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BEST PROXIMITY POINT FOR GENERALIZED

(α, φ, ψ)-PROXIMAL CONTRACTIONS ON SEMI-METRIC SPACES

Abdelbasset Felhi

Abstract. In this paper, we introduce a class of generalized (α, φ, ψ)-proximal con-
traction non-self-maps in semi-metric spaces. For such maps, we provide sufficient
conditions ensuring the existence and uniqueness of best proximity points by using the
concept of α-proximal admissible mapping. As applications, we infer the best proximity
point and fixed point results for mappings in partially ordered semi-metric spaces. The
presented results generalize and improve various known results from the best proximity
and fixed point theory.
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1. Introduction and preliminaries

Semi-metric spaces were considered by several authors as Fréchet, Menger [22],
Chittenden [10] and Wilson [29] as a generalization of metric spaces. Since then,
some fixed point results for this class of spaces have been investigated in [11]-[26].
On the other hand, the existence and approximation of best proximity points is an
interesting topic in the optimization theory [13, 27]

Definition 1.1. Let X be a nonempty set. A function d : X ×X → [0,∞) is said
to be a symmetric on X if for any x, y ∈ X, the following conditions hold:

(W1) d(x, y) = 0 if and only if x = y;

(W2) d(x, y) = d(y, x).

The pair (X, d) is then called a symmetric space.

Note that many topological notions in symmetric spaces can be defined similar
to those in metric spaces. Recall that in each symmetric space (X, d) one can
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introduce a topology τd by defining the family of open sets as follows: a nonempty
set A ⊆ X is open (i.e. A ∈ τd) if and only if for each x ∈ A, there is ε > 0 such
that Bd(x, ε) ⊆ A, where Bd(x, ε) = {y ∈ X : d(x, y) < ε}.

Definition 1.2. [14] A symmetric d on X is said to be a semi-metric if for each
x ∈ X and ε > 0 , the open ball Bd(x, ε) is a neighborhood of x in the topology τd.

Proposition 1.1. [3] Let (X, d) be a symmetric space. Then (X, d) is a semi-
metric space if and only if the following conditions hold:

(1) (X, τd) is first countable;

(2) For any sequence {xn} in X, d(xn, x) → 0 is equivalent to xn → x in the
topology τd.

Definition 1.3. [16, 14] Let (X, d) be a symmetric space and {xn} be a sequence
in X . We say that {xn} is d-Cauchy sequence if and only if lim

n,m→∞

d(xn, xm) = 0.

Furthermore, (X, d) is said to be d-Cauchy complete if every d-Cauchy sequence
converges to some x ∈ X in τd.

Definition 1.4. Let (X, d) be a symmetric space and {xn} be a sequence in X .
We say that (X, d) satisfies the Fatou property if for all x, y ∈ X , we have

lim
n→∞

d(xn, x) = 0 ⇒ d(x, y) ≤ lim inf
n→∞

d(xn, y).

We introduce the concept of (WC) property we will need in the sequel.

Definition 1.5. Let (X, d) be a symmetric space. We say that (X, d) satisfies
the property (WC) if for all sequences {xn}, {yn} in X and all x, y ∈ X such that
limn→∞ d(xn, x) = limn→∞ d(yn, y) = 0, one has

d(x, y) ≤ lim inf
n→∞

d(xn, yn).

Remark 1.1. 1. If (X, d) be a symmetric space satisfying the property (WC), then it is
also satisfying the Fatou property.
2. Each metric space satisfies the property (WC).

For A and B two nonempty subsets of a symmetric space (X, d), define

d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B},

A0 = {a ∈ A : d(a, b) = d(A,B), for some b ∈ B},

B0 = {b ∈ B : d(a, b) = d(A,B), for somea ∈ A}.

As in [17], we introduce in the setting of symmetric spaces the following.
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Definition 1.6. Let A and B be nonempty subsets of a symmetric space (X, d)
and α : X ×X → [0,∞). A mapping T : A→ B is named α-proximal admissible if











α(x, y) ≥ 1

d(u, Tx) = d(A,B),

d(v, T y) = d(A,B)

⇒ α(u, v) ≥ 1.

for all x, y, u, v ∈ A.

Clearly, if d(A,B) = 0, T is α-proximal admissible implies that T is α-admissible
[28].

We introduce the following notion.

Definition 1.7. Let A and B be nonempty subsets of a symmetric space (X, d)
and α : X ×X → [0,∞). A mapping T : A → B is named triangular α-proximal
admissible if

(T1) T is α-proximal admissible,

(T2) α(x, y) ≥ 1 and α(y, z) ≥ 1 ⇒ α(x, z) ≥ 1, x, y, z ∈ A.

Definition 1.8. LetA andB be nonempty subsets of a symmetric space (X, d), α :
X × X → [0,∞) and T : A → B be non-self-map. We say that A0 is α-
proximal T -orbitally d-Cauchy complete if every d-Cauchy sequence {xn} in A0

with α(xn, xn+1) ≥ 1 and d(xn+1, T xn) = d(A,B) for all n ≥ 0, converges to some
element in A0 in the topology τd.

On the other hand, the definition of the best proximity point is as follows.

Definition 1.9. Let (X, d) be a symmetric space. ConsiderA andB two nonempty
subsets of X. An element a ∈ X is said to be a best proximity point of T : A→ B

if
d(a, Ta) = d(A,B).

It is clear that a fixed point coincides with a best proximity point if d(A,B) = 0.
For some results on above concept, see for example [18]-[30].

Denote by Ψ the set of functions ψ : [0,∞) → [0,∞) satisfying
(ψ1) ψ is nondecreasing;
(ψ2) lim

n→∞

ψn(t) = 0 for each t > 0, where ψn is the n−th iterate of ψ.

Also, denote by Φ the set of functions φ : [0,∞) → [0,∞) satisfying
(φ1) φ is nondecreasing;
(φ2) φ

−1({0}) = {0} and lim
x→0+

φ(x) = 0.

Lemma 1.1. If ψ ∈ Ψ, then ψ(t) < t for all t > 0, ψ is continuous at 0 and
ψ(0) = 0.
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Lemma 1.2. Let φ ∈ Φ and {an} ⊆ [0,∞). Then

lim
n→∞

φ(an) = 0 if and only if lim
n→∞

an = 0.

Proof. Let {an} ⊆ [0,∞). Suppose that limn→∞ an = 0. From (φ2), we get lim
n→∞

φ(an) =

0. Now, suppose that lim
n→∞

φ(an) = 0 and limn→∞ an 6= 0. It follows that there exist

a constant c > 0 ad a subsequence {an(k)} of {an} such that an(k) ≥ c for all k ≥ 0.
Since φ is nondecreasing, then φ(an(k)) ≥ φ(c) > 0 for all k ≥ 0. Thus, by letting
k → ∞, we get 0 ≥ φ(c), which is a contradiction. Hence limn→∞ an = 0.

Lemma 1.3. Let (X, d) be a symmetric space and φ ∈ Φ. Consider the function
φod : X ×X → [0,∞) defined as follows:

φod(x, y) = φ(d(x, y)) for all x, y ∈ X.

Then (X,φod) is also a symmetric space.

Proof. (W1) From (φ2), we have φod(x, y) = 0 if and only if d(x, y) = 0 if and only
if x = y.

(W2) Since d(x, y) = d(y, x), then φod(x, y) = φod(y, x).

Definition 1.10. Let A andB two nonempty subsets of a symmetric space (X, d), φ ∈
Φ, ψ ∈ Ψ and α : X ×X → [0,∞). Consider a non-self map T : A → B. We say
that T is a generalized (α, φ, ψ)-proximal contraction if











α(x, y) ≥ 1

d(u, Tx) = d(A,B),

d(v, T y) = d(A,B)

⇒ φ(d(u, v)) ≤ ψ(max{φ(d(x, y)), φ(d(x, u)), φ(d(y, v)), φ(d(x, v)), φ(d(y, u))}),

(1.1)

where x, y, u, v ∈ A.

This paper is devoted to the proof of the existence and uniqueness of best prox-
imity points for generalized (α, φ, ψ)-proximal contraction non-self-maps in semi-
metric spaces by using the concept of α-proximal admissible mapping. Some nice
consequences are provided.

2. Main results

The first main result is
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Theorem 2.1. Let A and B be nonempty subsets of a semi-metric space (X, d)
such that A0 6= Ø. Let T : A → B be a given non-self-map. Suppose that the
following conditions hold:

(i) A0 is α-proximal T -orbitally d-Cauchy complete;

(ii) T (A0) ⊆ B0;

(iii) d is bounded, that is, supx,y∈X d(x, y) <∞;

(iv) T is a generalized (α, φ, ψ)-proximal contraction;

(v) T is triangular α-proximal admissible;

(vi) There exist elements x0 and x1 in A0 such that

d(x1, T x0) = d(A,B) and α(x0, x1) ≥ 1;

(vii) If {xn} is a sequence in A0 such that α(xn, xn+1) ≥ 1, d(xn+1, T xn) = d(A,B)
for all n ≥ 0 and limn→∞ d(xn, x) = 0, then α(xn, x) ≥ 1 for all n ≥ 0;

(viii) (A0, φod) satisfies the Fatou property.

Then, T has a best proximity point, that is, there exists z ∈ A such that d(z, T z) =
d(A,B).

Proof. By assumption (vi), there exist x0 and x1 ∈ A0 such that

(2.1) d(x1, T x0) = d(A,B) and α(x0, x1) ≥ 1.

From condition (ii), we have T (A0) ⊆ B0, so there exists x2 ∈ A0 such that

(2.2) d(x2, T x1) = d(A,B).

By (2.1), (2.2) and the fact that T is α-proximal admissible, we have

α(x1, x2) ≥ 1.

Repeating the above strategy, by induction, we arrive to construct a sequence {xn}
in A0 such that

(2.3) d(xn+1, T xn) = d(A,B) and α(xn, xn+1) ≥ 1 for all n ≥ 0.

Since T is triangular α-proximal admissible, then

α(xn, xn+1) ≥ 1 and α(xn+1, xn+2) ≥ 1 ⇒ α(xn, xn+2) ≥ 1.

Thus by induction, we get

(2.4) α(xn, xm) ≥ 1 for all m > n ≥ 0.
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For all n = 0, 1, · · · , we denote

δn = sup
j,k∈N

φ(d(xn+j , xn+k)).

Note that by condition (ii) and the fact that φ is nondecreasing function, we have
δn <∞, for all n = 0, 1, · · ·

On the other hand, from (2.3), we have

d(xn+j , T xn+j−1) = d(A,B), d(xn+k, T xn+k−1) = d(A,B) for all n, j, k ∈ N.

It follows from (2.4) and (1.1)

φ(d(xn+j , xn+k)) ≤ ψ(max{φ(d(xn+j−1 , xn+k−1)), φ(d(xn+j , xn+j−1)),

φ(d(xn+k , xn+k−1)), φ(d(xn+j−1 , xn+k)), φ(d(xn+j , xn+k−1))})

for all j < k. Since ψ is nondecreasing function, then

φ(d(xn+j , xn+k)) ≤ ψ(δn−1), for all j < k.

By symmetry of d, we get

φ(d(xn+j , xn+k)) ≤ ψ(δn−1) for all j > k.

Also, for j = k, we have φ(d(xn+j , xn+k)) = φ(0) = 0 ≤ ψ(δn−1). Thus

φ(d(xn+j , xn+k)) ≤ ψ(δn−1) for all j, k ∈ N.

So, we have
δn ≤ ψ(δn−1) for alln ∈ N.

By induction, we get

(2.5) δn ≤ ψn(δ0) for alln ∈ N.

We have

φ(d(xn, xn+m)) ≤ δn−1 ≤ ψn−1(δ0) for alln,m ≥ 1.(2.6)

This implies that
lim
n→∞

φ(d(xn, xn+m)) = 0.

It follows from Lemma 1.2 that

lim
n→∞

d(xn, xn+m) = 0,

which implies that {xn} is a d-Cauchy sequence in A0. Since A0 is α-proximal
T -orbitally d-Cauchy complete, there is z ∈ A0 such that limn→∞ xn = z in the
topology τd and so limn→∞ d(xn, z) = 0.
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From (2.6), as (A0, φod) satisfies the Fatou property, by letting m→ ∞, we get

φ(d(xn, z)) ≤ ψn−1(δ0) for all n ≥ 1.(2.7)

As z ∈ A0, there is w ∈ A0 such that

d(w, Tz) = d(A,B).(2.8)

Further, from (2.3), we have

d(x2, T x1) = d(A,B).

By condition (vii), (1.1), (2.6) and (2.7), we get

φ(d(w, x2)) ≤ ψ(max{φ(d(x1, z), φ(d(z, w)), φ(d(x1 , x2)), φ(d(z, x)), φ(d(x1, w))})

≤ ψ(max{δ0, φ(d(z, w)), ψ(δ0), φ(d(x1, w))})

= max{ψ(δ0), ψ
2(δ0), ψ(φ(d(z, w))), ψ(φ(d(x1 , w)))}.

(2.9)

Again, from (2.3), we have

d(x3, T x2) = d(A,B).

Then, by (vii), (1.1), (2.6), (2.7) and (2.9), we get

φ(d(w, x3)) ≤ ψ(max{φ(d(x2, z)), φ(d(z, w)), φ(d(x2 , x3)), φ(d(z, x3)), φ(d(x2 , w))})

≤ ψ(max{ψ(δ0), φ(d(z, w)), ψ
2(δ0), φ(d(x2, w))})

≤ ψ(max{ψ(δ0), ψ
2(δ0), φ(d(z, w)), ψ(d(z, w))})

= max{ψ2(δ0), ψ
3(δ0), ψ(φ(d(z, w))), ψ

2(φ(d(z, w))), ψ2(φ(d(x1, w)))}.

Continuing in this fashion, by induction, we get

φ(d(w, xn)) ≤ max{ψn−1(δ0), ψ
n(δ0), ψ(φ(d(z, w))), ψ

n−1(φ(d(z, w))), ψn(φ(d(x1, w)))}.

(2.10)

Using the Fatou property, we get from (2.10)

φ(d(w, z)) ≤ lim inf
n→∞

φ(d(w, xn))

≤ lim sup
n→∞

φ(d(w, xn))

≤ lim sup
n→∞

max{ψn−1(δ0), ψ
n(δ0), ψ(φ(d(z, w))), ψ

n−1(φ(d(z, w))), ψn(φ(d(x1, w)))}

= max{ψ(φ(d(z, w))), 0} = ψ(φ(d(z, w))).

Then
φ(d(z, w)) ≤ ψ(φ(d(z, w))),

which implies that φod(w, z) = 0 and so w = z. From (2.8), we obtain d(z, T z) =
d(A,B), that is z is a best proximity point of T .



694 A. Felhi

Theorem 2.2. Let A and B be nonempty subsets of a semi-metric space (X, d)
such that A0 6= Ø. Let T : A → B be a given non-self-map. Suppose that the
following conditions hold:

(i) A0 is α-proximal T -orbitally d-Cauchy complete;

(ii) T (A0) ⊆ B0;

(iii) d is bounded, that is, supx,y∈X d(x, y) <∞;

(iv) T is a generalized (α, φ, ψ)-proximal contraction;

(v) T is triangular α-proximal admissible;

(vi) There exist elements x0 and x1 in A0 such that

d(x1, T x0) = d(A,B) and α(x0, x1) ≥ 1;

(vii) T is τd-continuous;

(viii) (X, d) satisfies the property (Wc).

Then, T has a best proximity point.

Proof. Following the proof of Theorem 2.1, there exists a sequence {xn} in A0 such
that (2.3) and (2.4) hold. Also, {xn} is d-Cauchy in the subset A0, which is α-
proximal T -orbitally d-Cauchy complete, then there exists z ∈ A0 such that xn → z

as n→ ∞ in the topology τd. We shall prove that z is a best proximity point of T .
Since T is τd-continuous, then limn→∞ Txn = Tz in τd and so limn→∞ d(Txn, T z) =
0. From (2.3) and as (X, d) satisfies the property (Wc), we have

d(A,B) ≤ d(z, T z) ≤ lim inf
n→∞

d(xn+1, T xn) = d(A,B),

which implies that d(z, T z) = d(A,B), i.e., z is a best proximity point of T .

Now, we prove the uniqueness of such best proximity point. For this, we need
the following additional condition.

(U): For all x, y ∈ B(T ), we have α(x, y) ≥ 1, where B(T ), denotes the set of
best proximity points of T.

Theorem 2.3. Adding condition (U) to the hypotheses of Theorem 2.1 (resp. The-
orem Theorem 2.2), we obtain that z is the unique best proximity point of T .

Proof. Suppose there exist z, w ∈ A such that d(A,B) = d(z, T z) = d(w, Tw). By
assumption (U), we have α(z, w) ≥ 1, it follows from (1.1),

φ(d(z, w)) ≤ ψ(max{φ(d(z, w)), φ(d(z, z)), φ(d(w,w)), φ(d(z, w)), φ(d(w, z))})

= ψ(max{φ(d(z, w)), φ(0)})

= ψ(φ(d(z, w))),

which implies that φod(z, w) = 0 and so z = w.
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Example 2.1. LetX = [0,∞)×[0,∞) endowed with the semi-metric d((x1, x2), (y1, y2)) =
|x1 − y1| + |x2 − y2|. Take A = {1} × [0,∞) and B = {0} × [0,∞). Mention that
d(A,B) = 1, A0 = A and B0 = B. Consider the mapping T : A→ B as

T (1, x) =

{

(0, x
2
+1

4
) if 0 ≤ x ≤ 1

(0, x− 1

2
) if x > 1.

We have T (A0) ⊆ B0. Take ψ(t) =
1

4
t, φ(t) = t2 for all t ≥ 0. Define α : X ×X → [0,∞)

as follows
{

α((x, y), (s, t)) = 1 if (x, y), (s, t) ∈ [0, 1]× [0, 1]

α((x, y), (s, t)) = 0 if not.

Let (1, x1), (1, x2), (1, u1) and (1, u2) in A such that










α((1, x1), (1, x2)) ≥ 1

d((1, u1), T (1, x1)) = d(A,B) = 1,

d((1, u2), T (1, x2)) = d(A,B) = 1.

Then, necessarily, (x1, x2) ∈ [0, 1]× [0, 1]. Also, we have (u1 =
1+x

2
1

4
and u2 =

1+x
2
2

4
). So

α((1, u1), (1, u2)) ≥ 1,

that is, T is an α-proximal admissible. Moreover, T is triangular α-proximal admissible.
Therefore,

d((1, u1), (1, u2)) = d((1,
1 + x2

1

4
), (1,

1 + x2
2

4
))

= |1 + x2
1

4
− 1 + x2

2

4
| = |x

2
1

4
− x2

2

4
| = 1

4
(x1 + x2)|x1 − x2|

≤ 1

2
|x1 − x2| =

1

2
d((1, x1), (1, x2)).

Then

d
2((1, u1), (1, u2)) ≤

1

4
d
2((1, x1), (1, x2)) = ψ(φ(d((1, x1), (1, x2))))

≤ψ(max{φ(d((1, x1), (1, x2))), φ(d((1, x1), (1, u1))), φ(d((1, x1), (1, u2))),

φ(d((1, x2), (1, u1))), φ(d((1, x2), (1, u2)))}).

So the condition contraction (1.1) holds. Also, A0 is α-proximal T -orbitally d-Cauchy
complete. Furthermore, T is τd-continuous. Moreover, the condition (vi) of Theorem 2.2
is verified. Indeed, for x0 = (1, 1) and x1 = (1, 1

2
), we have

d(x1, Tx0) = d((1,
1

2
), (0,

1

2
)) = 1 = d(A,B) and α(x0, x1) ≥ 1.

Hence, all hypotheses of Theorem 2.2 are verified. So T has a best proximity point which
is u = (1, 2−

√
3). It is also unique.

3. Consequences

In this paragraph, we present some consequences on our obtained results.



696 A. Felhi

3.1. Some classical best proximity point results

Denote by Λ the set of Lebesgue integrable mappings λ : [0,∞) → [0,∞), summable

on each compact of [0,∞) and satisfying:

∫ ε

0

λ(s)ds > 0 for each ε > 0.

Corollary 3.1. Let A and B be nonempty subsets of a semi-metric space (X, d).
Let T : A → B be a given non-self-map, k ∈ [0, 1), α : A × A → [0,∞) and ψ ∈ Ψ
such that











α(x, y) ≥ 1

d(u, Tx) = d(A,B),

d(v, T y) = d(A,B)

⇒

∫ d(u,v)

0

λ(t)dt ≤ kmax{

∫ d(x,y)

0

λ(t)dt,

∫ d(x,u)

0

λ(t)dt,

∫ d(y,v)

0

λ(t)dt,

∫ d(x,v)

0

λ(t)dt,

∫ d(y,u)

0

λ(t)dt},

where x, y, u, v ∈ A . Suppose that the following conditions hold:

(i) A0 is α-proximal T -orbitally d-Cauchy complete;

(ii) T (A0) ⊆ B0;

(iii) d is bounded, that is, supx,y∈X d(x, y) <∞;

(iv) T is triangular α-proximal admissible;

(v) There exist elements x0 and x1 in A0 such that

d(x1, T x0) = d(A,B) and α(x0, x1) ≥ 1;

(vi) T is τd-continuous;

(vii) (X, d) satisfies the property (Wc).

Then, T has a best proximity point.

Proof. It suffices to take α(x, y) = 1, φ(t) =
∫ t

0
λ(s)ds and ψ(t) = kt in Theorem

2.2. It is clear that φ ∈ Φ and ψ ∈ Ψ.

Corollary 3.2. Let A and B be nonempty subsets of a semi-metric space (X, d).
Let T : A→ B be a given non-self-map, φ ∈ Φ and ψ ∈ Ψ such that
{

d(u, Tx) = d(A,B),

d(v, T y) = d(A,B)

⇒ φ(d(u, v)) ≤ ψ(max{φ(d(x, y)), φ(d(x, u)), φ(d(y, v)), φ(d(x, v)), φ(d(y, u))}),

where x, y, u, v ∈ A. Suppose that the following conditions hold:
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(i) Every d-Cauchy sequence {xn} in A0 with d(xn+1, T xn) = d(A,B) for all
n ≥ 0, converges to some element in A0 in the topology τd;

(ii) T (A0) ⊆ B0;

(iii) d is bounded, that is, supx,y∈X d(x, y) <∞;

(iv) (A0, φod) satisfies the Fatou property.

Then, T has a unique best proximity point.

Proof. It suffices to take α(x, y) = 1 in Theorem 2.1. The uniqueness of z holds
since (U) is satisfied.

Corollary 3.3. Let A and B be nonempty subsets of a semi-metric space (X, d).
Let T : A→ B be a given non-self-map and ψ ∈ Ψ such that

{

d(u, Tx) = d(A,B),

d(v, T y) = d(A,B)
⇒ d(u, v)≤ψ(max{d(x, y), d(x, u), d(y, v), d(x, v), d(y, u)}),

where x, y, u, v ∈ A. Suppose that the following conditions hold:

(i) Every d-Cauchy sequence {xn} in A0 with d(xn+1, T xn) = d(A,B) for all
n ≥ 0, converges to some element in A0 in the topology τd;

(ii) T (A0) ⊆ B0;

(iii) d is bounded, that is, supx,y∈X d(x, y) <∞;

(iv) (A0, d) satisfies the Fatou property.

Then, T has a unique best proximity point.

Proof. It suffices to take φ(t) = t in Corollary 3.2.

Corollary 3.4. Let A and B be nonempty subsets of a semi-metric space (X, d).
Let T : A→ B be a given non-self-map, φ ∈ Φ and ψ ∈ Ψ such that

{

d(u, Tx) = d(A,B),

d(v, T y) = d(A,B)

⇒ φ(d(u, v)) ≤ ψ(max{φ(d(x, y)), φ(d(x, u)), φ(d(y, v)), φ(d(x, v)), φ(d(y, u))}),

where x, y, u, v ∈ A. Suppose that the following conditions hold:

(i) Every d-Cauchy sequence {xn} in A0 with d(xn+1, T xn) = d(A,B) for all
n ≥ 0, converges to some element in A0 in the topology τd;

(ii) T (A0) ⊆ B0;
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(iii) d is bounded, that is, supx,y∈X d(x, y) <∞;

(iv) T is τd-continuous;

(v) (X, d) satisfies the property (Wc).

Then, T has a unique best proximity point.

3.2. Some classical fixed point results

If we take A = B in the previous results, we have the following fixed point results.

Corollary 3.5. Let A be nonempty subset of a semi-metric space (X, d). Let
T : A→ A be a given self-map, φ ∈ Φ, ψ ∈ Ψ and α : A×A→ [0,∞) such that

φod(Tx, T y) ≤ ψ(max{φod(x, y), φod(x, Tx), φod(y, T y), φod(x, T y), φod(y, Tx)})

for all x, y ∈ A satisfying α(x, y) ≥ 1. Suppose that the following conditions hold:

(i) Every d-Cauchy sequence {xn} in A with xn+1 = Txn for all n ≥ 0, converges
to some element in A in the topology τd;

(ii) d is bounded, that is, supx,y∈X d(x, y) <∞;

(iii) T is triangular α-proximal admissible;

(iv) There exist elements x0 ∈ A such that α(x0, T x0) ≥ 1;

(v) If {xn} is a sequence in A such that α(xn, xn+1) ≥ 1 for all n ≥ 0 and
limn→∞ d(xn, x) = 0, then α(xn, x) ≥ 1 for all n ≥ 0;

(vi) (A, φod) satisfies the Fatou property.

Then, T has a fixed point in A.

Corollary 3.6. Let A be nonempty subset of a semi-metric space (X, d). Let
T : A→ A be a given self-map, φ ∈ Φ, ψ ∈ Ψ and α : A×A→ [0,∞) such that

φod(Tx, T y) ≤ ψ(max{φod(x, y), φod(x, Tx), φod(y, T y), φod(x, T y), φod(y, Tx)})

for all x, y ∈ A satisfying α(x, y) ≥ 1. Suppose that the following conditions hold:

(i) Every d-Cauchy sequence {xn} in A with xn+1 = Txn for all n ≥ 0, converges
to some element in A in the topology τd;

(ii) d is bounded, that is, supx,y∈X d(x, y) <∞;

(iii) T is triangular α-proximal admissible;

(iv) There exist elements x0 ∈ A such that α(x0, T x0) ≥ 1;

(v) T is τd-continuous;

(vi) (X, d) satisfies the property (Wc).

Then, T has a fixed point in A.
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3.3. Some best proximity results on a semi-metric space endowed with

a partial order

Let (X, d) a symmetric space endowed with a partial order ≤. We introduce the
following definition.

Definition 3.1. Let A and B be nonempty subsets of a symmetric space (X, d)
and ≤ a partial order on X . T : A→ B is named a proximal nondecreasing map if











x ≤ y

d(u, Tx) = d(A,B),

d(v, T y) = d(A,B)

⇒ u ≤ v

for all x, y, u, v ∈ A.

Wa also need the following hypothesis.

(H) if {xn} is a sequence in A such that xn ≤ xn+1, d(xn+1, T xn) = d(A,B) for
all n and xn → x ∈ A as n→ ∞, then xn ≤ x for all n.

We state the following.

Corollary 3.7. Let A and B be nonempty subsets of a semi-metric space (X, d).
Let T : A→ B be a given non-self-map and ψ ∈ Ψ such that

{

d(u, Tx) = d(A,B),

d(v, T y) = d(A,B)

⇒ φ(d(u, v)) ≤ ψ(max{φ(d(x, y)), φ(d(x, u)), φ(d(y, v)), φ(d(x, v)), φ(d(y, u))}),

for all x, y ∈ A such that x ≤ y. Suppose that

(i) Every d-Cauchy sequence {xn} in A0 with xn ≤ xn+1, d(xn+1, T xn) = d(A,B)
for all n ≥ 0, converges to some element in A0 in the topology τd;

(ii) T (A0) ⊆ B0;

(iii) T is a proximal nondecreasing map;

(iv) There exist elements x0 and x1 in A0 such that

d(x1, T x0) = d(A,B) and x0 ≤ x1;

(v) (A0, φod) satisfies the Fatou property;

(vi) (H) holds.

Then T has a best proximity point.
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Proof. It suffices to consider α : X ×X → [0,∞) such that

α(x, y) =

{

1 if x ≤ y

0 if not.

All hypotheses of Theorem 2.1 are satisfied. This completes the proof.

Corollary 3.8. Let A and B be nonempty subsets of a semi-metric space (X, d).
Let T : A→ B be a given non-self-map and ψ ∈ Ψ such that
{

d(u, Tx) = d(A,B),

d(v, T y) = d(A,B)

⇒ φ(d(u, v)) ≤ ψ(max{φ(d(x, y)), φ(d(x, u)), φ(d(y, v)), φ(d(x, v)), φ(d(y, u))}),

for all x, y ∈ A such that x ≤ y. Suppose that

(i) Every d-Cauchy sequence {xn} in A0 with xn ≤ xn+1, d(xn+1, T xn) = d(A,B)
for all n ≥ 0, converges to some element in A0 in the topology τd;

(ii) T (A0) ⊆ B0;

(iii) T is a proximal nondecreasing map;

(iv) There exist elements x0 and x1 in A0 such that

d(x1, T x0) = d(A,B) and x0 ≤ x1;

(v) (X, d) satisfies the property (Wc);

(vi) T is τd-continuous.

Then T has a best proximity point.
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