
FACTA UNIVERSITATIS (NIŠ)
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GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR OF

SOLUTIONS TO THE VISCOELASTIC WAVE EQUATION WITH A

CONSTANT DELAY TERM ∗

Melouka Remil and Ali Hakem

Abstract. In this paper, we investigate the following viscoelastic wave equation with
a constant delay term

u
′′(x, t)− k0△u+ α

∫
t

0

g(t− s)△u(x, s)ds+ µ1(t)u
′(x, t) + µ2(t)u

′(x, t− τ ) = 0

in a bounded domain and under suitable assumptions. First, we prove the global
existence by using Faedo-Galerkin procedure. Secondly, the multiplier method is used
to establish a decay estimate for the energy, which depends on the behavior of α and g.
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1. Introduction

This paper is concerned with the following Cauchy problem of the form

(1.1)



































u′′(x, t)− k0△u+ α

∫ t

0

g(t− s)△u(x, s)ds

+µ1(t)u
′(x, t) + µ2(t)u

′(x, t− τ) = 0, on Ω×]0,+∞[

u(x, t) = 0, on ∂Ω×]0,+∞[

u(x, 0) = u0(x), ut(x, t) = u1(x), on Ω

ut(x, t− τ) = f0(x, t − τ), on Ω×]0, t[

Where Ω is a bounded domain in IRn (n ∈ IN∗) with a smooth boundary ∂Ω. The
initial data u0, u1, f0 belong to a suitable space. Moreover, τ > 0 is the time delay
term and µ1, µ2 are real functions that will be specified later. Furthermore, k0 is
a positive real number and g is a positive non-increasing function defined on IR+.
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In recent years, the PDEs with time delay effects have become an active area
of research. Many authors have focused on this problem ( see [1],[16],[17],[2],[3],[4],
[5],[8],[9],[10]).

The presence of delay may lead to a source of instability. In [2] for example,
R. Datko, J. Lagnese and M. P. Polis proved that a small delay may destabilize a
system.
S. Nicaise, C. Pignotti studied in [8] the wave equation with a linear internal damp-
ing term with constant delay and determined suitable relations between µ0 and
µ1 > 0 in which the stability or alternatively instability takes place.

After that, they studied in [11] the stabilization problem by interior damping
of the wave equation with boundary or internal time-varying delay feedback in
a bounded and smooth domain. By introducing suitable Lyapunov functionals,
exponential stability estimates are obtained if the time delay effect is appropriately
compensated by the internal damping.

It is worth mentioning that recently Z. Y. Zhang et al. [14] have investigated
global existence and uniform decay for wave equation with dissipative term and
boundary damping under some assumptions on nonlinear feedback function. They
have obtained the results by means of Galerkin method and the multiplier technique.
More precisely, they introduced a new variables and transformed the boundary value
problem into an equivalent one with zero initial data by argument of compacity and
monotonicity. More details are present in [14]. Later on, Zhang et al. [21] studied
the wellposedness and uniform stability of strong and weak solutions of the nonlin-
ear generalized dissipative Klein-Gordon equation with nonlinear damped boundary
conditions. Also, the authors proved the wellposedness by means of nonlinear semi-
group method and obtain the uniform stabilization by using the perturbed energy
functional method. In another works, Zai-Yun Zhang and al ([20],[14],[15]) consid-
ered a more general problem than (1.1). Their proof of the existence is based on
the Galerkin approximation. For strong solutions, their approximation requires a
change of variables to transform the main problem into an equivalent problem with
initial value equals zero. Especially, they overcome some difficulties, that is, the
presence of nonlinear terms and nonlinear boundary damping bringing up serious
difficulties when passing to the limit, by combining arguments of compacity and
monotonicity.

F. Tahamtani and A. Peyravi [12] investigated the nonlinear viscoelastic wave
equation with dissipative boundary conditions:

u′′ − k0△u+ α

∫

g(t− s)div[a(s)∇u(s)]ds + (k1 + b(x)|u′|m−2)u′ = |up−2|u

They showed that the solutions blow up in finite time under some restrictions on
initial data and for arbitrary initial energy in some case. In another case, they
proved a nonexistence result when the initial energy is less than potential well
depth.
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Wenjun Liu in [6] studied the weak viscoelastic equation with an internal time-
varying delay term

u′′(x, t)− k0△u+ α(t)

∫

g(t− s)△u(x, s)ds+ a0u
′(x, t) + a1u

′(x, t− τ(t)) = 0

in a bounded domain. By introducing suitable energy and Lyapunov functionals, he
establishes a general decay rate estimate for the energy under suitable assumptions.
A. Benaissa, A. Benguessoum and S. A. Messaoudi [1] considered the wave equation
with a weak internal constant delay term:

u′′(x, t)−△u+ µ1(t)u
′(x, t) + µ2(t)u

′(x, t− τ) = 0 on [0,+∞[

In a bounded domain. Under appropriate conditions on µ1 and µ2, they proved
global existence of solutions by the Faedo–Galerkin method and establish a decay
rate estimate for the energy by using the multiplier method.
However, according to our best knowledge, in the present paper, we have to treat
Eq.(1.1) with a delay term and it is not considered in the literature. The proof of
the existence is based on the Galerkin approximation.

The content of this paper is organized as follows. In Section 2, we provide
assumptions that will be used later. We state and prove the existence result. In
Section 3, we establish the energy decay result that is given in Theorem 4.1.

2. Main results

In the following, we will give sufficient conditions and assumptions which guarantee
that the problem 1.1 has a global solution.

(H1) g is a positive bounded function satisfying:

(2.1) k0 − α

∫ t

0

g(s)ds = l > 0, α > 0,

and there exists a positive non-increasing function η such that for t > 0 we have

(2.2) g′(t) ≤ −η(t)g(t), η(t) > 0

(H2) µ1 is a positive function of class C1 satisfying:

(2.3) µ1(t) ≤ M, M > 0

(H3) µ2 is a real function of class C1 such that:

(2.4) µ2(t) ≤ βµ1(t), 0 < β < 1

We also need the following technical Lemmas in the course of our investigation.
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Lemma 2.1. (Sobolev-Poincare’s inequality). Let 2 ≤ p ≤ 2n
n−2 . The inequality

(2.5) ‖u‖p ≤ Cs‖∇u‖2 for u ∈ H1
0 (Ω)

holds with some positive constant Cs.

Lemma 2.2. [7] For any g ∈ C1 and φ ∈ H1
0 (0, T ) we have

(2.6)

∫ t

0

∫

Ω

g(t− s)φφtdxds = −
d

dt

(

1

2
(g ◦ φ)(t) −

1

2

∫ t

0

g(s)ds‖φ‖22

)

−
1

2
g(t)‖φ‖22 +

1

2
(g′ ◦ φ)(t)

where

(g ◦ φ)(t) =

∫ t

0

∫

Ω

g(t− s)|φ(s) − φ(t)|2dx ds

Lemma 2.3. [7] Let E : IR+ → IR+ be a non-increasing function and
φ : IR+ → IR+ a strictly increasing function of class C1 such that

φ(0) = 0, φ(t) → +∞ when t → +∞

Assume that there exist p > 0 and ω > 0 such that

∀S ≥ 0,

∫ +∞

S

Ep+1(t)φ′(t)dt ≤
1

ω
[E(0)]pE(S),

then E has the following decay properties

if p = 0 then E(t) ≤ E(0)e1−ωφ(t), ∀t ≥ 0

if p > 0 then E(t) ≤ E(0)
(

1+p
1+ωφ(t)

)

, ∀t ≥ 0

In order to prove the existence of solutions to the problem (1.1) we introduce as in
[8] the unknown auxiliary

z(x, ρ, t) = u′(x, t− τρ), x ∈ Ω, ρ ∈ (0, 1), t > 0

Then we have
τzt(x, ρ, t) + zρ(x, ρ, t) = 0

Therefore, the problem (1.1) takes the form














































u′′(x, t)− k0∆u(x, t) + α

∫ t

0

g(t− s)△u(x, s)ds

+µ1(t)u
′(x, t) + µ2(t)z(x, 1, t) = 0, on Ω×]0,+∞[

τzt(x, ρ, t) + zρ(x, ρ, t) = 0 x ∈ Ω, ρ ∈ (0, 1), t > 0

u(x, t) = 0, on ∂Ω×]0,+∞[

u(x, 0) = u0, u
′(x, t) = u1, on Ω

z(x, ρ, 0) = f0(x,−τρ) on Ω×]0, t[

(2.7)
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Now, we are in the position to state our main result, namely the theorem of global
existence.

Theorem 2.1. Let (u0, u1, f0) ∈ H1
0 (Ω)×IL2(Ω)×IL2(Ω×(0, 1)) be given. Assume

that assumptions (H1) -(H3) are fulfilled. Then the problem (2.7) admits a unique
global weak solution (u, z) satisfying

u ∈ C([0, T );H1
0 (Ω)), u′ ∈ C([0, T );H1

0 (Ω)), z ∈ C([0, T ); IL2(Ω× (0, 1))

To prove this theorem, we need the following lemma. First, we define the energy
associated to the solution of the problem (2.7) by

(2.8)

E(t) =
1

2
‖u′‖22 +

(

k0

2
−

α

2

∫ t

0

g(s)ds

)

‖∇u‖22

+
α

2
(g ◦ ∇u)(t) +

1

2
ξ(t)

∫

Ω

∫ 1

0

z2(x, ρ, t)dρdx

Where ξ is non-increasing function such that

(2.9) τβ < ζ < τ(2 − β), t > 0

Where ξ(t) = ζµ1(t).

Lemma 2.4. Let (u, z) be a regular solution of problem (2.7). Then the energy
functional defined by (2.8) satisfies

(2.10)
E′(t) ≤ −

(

µ1(t)−
ξ(t)

2τ
−

µ2(t)

2

)

‖u′(x, t)‖2

−
(ξ(t)

2τ
−

µ2(t)

2

)

‖z(x, 1, t)‖2 ≤ 0

Proof. Multiplying the first equation in (2.7) by u′(x, t), integrating over Ω and
using Green’s identity we obtain

(2.11)

1

2

d

dt

(

‖u′‖22 + k0‖∇u‖22

)

+ µ1(t)‖u
′‖22 + µ2(t)

∫

Ω

u′z(x, 1, t)dx

− α

∫ t

0

g(t− s)

∫

Ω

∇u(x, s)∇u′(x, t)dxds = 0

We simplify the last term in (2.11) by applying the lemma 2.2, we get

(2.12)

− α

∫ t

0

g(t− s)

∫

Ω

∇u(x, s)∇u′(x, t)dxds =
α

2

d

dt
(g ◦ ∇u)

−
α

2
(g′ ◦ ∇u) +

α

2
g(t)‖∇u‖2 −

α

2

d

dt

∫ t

0

g(s)ds‖∇u‖2
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Replacing (2.12) in (2.11) we arrive at

(2.13)

d

dt

(1

2
‖u′‖22 +

(k0

2
−

α

2

∫ t

0

g(s)ds
)

‖∇u‖22 −
α

2
(g ◦ ∇u)

)

=
α

2
(g′ ◦ ∇u)(t)

−
1

2
g(t)‖∇u‖22 − µ1(t)‖u

′‖22 − µ2(t)

∫

Ω

z(x, 1, s)u′dx

Multiplying the second equation in (2.7) by ξ(t)z
τ

, where ξ(t) satisfies (2.9) and
integrating over Ω× (0, 1), we obtain

(2.14)
ξ(t)

2

d

dt

∫

Ω

∫ 1

0

z2(x, ρ, t)dρdx +
ξ(t)

2τ

∫ 1

0

∫

Ω

d

dρ
z2(x, ρ, t)dxdρ = 0

which gives

(2.15)

1

2

d

dt
ξ(t)

∫

Ω

∫ 1

0

z2(x, ρ, t)dρdx =
ξ′(t)

2

∫

Ω

∫ 1

0

z2(x, ρ, t)dρdx

−
ξ(t)

2τ

∫

Ω

z2(x, 1, t)dx +
ξ(t)

2τ

∫

Ω

u′2(x, t)dx = 0

A combination of (2.13) and (2.15) leads to

(2.16)

1

2

d

dt

(

‖u′‖22 + (k0 − α

∫ t

0

g(s)ds)‖∇u‖22

)

+
1

2

d

dt

(

α(g ◦ ∇u) + ξ(t)

∫

Ω

∫ 1

0

z2(x, ρ, t)dρdx
)

=
α

2
(g′ ◦ ∇u)−

1

2
g(s)‖∇u‖22ds− µ1(t)‖u

′

n‖
2
2ds− µ2(t)

∫

Ω

z(x, 1, s)u′dx

+
ξ′(t)

2

∫

Ω

∫ 1

0

z2(x, ρ, t)dρdx −
ξ(t)

2τ

∫

Ω

z2(x, 1, t)dx +
ξ(t)

2τ

∫

Ω

u′2(x, t)dx

Using the definition (2.8) of E(t), we deduce that

(2.17)

E′(t) =
α

2
(g′ ◦ ∇u)−

1

2
g(t)‖∇u‖22 − µ1(t)‖u

′

n‖
2
2ds

− µ2(t)

∫

Ω

z(x, 1, s)u′dx+
ξ′(t)

2

∫

Ω

∫ 1

0

z2(x, ρ, t)dρdx

−
ξ(t)

2τ

∫

Ω

z2(x, 1, t)dx+
ξ(t)

2τ

∫

Ω

u′2(x, t)dx

Due to Young’s inequality we have

(2.18)
E′(t) ≤

α

2
(g′ ◦ ∇u)−

1

2
g(t)‖∇u‖22ds−

(

µ1(t)−
ξ(t)

2τ
−

µ2(t)

2

)

‖u′(x, t)‖2

−
(ξ(t)

2τ
−

µ2(t)

2

)

‖z(x, 1, t)‖2
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Using the assumption (2.9) for ξ(t) we see that

C1 = µ1(t)−
ξ(t)

2τ
−

µ2(t)

2
> 0, C2 =

ξ(t)

2τ
−

µ2(t)

2
> 0,

then we easily deduce that

(2.19)
E′(t) ≤ −

(

µ1(t)−
ξ(t)

2τ
−

µ2(t)

2

)

‖u′(x, t)‖2

−
(ξ(t)

2τ
−

µ2(t)

2

)

‖z(x, 1, t)‖2 ≤ 0

This completes the proof of the lemma.

3. Global existence

We will use the Faedo-Galerkin method to prove the global existence of solu-
tions. Let (wn)n∈IN be a basis in H1

0 (Ω) and Wn be the space generated by
w1, ..., wn, n ∈ IN. Now, we define for 1 ≤ i ≤ n the sequence ϕi(x, ρ) as fol-
lows ϕi(x, 0) = wi(x).Then, we may extend ϕi(x, 0) by ϕi(x, ρ) over (IL2 × [0, 1])
and denote Vn to be the space generated by ϕ1, ..., ϕn, n ∈ IN.

We consider the approximate solution (un(t), zn(t)) as follow for any given i

un(t) =
n
∑

i=0

cin(t)wi; zn(t) =
n
∑

i=0

rin(t)ϕi

which satisfies

(3.1)

∫

Ω

u′′

n(t)widx− k0

∫

Ω

△un(t)widx+ α

∫ t

0

g(t− s)

∫

Ω

△un(s)widxds

+µ1(t)

∫

Ω

u′

n(t)widx+ µ2(t)

∫

Ω

zn(x, 1, t)widx = 0,

and

(3.2)

∫

Ω

(τznt(x, ρ, t) + znρ(x, ρ, t))ϕidx = 0.

The system is completed by the initial conditions:

un(0) =

n
∑

i=0

cin(0)wi → u0 in H1
0 (Ω) when n → ∞

u′

n(0) =

n
∑

i=0

c′in(0)wi → u1 in H1
0 (Ω) when n → ∞
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zn(0) =

n
∑

i=0

rin(0)ϕi → f0 in IL2 (Ω× (0, 1)) when n → ∞

Then the problem (2.7) can be reduced to a second-order ODE system and we
infer that this problem admits a unique local solution (un(t), zn(t)) in [0, tn[ where
0 < tn < T . This solution can be extended to [0;T [, 0 < T ≤ +∞ by Zorn lemma.
In the next step we shall prove that this solution is global.

1. First estimate. Multiplying the equation in (3.1) by c′in(t) and summing
with respect to i we obtain

∫

Ω

u′′

n(t)u
′

n(t)dx+ k0

∫

Ω

∇un(t)∇u′

n(t)dx− α

∫ t

0

g(t− s)

∫

Ω

∇un(s)∇u′

n(t)dxds

+ µ1(t)

∫

Ω

u′2
n (t)dx + µ2(t)

∫

Ω

zn(x, 1, t)u
′

n(t)dx = 0,

then

(3.3)

1

2

d

dt

(

‖u′

n‖
2
2 +

k0

2
‖∇un‖

2
2

)

+ µ1(t)‖u
′

n‖
2
2 + µ2(t)

∫

Ω

zn(x, 1, t)u
′

n(t)dx

− α

∫ t

0

g(t− s)

∫

Ω

un(t)∇u′

n(t)dxds = 0.

We use the lemma 2.2 to simplify the last term in (3.3)

(3.4)

− α

∫ t

0

g(t− s)

∫

Ω

un(t)∇u′

n(t)dxds =
α

2

d

dt
(g ◦ ∇un)(t)

−
α

2
(g′ ◦ ∇un)(t) +

α

2
g(t)‖∇un(t)‖

2 −
α

2

d

dt

∫ t

0

g(s)ds‖∇un(t)‖
2

Replacing (3.4) in (3.3) and integrating over (0, t) we arrive at

(3.5)

1

2
‖u′

n‖
2
2 +

(k0

2
−

α

2

∫ t

0

g(s)ds
)

‖∇un‖
2
2 −

α

2
(g ◦ ∇un)(t)

−
α

2

∫ t

0

(g′ ◦ ∇un)(s)ds +
1

2

∫ t

0

g(s)‖∇un‖
2
2ds+

∫ t

0

µ1(s)‖u
′

n‖
2
2ds

+

∫ t

0

µ2(s)

∫

Ω

z(x, 1, s)u′

n(t)dxds =
1

2
‖u1n‖

2 +
k0

2
‖∇u0n‖

2

Multiplying the equation (3.2) by rin(t), summing with respect to i and inte-
grating over Ω× (0, 1), we obtain

(3.6)
ξ(t)

2

d

dt

∫

Ω

∫ 1

0

z2n(x, ρ, t)dρdx +
ξ(t)

2τ

∫ 1

0

∫

Ω

d

dρ
z2n(x, ρ, t)dxdρ = 0,
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which gives

(3.7)

1

2

[ d

dt
ξ(t)

∫

Ω

∫ 1

0

z2n(x, ρ, t)dρdx − ξ′(t)

∫

Ω

∫ 1

0

z2n(x, ρ, t)dρdx
]

+
ξ(t)

2τ

∫

Ω

z2n(x, 1, t)dx−
ξ(t)

2τ

∫

Ω

u′2
n (x, t)dx = 0.

Integrating (3.7) over (0, t) we get

(3.8)

1

2

[

ξ(t)

∫

Ω

∫ 1

0

z2n(x, ρ, t)dρdx −

∫ t

0

∫

Ω

∫ 1

0

ξ′(s)z2n(x, ρ, s)dρdxds
]

+
1

2τ

∫ t

0

∫

Ω

ξ(s)z2n(x, 1, s)dxds

−
1

2τ

∫ t

0

∫

Ω

ξ(t)u′2
n (x, t)dxds =

ξ(0)

2
‖f0‖

2

Combining (3.5) and (3.8) we find

(3.9)

1

2
‖u′

n‖
2
2 +

(k0

2
−

α

2

∫ t

0

g(s)ds
)

‖∇un‖
2
2 +

1

2
ξ(t)

∫

Ω

∫ 1

0

z2n(x, ρ, t)dρdx

+
α

2
(g ◦ ∇un)(t)−

α

2

∫ t

0

(g′ ◦ ∇un)(s)ds+
α

2

∫ t

0

g(s)‖∇un‖
2
2ds

+

∫ t

0

µ1(s)‖u
′

n‖
2
2ds+

∫ t

0

µ2(s)

∫

Ω

z(x, 1, s)u′

n(t)dxds

−
1

2

∫

Ω

∫ t

0

∫ 1

0

ξ′(s)z2n(x, ρ, s)dρdxds +
1

2τ

∫ t

0

∫

Ω

ξ(s)z2n(x, 1, s)dxds

−
1

2τ

∫ t

0

∫

Ω

ξ(t)u′2
n (x, t)dxds =

1

2
‖u1n‖

2 +
k0

2
‖∇u0n‖

2 +
ξ(0)

2
‖f0‖

2

Using Hölder’s and Young’s inequalities on the eighth term of (3.9) we obtain

(3.10)

∫ t

0

µ2(s)

∫

Ω

z(x, 1, s)u′

n(t)dxds ≤
1

2

∫ t

0

µ2(s)

∫

Ω

z2(x, 1, s)dxds

+
1

2

∫ t

0

µ2(s)

∫

Ω

u′2
n (t)dxds

Then the equation (3.9) takes the form

(3.11)

En(t)−
α

2

∫ t

0

(g′ ◦ ∇un)(s)ds +
1

2

∫ t

0

g(s)‖∇un‖
2
2ds

+

∫ t

0

(

µ1(s)−
ξ(s)

2τ
−

µ2(s)

2

)

‖u′

n‖
2
2ds

+
1

2

∫

Ω

∫ t

0

∫ 1

0

ξ′(s)z2n(x, ρ, s)dρdxds

+

∫ t

0

(ξ(s)

2τ
−

µ2(s)

2

)

∫

Ω

z2n(x, 1, s)dxds ≤ En(0),
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where

(3.12)

En(t) =
1

2
‖u′

n‖
2
2 +

(k0

2
−

α

2

∫ t

0

g(s)ds
)

‖∇un‖
2
2

+
α

2
(g ◦ ∇un)(t) +

1

2
ξ(t)

∫

Ω

∫ 1

0

z2n(x, ρ, t)dρdx,

and

(3.13) En(0) =
1

2
‖u1n‖

2 +
k0

2
‖∇u0n‖

2 +
ξ(0)

2
‖f0‖

2.

Since u0n, u1n, f0 converge, we can find a constant L1 > 0 independent of n
such that

(3.14)

1

2
‖u′

n‖
2
2 +

(k0

2
−

α

2

∫ t

0

g(s)ds
)

‖∇un‖
2
2

+
α

2
(g ◦ ∇un)(t) +

1

2
ξ(t)

∫

Ω

∫ 1

0

z2n(x, ρ, t)dρdx ≤ L1.

So this estimate gives

un is bounded in IL2(0,∞;H1
0 (Ω))

u′

n is bounded in IL∞(0,∞;H1
0 (Ω))

zn is bounded in IL∞(0,∞;L2(Ω)× (0, 1)).

2. Second estimate. Multiplying the first equation in (2.7) by u′′

n(t) and sum-
ming with respect to i we obtain

(3.15)

‖u′′

n(t)‖
2 + k0

∫

Ω

∇un(t)∇u′′

n(t)dx

− α

∫ t

0

g(t− s)

∫

Ω

∇un(s)∇u′′

n(t)dxds

+ µ1(t)‖u
′

n(t)‖
2 + µ2(t)

∫

Ω

zn(x, 1, t)u
′′

n(t)dx = 0

Exploiting the Hölder’s, Young’s and Poincaré’s inequalities and the assump-
tions (H1), (H2) we have the following estimates

(3.16)
∣

∣

∣
k0

∫

Ω

∇un(t)∇u′′

n(t)dx
∣

∣

∣
≤ k0η‖∇u′′

n(t)‖
2
2 +

k0

4η
‖∇un(t)‖

2
2

(3.17)

∣

∣

∣
− α

∫ t

0

g(t− s)

∫

Ω

∇un(s)∇u′′

n(t)dxds
∣

∣

∣
≤ αη‖∇u′′

n(t)‖
2
2

+
(k0 − l)

4η

∫ t

0

‖∇un(s)‖
2
2ds
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(3.18)
∣

∣

∣
µ2(t)

∫

Ω

zn(x, 1, t)u
′′

n(t)dx
∣

∣

∣
≤ Csη‖∇u′′

n(t)‖
2
2 +

βM

4η

∫

Ω

z2n(x, 1, t)dx

Substituting these three estimates into (3.15) and using (3.14) we deduce that

(3.19)

‖u′′

n(t)‖
2 + µ1(t)

∫ t

0

‖u′

n(s)‖
2ds ≤ η(k0 + α+ Cs)‖∇u′′

n(t)‖
2
2

+
(2k0 − l)

4η
L1 +

βM

4η

∫

Ω

z2n(x, 1, t)dx

We easily get the estimate

(3.20)
‖u′′

n(t)‖
2ds ≤

(

2k0 − l

4η
+M +

βM

4η

)

L1

+ η(k0 + α+ Cs)‖∇u′′

n(t)‖
2
2

Choosing η > 0 small enough in (3.20), we obtain the second estimate below

(3.21) ‖u′′

n(t)‖
2
2 ≤ L2,

where L2 is a positive constant independent of n ∈ IN and t ∈ [0, T ). We
observe for estimates (3.14) and (3.21) that

un is bounded in IL2(0,∞;H1
0 (Ω))

u′

n is bounded in IL∞(0,∞;H1
0 (Ω))

u′′

n is bounded in IL∞(0,∞;H1
0 (Ω))

zn is bounded in IL∞(0,∞; IL2(Ω)× (0, 1)).

Applying Dunford Pettis theorem, we deduce that there exists a subsequence
(ui, zi) of (un, zn) and we can replace the subsequence (ui, zi) with the se-
quence (un, zn) such that

un ⇀ u weak star in IL2(0, T ;H1
0(Ω))

u′

n ⇀ u′ weak star in IL∞(0, T ;H1
0 (Ω)

u′′

n ⇀ u′′ weakly in IL∞(0, T ;H1
0 (Ω))

zn ⇀ z weak star in IL∞(0, T ; IL2(Ω)× (0, 1))

Moreover u′′

n is bounded in IL∞(0, T ;H1
0 (Ω)) then u′′

n is bounded in IL2(0, T ;H1
0(Ω)).

The same method is used to prove that u′

n is bounded in IL2(0, T ;H1
0 (Ω)).
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Consequently u′

n is bounded in H1(0, T ;H1
0 (Ω)). Furthermore, by Aubins-

Lions theorem [5] there exists a subsequence (uj) still represented by the
same notation such that

u′

j ⇀ u′ strongly in IL2(0, T ;H1
0(Ω))

which implies

u′

j ⇀ u′ a.e. on Ω× (0, T ).
zj ⇀ z a.e. on Ω× (0, T ).

And we have for each wi ∈ IL2(Ω), vi ∈ IL2(Ω)

∫

Ω

(

u′′

j − k0∆uj + α

∫

Ω

g(t− s)△ujds+ µ1u
′

j + µ2zj

)

widx

→

∫

Ω

(

u′′ − k0∆u+ α

∫

Ω

g(t− s)△uds+ a1u
′ + a2z

)

wi,

and
∫

Ω

τ(zjt + zjρ)vidx →

∫

Ω

τ(zt + zρ)vidx.

When j → ∞. Then, problem (1.1) admits a global weak solution u.

4. Asymptotic behavior

In this section, we shall investigate the asymptotic behavior of our problem. Our
stability result, namely the exponential decay of the energy is obtained by the
following theorem.

Theorem 4.1. Let (u0, u1, f0) ∈ (H1
0 (Ω)× IL2(Ω)× IL2(Ω× (0, 1))) be given. As-

sume that the assumptions (H1)-(H3) are fulfilled. Then for some positive constants
K, k we obtain the following decay property

E(t) ≤ E(0)e1−kφ(t)

Proof. Given 0 ≤ S < T < ∞ arbitrarily. We multiply the first equation of (2.7) by
Epφ′u, p ∈ IR where φ is a function will be chosen later satisfying all the hypotheses
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of Lemma 2.1 and we integrate over (S, T )× Ω we obtain

(4.1)

0 =

∫ T

S

Epφ′

∫

Ω

uu′′(x, t)dxdt − k0

∫ T

S

Epφ′

∫

Ω

u∆u(x, t)dxdt

+ α

∫ T

S

Epφ′

∫

Ω

∫ t

0

g(t− s)△u(x, s)udsdxdt

+

∫ T

S

Epφ′µ1(t)

∫

Ω

uu′(x, t) + Epφ′µ2(t)

∫

Ω

uu′(x, t− τ)dxdt

=
[

Epφ′

∫

Ω

uu′dx
]T

S
−

∫ T

S

(Epφ′)

∫

Ω

uu′dxdt−

∫ T

S

Epφ′

∫

Ω

u′2dxdt

+ k0

∫ T

S

Epφ′

∫

Ω

|∇u|2dxdt + α

∫ T

S

Epφ′(g ◦ ∇u(x, t))dt

−
α

2

∫ T

S

Epφ′‖∇u‖2
∫ t

0

g(s)dsdt−
α

2

∫ T

S

Epφ′

∫ t

0

g(s)‖∇u‖2dsdt

+

∫ T

S

Epφ′µ1(t)

∫

Ω

uu′(x, t)dxdt +

∫ T

S

Epφ′µ2(t)

∫

Ω

uu′(x, t− τ)dx

Multiplying the second equation of (2.7) by Epφ′ξ(t)e−2τρz and integrating over
(S, T )× Ω× (0, 1) we find

(4.2)

0 =

∫ T

S

∫ 1

0

τEpφ′ξ(t)e−2τρ

∫

Ω

zz′dxdρdt

+

∫ T

S

Epφ′ξ(t)e−2τρ

∫

Ω

∫ 1

0

zzρdρdxdt

=
τ

2

[

∫ 1

0

Epφ′ξ(t)e−2τρ

∫

Ω

z2dxdρ
]T

S

−
τ

2

∫ T

S

∫ 1

0

∫

Ω

(Epφ′ξ(t)e−2τρ)′z2dxdρdt

+

∫ T

S

Epφ′

∫

Ω

∫ 1

0

ξ(t)
(1

2

d

dρ
(e−2τρz2) + τe−2τρz2

)

dρdxdt

=
τ

2

[

∫ 1

0

Epφ′ξ(t)e−2τρ

∫

Ω

z2dxdρ
]T

S

−
τ

2

∫ T

S

∫ 1

0

∫

Ω

(Epφ′ξ(t)e−2τρ)′z2dxdρdt

+ τ

∫ T

S

Epφ′ξ(t)

∫

Ω

∫ 1

0

e−2τρz2dxdρ

+
1

2

∫ T

S

Epφ′ξ(t)

∫

Ω

(e−2τz2(x, 1, t)− z2(x, 0, t))dxdt.
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Summing (4.1) and (4.2) and taking A = min(1, τe−2τ ) we get

(4.3)

A

∫ T

S

Ep+1φ′dt ≤ −
[

Epφ′

∫

Ω

uu′

]T

S
+

∫ T

S

(Epφ′)′
∫

Ω

uu′dxdt

+
α

2

∫ T

S

Epφ′

∫ t

0

g(s)‖∇u‖2dsdt−

∫ T

S

Epφ′µ1(t)

∫

Ω

uu′(x, t)dxdt

−

∫ T

S

Epφ′µ2(t)

∫

Ω

uz(x, 1, t)dx

−
τ

2

[

∫ 1

0

Epφ′ξ(t)e−2τρ

∫

Ω

z2dxdρ
]T

S

+
τ

2

∫ T

S

∫ 1

0

∫

Ω

e−2τρ(Epφ′ξ(t))′z2dxdρdt

−
1

2

∫ T

S

Epφ′ξ(t)

∫

Ω

(e−2τz2(x, 1, t)− z2(x, 0, t))dxdt

+
3

2

∫ T

S

Epφ′

∫

Ω

u′2dxdt

Now assume that φ is a strictly increasing concave function. So φ′ is a bounded func-
tion on IR+. Denote λ the maximum of φ′. By the Cauchy Schwarz’s, Young’s and
Poincaré’s inequalities and the fact that φ′ is bounded and since E is an increasing
function, we have

(4.4)
∣

∣

∣
Epφ′

∫

Ω

uu′(x, t)dx
∣

∣

∣
≤ λc1E

p+1(t),

where c1 = max
(

1,
C2

s

l

)

. From (4.4) we deduce the following estimates

(4.5)

∣

∣

∣

∫ T

S

(Epφ′)′
∫

Ω

uu′dxdt
∣

∣

∣
=

∣

∣

∣

∫ T

S

pE′Ep−1φ′

∫

Ω

uu′(x, t)dxdt

+

∫ T

S

Epφ′′

∫

Ω

uu′(x, t)dxdt
∣

∣

∣

≤ λc1p

∫ T

S

Ep(−E′)dt+ c1E
p+1(S)

∫ T

S

φ′′(t)dt

≤ λc2E(S)p+1,

where c2 = c1 max(p, 1) and

(4.6)
∣

∣

∣

α

2

∫ T

S

Epφ′

∫ t

0

g(s)‖∇u‖2dsdt
∣

∣

∣
≤ λc3E(S)p+1,

where c3 = (k0−l)
l

. By the hypothesis (H2), Young’s and Poincaré’s inequalities and
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(4.4), we have

(4.7)

∣

∣

∣

∫ T

S

Epφ′µ1(t)

∫

Ω

uu′(x, t)dxdt
∣

∣

∣

≤ λMβEp+1 + λ

∫ T

S

Ep(−E′)dt

≤ λc4E
p+1(S),

where c4 = Mc1 and

(4.8)
∣

∣

∣

∫ T

S

Epφ′µ2(t)

∫

Ω

uz(x, 1, t)dxdt| ≤ λc5E
p+1(S),

where c5 = max
(

βM
c2
s

l
, 1
)

and

(4.9)
τ

2

∫ T

S

∫ 1

0

Epφ′ξ(t)e−2τρ

∫

Ω

z2dxdρdt ≤ τλE(p+1S),

therefore

(4.10)

τ

2

∫ T

S

∫ 1

0

∫

Ω

e−2τρ(Epφ′ξ(t))′z2dxdρdt

=
τ

2

∫ T

S

∫ 1

0

pE′Ep−1φ′ξ(t)e−2τρ

∫

Ω

z2dxdρdt

+
τ

2

∫ T

S

∫ 1

0

∫

Ω

e−2τρEpφ′′ξ(t)z2dxdρdt

+
τ

2

∫ T

S

∫ 1

0

∫

Ω

e−2τρEpφ′ξ′(t)z2dxdρdt

≤ λτp

∫ T

S

Ep(−E′)dt+ τEp+1(s)

∫ T

S

φ′′(t)dt+ τλEp+1(s)

≤ λc6E(S)p+1,

where c6 = τ max(1, p) and

(4.11)

1

2

∫ T

S

Epξ(t)

∫

Ω

e−2τz2(x, 1, t)dxdt ≤ λ

∫ T

S

Epξ(t)

∫

Ω

z2(x, 1, t)dxdt

≤ λ

∫ T

S

Ep(−E′)dt

≤ λE(S)p+1
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and we have

(4.12)

1

2

∫ T

S

Epφ′ξ(t)

∫

Ω

z2(x, 0, t)dxdt

=
1

2

∫ T

S

Epφ′ξ(t)

∫

Ω

u′2(x, t)dxdt

≤ τλ(2 − β)E(S)p+1

(4.13)
3

2

∫ T

S

Epφ′ξ(t)

∫

Ω

u′2dxdt ≤ 3λEp+1(S).

From (4.3) and the estimates (4.5), (4.6), (4.8),(4.2), (4.9), (4.12) we obtain

(4.14)

∫ T

S

E(t)p+1φ′dt ≤ CE(S)p+1,

where C = λmax(ci, 3, τ(2− β)), i = 1, ..., 6. Applying the lemma 2.3 we get the
decay property. This ends the proof of Theorem 4.1.
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