an αβ-neighborhood W of zero in
R such that W ·Q ⊆ V . Then,

W · (Q · S) = (W ·Q) · S ⊆ V · S ⊆ U ,
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that is, Q · S is an αβ-bounded subset of the α(β,γ)-topological R-module M .

Proposition 3.4. Let M be an α(β,γ)-topological module over an α(β,β)-topological
ring R, B1 and B2 be αβ-bounded subsets of M , β be an α-regular operation on
αO(R) and γ be an α-regular operation on αO(M). Then

1. B1 +B2 is αβ-bounded.

2. B1 ∪B2 is αβ-bounded.

Proof. Let W be an αγ-neighborhood of zero such that W +W ⊆ U , where U is
αγ-neighborhood of zero in M . Let V1 and V2 be αβ-neighborhoods of zero in R
such that V1 · B1 ⊆ W and V2 ·B2 ⊆ W . Then

1. (V1 ∩ V2) · (B1 ∪B2) ⊆ V1 ·B1 ∪ V2 ·B2 ⊆ W ⊆ U .

2. (V1 ∩ V2) · (B1 +B2) ⊆ V1 ·B1 + V2 · B2 ⊆ W +W ⊆ U .

Consequently, the union or the sum of finitely many αβ-bounded subsets of an
α(β,γ)-topological module is αβ-bounded.

Remark 3.3. If B and C are left (right) αβ-bounded subsets of an α(β,β)-topological
ring R and β be an α-regular operation on αO(R), then B ∪ C and B + C are left
(right) αβ-bounded.

Corollary 3.4. Let each of the subsets Qi for i = 1, 2, ..., n of an α(β,β)-topological
ring R be αβ-bounded from left (αβ-bounded from right, αβ-bounded), then the subset
Q1 ·Q2 · ... ·Qn is αβ-bounded from left (αβ-bounded from right, αβ-bounded).

Proof. The proof is clear.

Proposition 3.5. Let R be an α(β,β)-topological ring, M be α(β,γ)-topological R-

module and M
′

be α(β,γ′)-topological R-module. Let f be an α(γ,γ′)-continuous

homomorphism from the module M to the module M
′

and a subset N is αβ-bounded

in M . Then the subset f(N) is αβ-bounded in M
′

.

Proof. Let U
′

be an αγ
′ -neighborhood of zero in the R-module M

′

. Due to Propo-

sition 2.3, f−1(U
′

) is an αγ-neighborhood of zero in the R-module M . Since N is
an αβ-bounded subset, then there exists an αβ-neighborhood V of zero in the ring

R such that V ·N ⊆ f−1(U
′

). Then,

V · f(N) = f(V ·N) ⊆ f(f−1(U
′

)) ⊆ U
′

,

that is, f(N) is an αβ-bounded subset in M
′

.
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Proposition 3.6. Let R be an α(β,β)-topological ring and R
′

be an α(β′
,β

′)-topological

ring, f : R → R
′

be α(β,β′)-continuous and α(β,β′)-open homomorphism from the

ring R to the ring R
′

. Let a subset S be αβ-bounded from left (αβ-bounded from
right, αβ-bounded) in the ring R, then the subset f(S) is αβ-bounded from left

(αβ-bounded from right, αβ-bounded) in the ring R
′

.

Proof. Let U
′

be an αβ
′ -neighborhood of zero in the ring R

′

. Then, due to Propo-

sition 2.3, f−1(U
′

) is an αβ-neighborhood of zero in the ring R. Since the subset
S of the ring R is αβ-bounded from left, then there exists an αβ-neighborhood

V of zero in R such that V · S ⊆ f−1(U
′

). Due to Proposition 2.3, f(V ) is an
αβ

′ -neighborhood of zero in the ring R
′

. Then,

f(V ) · f(S) = f(V · S) ⊆ f(f−1(U
′

)) ⊆ U
′

,

that is, the subset f(S) is αβ-bounded from left in R
′

.

When the subset S of the ring R is αβ-bounded from right or αβ-bounded, the
proof is analogous.

Definition 3.3. An element a of an α(β,β)-topological ring R is called a left (right)
αβ-topological divisor of zero if there exists a subset S ⊆ R such that:

1. 0 /∈ αβCl(S).

2. 0 ∈ αβCl(a · S) (respectively, 0 ∈ αβCl(S · a)).

An element a is called an αβ-topological divisor of zero if it is a left and right αβ-
topological divisor of zero, that is, there exist subsets S1 ⊆ R and S2 ⊆ R such that
0 /∈ αβCl(S1) and 0 /∈ αβCl(S2), but as well 0 ∈ αβCl(a ·S1) and 0 ∈ αβCl(S2 · a).

Remark 3.4. In an αβT2 α(β,β)-topological ring R any left (right) divisor of zero
is a left (right) αβ-topological divisor of zero.

Indeed, if a is a left divisor of zero in R and 0 6= b is such that a · b = 0,
then, the subset {b} is αβ-closed in R and 0 /∈ {b} = αβCl({b}). It is evident that
0 ∈ αβCl(a · {b}) = {0}, that is, a is a left αβ-topological divisor of zero in R.

The following example shows that the condition that R is αβT2 is necessary for the
above remark.

Example 3.1. Consider the ring Z4. Let τ be the discrete topology on Z4. For each
A ∈ αO(Z4, τ ), we define β on αO(Z4, τ ) by Aβ = Z4. Since Z4 is not αβT2, so the
element 2 is divisor of zero in Z4, but it is not αβ-topological divisor of zero because
0 ∈ αβCl(S) = Z4 for any subset S of Z4.

Proposition 3.7. Let a be a left (right) αβ-topological divisor of zero in an α(β,β)-
topological ring R. Then for any b ∈ R the element b·a is a left αβ-topological divisor
of zero in R (respectively, the element a · b is a right αβ-topological divisor of zero
in R).
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Proof. Let S ⊆ R, 0 /∈ αβCl(S) and 0 ∈ αβCl(a · S). Then 0 ∈ b · αβCl(a · S) ⊆
αβCl(b ·a ·S), that is, b ·a is a left αβ-topological divisor of zero in R. Analogously
is considered the case when a is a right αβ-topological divisor of zero in R.

Proposition 3.8. Let R be an α(β,β)-topological ring and a, b ∈ R. If a · b is a
left (right) αβ-topological divisor of zero in R, then either a or b is a left (right)
αβ-topological divisor of zero.

Proof. Let a · b be a left αβ-topological divisor of zero in R and S ⊆ R be such
that 0 /∈ αβCl(S), and 0 ∈ αβCl((a · b) · S). If 0 ∈ αβCl(b · S), then b is a left
αβ-topological divisor of zero. If 0 /∈ αβCl(b · S), then, taking into account that
0 ∈ αβCl((a ·b)·S) = αβCl(a ·(b ·S)), we get that a is a left αβ-topological divisor of
zero. Analogously is considered the case when a · b is a right αβ-topological divisor
of zero in R.

4. αβ-Topologically Nilpotent Elements

Definition 4.1. A subset S of an α(β,β)-topological ringR is called αβ-topologically
nilpotent if for any αβ-neighborhood U of zero in R there exists a natural number
n0 such that S(n) ⊆ U for all n ≥ n0. An element a ∈ R is called αβ-topologically
nilpotent if the one-element set {a} of the ring R is αβ-topologically nilpotent, that
is, if for any αβ-neighborhood U of zero in R there exists a natural number n0 such
that an ∈ U for all n ≥ n0.

Remark 4.1. Since for any subsets S1 and S of a ring R from the inclusion S1 ⊆ S

follows that S
(n)
1 ⊆ S(n) for any n ∈ N, then any subset of an αβ-topologically nilpo-

tent subset of an α(β,β)-topological ring is an αβ-topologically nilpotent subset, too.
In particular, any element of an αβ-topologically nilpotent subset is αβ-topologically
nilpotent.

Proposition 4.1. Let K be a skew field endowed with αβT2 ring α(β,β)-topology, β
be an α-regular operation on αO(K) and a be a non-zero αβ-topologically nilpotent
element in K. Then the element a−1 is not αβ-topologically nilpotent.

Proof. Assume the contrary, that is, that a−1 is an αβ-topologically nilpotent el-
ement. Since the skew field K is αβT2, there exists an αβ-neighborhood U of
zero in K such that 1 /∈ U . We can choose an αβ-neighborhood V of zero in K
such that V · V ⊆ U . It is clear that 1 /∈ V . Since the elements a and a−1 are
αβ-topologically nilpotent, then there exist natural numbers n1 and n2 such that
an ∈ V for n ≥ n1 and a−n ∈ V for n ≥ n2. Putting n0 = max{n1, n2}, we get that
1 = an0 · a−n0 ∈ V · V ⊆ U , which contradicts the choice of the αβ-neighborhood
U .

Proposition 4.2. Let R be an α(β,β)-topological ring with the unitary element
and a be an invertible element in R. Then, the element x ∈ R is αβ-topologically
nilpotent if and only if the element a · x · a−1 is αβ-topologically nilpotent.
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Proof. Let x be an αβ-topologically nilpotent element and U be an αβ-neighborhood
of zero in R. We can choose an αβ-neighborhood V of zero in R such that a · V ·
a−1 ⊆ U . Let n0 be a natural number such that xn ∈ V for n ≥ n0. Then
(a · x · a−1)n = a · xn · a−1 ∈ a · V · a−1 ⊆ U for n ≥ n0, that is, a · x · a−1 is an
αβ-topologically nilpotent element.

Conversely, let a · x · a−1 be an αβ-topologically nilpotent element. Then, as it
was shown above, the element x = a−1 · (a · x · a−1) · a = a−1 · (a · x · a−1) · (a−1)−1

is αβ-topologically nilpotent.

Proposition 4.3. Let S be an αβ-topologically nilpotent subset of an α(β,β)-topolo-
gical ring R and β an α-regular operation on αO(R). Then, the subset αβCl(S) is
αβ-topologically nilpotent.

Proof. Let S be an αβ-topologically nilpotent subset and U be an αβ-neighborhood
of zero in R. Due to Corollary 2.3, there exists an αβ-closed αβ-neighborhood V of
zero in R such that V ⊆ U . Let n0 be a natural number such that S(n) ⊆ V for all
n ≥ n0. Then

(αβCl(S))(n) ⊆ αβCl(S(n)) ⊆ αβCl(V ) = V ⊆ U (see Proposition 2.4),

hence, αβCl(S) is an αβ-topologically nilpotent subset.

Proposition 4.4. Let f be an α(β,β)-continuous homomorphism of an α(β,β)-

topological ring R onto an α(β′
,β

′)-topological ring R
′

and let S be an αβ-topologically

nilpotent subset of R. Then f(S) is an αβ
′ -topologically nilpotent subset of the ring

R
′

.

Proof. Let U
′

be an αβ
′ -neighborhood of zero in R

′

, then f−1(U
′

) is an αβ-

neighborhood of zero in R. There exists a natural number n0 such that S(n) ⊆
f−1(U

′

) for all n ≥ n0. Then (f(S))(n) = f(S(n)) ⊆ f(f−1(U
′

)) = U
′

for all
n ≥ n0, that is, the subset f(S) is αβ

′ -topologically nilpotent in R
′

.

Proposition 4.5. Let S be an αβ-bounded from left (right) subset of an α(β,β)-
topological ring R, then the following statements are equivalent:

1. S is αβ-topologically nilpotent subset.

2. S(k) is αβ-topologically nilpotent subset for any natural number k.

3. There exists a natural number k0 such that S(k0) is an αβ-topologically nilpo-
tent subset.

Proof. It is evident that (1) ⇒ (2) ⇒ (3).

Let us show that (3) ⇒ (1). Let S(k0) be an αβ-topologically nilpotent subset
in R and U be an αβ-neighborhood of zero in R. Due to Corollary 3.4, the subsets
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S(2), S(3), ..., S(k0−1) are αβ-bounded from left. Therefore, we can choose an αβ-
neighborhood V of zero in R such that V ·S(i) ⊆ U for i = 1, 2, ..., k0− 1. Since the
subset S(k0) is αβ-topologically nilpotent, there exists a natural number n0 such
that (S(k0))(n) ⊆ V for all n ≥ n0. Let m ≥ n0 · k0. Then m = k0 · q + r, where
q ≥ n0 and 0 ≤ r < k0. Thus,

S(m) = S(k0·q+r) = (S(k0))(q) · S(r) ⊆ V · S(r) ⊆ U ,

that is, S is an αβ-topologically nilpotent subset.

Corollary 4.1. Let a be an element of an α(β,β)-topological ring R. Then the
following conditions are equivalent:

1. a is an αβ-topologically nilpotent element.

2. ak is an αβ-topologically nilpotent element for any natural number k.

3. ak0 is an αβ-topologically nilpotent element for a certain natural number k0.

Proof. The statement results from Proposition 4.5 and from the αβ-boundedness of
the one-element subset {a} (see Corollary 3.1).

Proposition 4.6. Let T be the subset of all αβ-topologically nilpotent elements of
an α(β,β)-topological ring R and β an α-regular operation on αO(R). Then, the
following statements are equivalent:

1. T is an αβ-open subset.

2. There exists an αβ-open αβ-neighborhood U of zero in R consisting of αβ-
topologically nilpotent elements.

Proof. It is evident that (1) ⇒ (2).

Let us show that (2) ⇒ (1). Let t ∈ T and n0 be a natural number such that
tn0 ∈ U , where U is αβ-open αβ-neighborhood of zero in R. We can choose an
αβ-neighborhood V of the element t such that

V (n0) = V · V · ... · V
︸ ︷︷ ︸

n0−times

⊆ U .

Then vn0 is an αβ-topologically nilpotent element, for any v ∈ V . Due to Corollary
4.1, any element from V is αβ-topologically nilpotent, that is, V ⊆ T , which means
that the subset T is αβ-open.
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