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HYERS-ULAM STABILITY FOR A SPECIAL CLASS OF

FUNCTIONAL EQUATIONS

Ahmed Charifi, Rados law  Lukasik and Muaadh Almahalebi

Abstract. In this paper, we investigate the stability in the sense of Hyers-Ulam for a
class of the following type functional equations:

∑

λ∈Φ

f(x + λy + aλ) = Nf(x) + h(y), x, y ∈ S

where K is a complete valued field of characteristic zero, F is a complete normed space
(Archimedean or ultrametric) over K, (S,+) is an abelian monoid, f, h : S → F , Φ is a
finite automorphism group of S, N is the cardinality of Φ and aλ ∈ S.
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1. Introduction

The stability of functional equations was initiated by the question of S. M. Ulam
asked in 1940 [33]. The first important result of the stability theory was given by
D. H. Hyers [18] who answered the question of Ulam for the additive functional
equation in Banach spaces. This result was extended and generalized in several
ways by many authors worldwide, see for example, [1]-[4],[10]-[16],[19]-[24],[29]-[32].

The concept of p-adic numbers was introduced by the German mathematician, K.
Hensel [17] as a tool for solving problems in algebra and number theory. It seems
that Hensel’s main motivation was the analogy between the ring of integers Z to-
gether with its field of fractions Q and the ring C[X ] of polynomials with complex
coefficients together with its field of fractions C(X).

Hensel [17] has introduced a normed space which does not have the Archimedean
property. It turned out that non-Archimedean spaces have many important appli-
cations ([3]-[5], [27]-[28]).

Non-Archimedean functional analysis is a fast-growing discipline widely used not
just within pure mathematics but also applied in other sciences including physics,
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biology and chemistry. In the following, we will recall briefly some fundamentals
that will be needed later on.

Definition 1.1. Let K be a field equipped with a function (valuation) | · | : K →
[0,∞) such that for each r, s ∈ K, the following conditions hold:

1. |r| = 0 if and only if r = 0,

2. |rs| = |r| · |s|,

3. |r + s| ≤ |r| + |s|.

Then, the pair (K, | · |) is called a valued field. Moreover, we change the condition
(3) instead of the following condition

4. |r + s| ≤ max {|r|, |s|} , r, s ∈ K,

then the pair (K, | · |) will be called a non-Archimedean (or ultrametric) field.

It is known that any complete Archimedean field is isomorphic to either the real
or the complex numbers and the valuation is equivalent to the usual one.

Definition 1.2. Let X be a vector space over a valued field K. A function ‖ ·
‖ : X → [0,∞) is a norm if it satisfies the following conditions:

1. ||x|| = 0 if and only if x = 0,

2. ||rx|| = |r| · ||x||, r ∈ K, x ∈ X ,

3. ||x+ y|| ≤ ||x||+ ||y||, x, y ∈ X.

Then (X, || · ||) is called normed space.
Moreover, if K is a non-Archimedean field, then we change the condition (3) instead
of the following condition

4. ‖x+ y‖ ≤ max {‖x‖, ‖y‖} , x, y ∈ X.

Hence, (X, || · ||) will be called a non-Archimedean (or ultrametric) normed space.

Definition 1.3. Let {xn} be a sequence in a non-Archimedean normed space X .

1. The sequence {xn} is said to be convergent if, for any ε > 0, there is a
positive integer N and x ∈ X such that ‖xn − x‖ ≤ ε for all n ≥ N . Then
the point x ∈ X is called the limit of the sequence {xn} which is denoted by
limn→∞xn = x;

2. A sequence{xn}
∞
n=1 in a non-Archimedean space is a Cauchy sequence if and

only if the sequence {xn+1 − xn}
∞
n=1 converges to zero;



Hyers-Ulam Stability for a Special Class of Functional Equations 717

3. If every Cauchy sequence in X converges, then the non-Archimedean normed
space X is called a non-Archimedean Banach space or an ultrametric Banach
space.

Example 1.1. Fix a prime number p. For any nonzero rational number x, there exists
a unique integer nx ∈ Z such that x = a

b
pnx , where a and b are integers not divisible by

p. Then |x|p := p−nx defines a non-Archimedean norm on Q. The completion of Q with
respect to the metric d(x, y) = |x−y|p is denoted by Qp which is called the p-adic number
field. In fact, Qp is the set of all formal series x =

∑∞

k≥nx

akp
k where 0 ≤ ak ≤ p − 1

are integers. The addition and multiplication between any two elements of Qp are defined
naturally. The norm

∣

∣

∑∞

k≥nx

akp
k
∣

∣

p
= p−nx is a non-Archimedean norm on Qp and it

makes Qp a locally compact field.

The purpose of this paper is to keep continuity with our previous work in [6]-
[9]. Indeed, we investigate the approximation of solutions of a class of Jensen type,
quadratic type and Drygas type. These equations are extension forms of several
equations, for examples,

(1.1) f(x+ y + a) = f(x) + h(y), x, y ∈ S,

(1.2) f(x+ y + a) + f(x− y + b) = 2f(x), x, y ∈ S,

(1.3) f(x+ y + a) + f(x+ σ(y) + b) = 2f(x) + h(y), x, y ∈ S,

(1.4)
∑

λ∈Φ

f(x+ λy) = Nf(x) +
∑

λ∈Φ

f(λy), x, y ∈ S,

(1.5)
∑

λ∈Φ

f(x+ λy + aλ) = Nf(x) +
∑

λ∈Φ

f(λy), x, y ∈ S,

(1.6)
∑

λ∈Φ

f(x+ λy + aλ) = Nf(x), x, y ∈ S

and

(1.7)
∑

λ∈Φ

f(x+ λy + aλ) = Nf(x) +Nf(y), x, y ∈ S

where (S,+) is an abelian monoid.

In a perspective of continuity of previous work, we study the stability for a class
of the following type functional equations

(1.8)
∑

λ∈Φ

f(x+ λy + aλ) = Nf(x) + h(y), x, y ∈ S.
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2. BACKGROUND RESULTS

Throughout this paper, F is a complete normed space (Archimedean or ultrametric)
over K which is a characteristic zero complete field and equipped with a non-trivial
valuation | · |, (S,+) is an abelian monoid, Φ is a finite automorphism group of S
and N = |Φ|. In addition, when K is an ultrametric field, then there is a prime
number p such that |p| 6= 1 and the mapping x → px, x ∈ S is assumed to be
bijective on S. So, we can write p−1x ∈ S, x ∈ S.

Let n ∈ N∗ and An : S
n → F be a function. Then we say that An is n-additive

if and only if it is additive on each variable.
We say that An is symmetric if and only if

An(xσ(1), xσ(2), ...., xσ(n)) = An(x1, x2, ...., xn)

for all x1, x2, ...., xn ∈ S and each permutation σ of (1, 2, ...., n).

Let k ∈ N∗ and Ak : S
k → F be symmetric and k-additive, A∗

k(x) = Ak(x, .., x
︸ ︷︷ ︸

k

)

for all x ∈ S. Using additivity, we have A∗
k(rx) = rkA∗

k(x) whenever x ∈ S and
r ∈ N*. Also, we note that

Ak(x + h, ..., x+ h) =

k∑

i=0

k!

(k − i)!i!
Ak(x, ..., x

︸ ︷︷ ︸

i

, h, ..., h
︸ ︷︷ ︸

k−i

), x, h ∈ S.

The function A∗
k is called a monomial function of degree k associated to Ak.

A function p : S → F is called a generalized polynomial function of degree n

provided there exist A0 ∈ F and monomial functions A∗
k : S → F (for 1 ≤ k ≤ n)

such that

p(x) = A0 +

n∑

i=1

A∗
k(x),

for all x ∈ S. We also need to recall the definition of the linear difference operator
∆h on FS by

∆hf(x) = f(x+ h)− f(x), x, h ∈ S.

Observe that these difference operators have important properties as the linearity
property

∆h(αf + βg) = α∆h(f) + β∆h(g), f, g ∈ FS , α, β ∈ K,

and the commutativity property

∆h1∆h2 ...∆hs
= ∆h1h2...hs

= ∆h
σ(1)hσ(2)...hσ(s)

,

where σ is a permutation of (1, 2, ...., n). There is also other property as

∆n
hf(x) =

n∑

i=1

(−1)n−i n!

(n− i)!i!
f(x+ ih), x, h ∈ S.

At the end of this section, we come up with the following results.
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Theorem 2.1. Let δ ∈ R+ and f : S → F satisfy the inequality

(2.1)

∥
∥
∥
∥
∥

∑

λ∈Φ

f(x+ λy)−Nf(x)−
∑

λ∈Φ

f(λy)

∥
∥
∥
∥
∥
≤ δ, x, y ∈ S.

Then, there exists a unique generalized polynomial function p : S → F of degree at
most N such that

1. p is a solution of the equation

(2.2)
∑

λ∈Φ

p(x+ λy) = Np(x) +
∑

λ∈Φ

p(λy), x, y ∈ S.

2. In the ultrametric case, p satisfies the inequality

‖f(x)− f(0)− p(x)‖ ≤
δ

|N |
, x, y ∈ S

and in the Archimedean case, p satisfies the inequality

‖f(x)− f(0)− p(x)‖ ≤
(N + 2)δ

N
, x, y ∈ S.

For the Archimedean case, see [[26], Corollary 2.6] and [[25], Theorem 3]. Also,
see [[5], Theorem 3.2] for the ultrametric case.

Lemma 2.1. Let K be a valued field, X be a normed space over K, δ ∈ R+ and
P : S → X be a generalized polynomial function. Suppose that

(2.3) ‖P (x)‖ ≤ δ, x ∈ S.

Then, P is a constant function.

Proof. Let

P (x) = A0 +

n∑

i=1

A∗
i (x), x ∈ S,

where A∗
i : S → X and 1 ≤ i ≤ n, are monomial functions. Suppose that An is

a nonzero function and p is a prime number such that |pǫ| < 1 with ǫ ∈ {−1, 1}.
Then we have

‖A∗
n(x)‖ = lim

j→∞
|pǫnj |

∥
∥A∗

n(p
−ǫjx)

∥
∥

= lim
j→∞

|pǫnj |
∥
∥P (p−ǫjx)

∥
∥

≤ lim
j→∞

|pǫnj |δ

= 0, x ∈ S.

Therefore, P (x) = A0, x ∈ S.



720 A. Charifi, R.  Lukasik and M. Almahalebi

3. MAIN RESULTS

In this section, we investigate the Hyers-Ulam stability of functional equations of
the type (1.8) by using the operatorial approach. We present two cases for the space
F . In the first part, we investigate the Hyers-Ulam stability of functional equations
of the type (1.8) where F is an Archimedean normed space over a valued field
K of characteristic zero and the second part gives us the Hyers-Ulam stability of
functional equations of the type (1.8) on an ultrametric space F over an ultrametric
valued field of characteristic zero. For this connection, see [14].

3.1. Part 1: Archimedean case

Theorem 3.1. Let aλ ∈ S, λ ∈ Φ, δ ∈ R+ and f, h : S → F satisfy the inequality

(3.1)

∥
∥
∥
∥
∥

∑

λ∈Φ

f(x+ λy + aλ)−Nf(x)− h(y)

∥
∥
∥
∥
∥
≤ δ, x, y ∈ S.

Then there exists a unique generalized polynomial function p : S → F of degree at
most N such that

1. p(0) = 0 and p is a solution of the equation

(3.2)
∑

λ∈Φ

p(x+ λy + aλ) = Np(x) +
∑

λ∈Φ

p(λy + aλ), x, y ∈ S.

2. p satisfies the conditions

(3.3) ‖f(x)− f(0)− p(x)‖ ≤
4(N + 2)δ

N
, x ∈ S

and

(3.4)

∥
∥
∥
∥
∥
h(x)−

∑

λ∈Φ

p(λx + aλ)

∥
∥
∥
∥
∥
≤ (4N + 9)δ, x ∈ S.

Proof. Putting y = 0 and x = 0 in (3.1) respectively, we obtain that
∥
∥
∑

λ∈Φ f(x+ aλ)−Nf(x)− h(0)
∥
∥ ≤ δ, x ∈ S,(3.5)

∥
∥
∑

λ∈Φ f(λy + aλ)−Nf(0)− h(y)
∥
∥ ≤ δ, y ∈ S.(3.6)

Furthermore, using the inequalities (3.5) and (3.6), we get that

N ·
∥
∥
∑

λ∈Φ f(x+ λy)−Nf(x) +Nf(0)−
∑

λ∈Φ f(λy)
∥
∥

≤
∑

λ∈Φ

∥
∥
∥Nf(x+ λy) + h(0)−

∑

µ∈Φ f(x+ λy + aµ)
∥
∥
∥

+
∑

λ∈Φ

∥
∥
∥
∑

µ∈Φ f(x+ µλy + aµ)−Nf(x)− h(λy)
∥
∥
∥

+
∑

λ∈Φ

∥
∥
∥h(λy) +Nf(0)−

∑

µ∈Φ f(µλy + aµ)
∥
∥
∥

+
∑

λ∈Φ

∥
∥
∥
∑

µ∈Φ f(λy + aµ)−Nf(λy)− h(0)
∥
∥
∥

≤ 4Nδ, x, y ∈ S.
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Thus, by putting f0 = f − f(0), we get that f0 satisfies the inequality (2.1) with 4δ
instead of δ. In view of Theorem 2.1, there exists a generalized polynomial function
p of degree at most N such that p satisfies the equation (2.2) and

(3.7) ‖f(x)− f(0)− p(x)‖ ≤
4(N + 2)δ

N
, x ∈ S.

By the inequalities (3.6) and (3.7), we have
∥
∥
∥
∥
∥
h(y)−

∑

λ∈Φ

p(λy + aλ)

∥
∥
∥
∥
∥

≤
∥
∥h(y) +Nf(0)−

∑

λ∈Φ f(λy + aλ)
∥
∥

+
∑

λ∈Φ ‖f(λy + aλ)− f(0)− p(λy + aλ)‖

≤ δ +N
4(N+2)δ

N

= (4N + 9)δ, y ∈ S.

To prove that p is a solution of (3.2), we observe that
∥
∥
∑

λ∈Φ p(x+ λy + aλ)−Np(x)−
∑

λ∈Φ p(λy + aλ)
∥
∥

≤
∑

λ∈Φ ‖p(x+ λy + aλ) + f(0)− f(x+ λy + aλ)‖

+N ‖f(x)− f(0)− p(x)‖ +
∥
∥h(y)−

∑

λ∈Φ p(λy + aλ)
∥
∥

+
∥
∥
∑

λ∈Φ f(x+ λy + aλ)−Nf(x)− h(y)
∥
∥

≤ (4N + 2)δ + (4N + 2)δ + (4N + 9)δ + δ

= (12N + 14)δ, x, y ∈ S.

In the view of Lemma 2.1, for fixed y ∈ S, we have

∑

λ∈Φ p(x+ λy + aλ)−Np(x)−
∑

λ∈Φ p(λy + aλ)

=
∑

λ∈Φ p(0 + λy + aλ)−Np(0)−
∑

λ∈Φ p(λy + aλ)

= 0, x ∈ S.

To prove the uniqueness of p, let p be a generalized polynomial function such that
p(0) = 0 and satisfies the inequality (3.3). Then we get that

‖p(x)− p(x)‖ = ‖p(x)− f(0)− f(x) + f(x) + f(0)− p(x)‖

≤ ‖p(x)− f(0)− f(x)‖ + ‖f(x) + f(0)− p(x)‖

≤ 8(N+2)δ
N

, x ∈ S

and according to Lemma 2.1, we get that p−p is constant which ends the proof.

Corollary 3.1. Let aλ ∈ S, λ ∈ Φ, δ ∈ R+ and f : S → F satisfy the following
inequality

(3.8)

∥
∥
∥
∥
∥

∑

λ∈Φ

f(x+ λy + aλ)−Nf(x)

∥
∥
∥
∥
∥
≤ δ, x, y ∈ S.
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Then there exists, up to a constant, a unique generalized polynomial function P : S →
F of degree at most N−1 such that P is a solution of the equation (1.6) and satisfies
the following inequality

‖f(x)− P (x)‖ ≤
4(N + 2)δ

N
, x ∈ S.

Proof. According to Theorem 3.1, there exists a unique generalized polynomial
function P of degree at most N such that P (0) = 0 and satisfies the condition
(3.3). And observe that the inequality (3.8) shows that ‖

∑

λ∈Φ(f − f(0))(λx)‖ is
bounded on S. Then, in view of [[6], Lemma 3.1] which is also valid in Archimedean
case with 2N δ

N
instead of δ

|N | , the expression ‖∆N
y (f − f(0))(x)‖ is bounded on S.

Consequently, according to Lemma 2.1, the generalized polynomial function P is of
degree at most N − 1.

Corollary 3.2. Let aλ ∈ S, λ ∈ Φ, δ ∈ R+ and f : S → F satisfy the following
inequality

∥
∥
∥
∥
∥

∑

λ∈Φ

f(x+ λy + aλ)−Nf(x)−
∑

λ∈Φ

f(λy)

∥
∥
∥
∥
∥
≤ δ, x, y ∈ S.

Then there exists a unique generalized polynomial function P : S → F of degree at
most N such that

1. P is a solution of equation (1.5).

2. P satisfies the inequality

‖f(x)− P (x)‖ ≤
4(N + 2)δ

N
, x ∈ S.

Corollary 3.3. Let aλ ∈ S, λ ∈ Φ, δ ∈ R+ and f : S → F satisfy the following
inequality

∥
∥
∥
∥
∥

∑

λ∈Φ

f(x+ λy + aλ)−Nf(x)−Nf(y)

∥
∥
∥
∥
∥
≤ δ, x, y ∈ S.

Then there exists a unique generalized polynomial function P : S → F of degree
at most N such that P is a solution of equation (1.7) and satisfies the following
inequality

‖f(x)− P (x)‖ ≤
4(N + 2)δ

N
, x ∈ S.

3.2. Non-Archimedean case

Theorem 3.2. Let Φ be a finite automorphism group of S, N = cardΦ, aλ ∈ S,
λ ∈ Φ, δ ∈ R+ and f, h : S → F satisfy the inequality (3.1). Then there exists a
unique generalized polynomial function p : S → F of degree at most N such that
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1. p(0) = 0 and p is a solution of equation (3.2).

2. p satisfies the conditions

(3.9) ‖f(x)− f(0)− p(x)‖ ≤
δ

|N |2
, x ∈ S

and
∥
∥
∥
∥
∥
h(x)−

∑

λ∈Φ

p(λx+ aλ)

∥
∥
∥
∥
∥
≤

δ

|N |2
, x ∈ S.

Proof. Putting y = 0 and x = 0 in (3.1) respectively, we obtain (3.5) and (3.6).
Furthermore, by using these inequalities we get that

|N | ·
∥
∥
∑

λ∈Φ f(x+ λy)−Nf(x) +Nf(0)−
∑

λ∈Φ f(λy)
∥
∥

≤ max

{

maxλ∈Φ

∥
∥
∥Nf(x+ λy) + h(0)−

∑

µ∈Φ f(x+ λy + aµ)
∥
∥
∥ ,

maxλ∈Φ

∥
∥
∥
∑

µ∈Φ f(x+ µλy + aµ)−Nf(x)− h(λy)
∥
∥
∥ ,

maxλ∈Φ

∥
∥
∥h(λy) +Nf(0)−

∑

µ∈Φ f(µλy + aµ)
∥
∥
∥ ,

maxλ∈Φ

∥
∥
∥
∑

µ∈Φ f(λy + aµ)−Nf(λy)− h(0)
∥
∥
∥

}

≤ δ, x, y ∈ S.

Thus, by putting f0 = f − f(0), we get that f0 satisfies the inequality (2.1) with
δ

|N | instead of δ. In the view of Theorem 2.1, there exists a generalized polynomial

function p of degree at most N such that p satisfies the equation (2.2) and

(3.10) ‖f(x)− f(0)− p(x)‖ ≤
δ

|N |2
, x ∈ S.

By the inequalities (3.6) and (3.10), we have

∥
∥h(y)−

∑

λ∈Φ p(λy + aλ)
∥
∥ ≤ max

{

∥
∥h(y) +Nf(0)−

∑

λ∈Φ f(λy + aλ)
∥
∥ ,

maxλ∈Φ ‖f(λy + aλ)− f(0)− p(λy + aλ)‖

}

≤ max
(

δ, δ
|N |2

)

= δ
|N |2 , y ∈ S.
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Next, we prove that p is solution of (3.2). Indeed, we observe that
∥
∥
∑

λ∈Φ p(x+ λy + aλ)−Np(x)−
∑

λ∈Φ p(λy + aλ)
∥
∥

≤ max

{

maxλ∈Φ ‖p(x+ λy + aλ) + f(0)− f(x+ λy + aλ)‖ ,

|N | · ‖f(x)− f(0)− p(x)‖ ,
∥
∥h(y)−

∑

λ∈Φ p(λy + aλ)
∥
∥ ,

∥
∥
∑

λ∈Φ f(x+ λy + aλ)−Nf(x)− h(y)
∥
∥

}

≤ max( δ
|N |2 ,

δ
|N | ,

δ
|N |2 , δ) =

δ
|N |2 , x, y ∈ S.

In the view of Lemma 2.1, for fixed y ∈ S, we have
∑

λ∈Φ p(x+ λy + aλ)−Np(x)−
∑

λ∈Φ p(λy + aλ)

=
∑

λ∈Φ p(0 + λy + aλ)−Np(0)−
∑

λ∈Φ p(λy + aλ) = 0, x ∈ S.

To prove the uniqueness of p, let p be a generalized polynomial function such that
p(0) = 0 and satisfies the inequality (3.9). Then we get that

‖p(x)− p(x)‖ = ‖p(x) + f(0)− f(x) + f(x)− f(0)− p(x)‖

≤ max{‖p(x) + f(0)− f(x)‖ , ‖f(x)− f(0)− p(x)‖) ≤ δ
|N |2 , x ∈ S

and according to Lemma 2.1, we get that p−p is constant which ends the proof.

Corollary 3.4. Let Φ be a finite subgroup of the group of automorphisms of S ,
N = card(Φ), aλ ∈ S, (λ ∈ Φ) and δ ∈ R+. Assume that f : S → F satisfies the
following inequality

∥
∥
∥
∥
∥

∑

λ∈Φ

f(x+ λy + aλ)−Nf(x)

∥
∥
∥
∥
∥
≤ δ,

for all x, y ∈ S. Then there exists, up to a constant, a unique generalized polynomial
function P : S → F of degree at most N−1 such that P is a solution of the equation
(1.6) and

‖f(x)− P (x)‖ ≤
δ

|N |
2 for all x ∈ S.

Proof. The proof is analogous to the proof of Corollary 3.2.

Corollary 3.5. Let Φ be a finite automorphism group of S, N = cardΦ, aλ ∈ S

(λ ∈ Φ), δ ∈ R+ and f ∈ FS such that
∥
∥
∥
∥
∥

∑

λ∈Φ

f(x+ λy + aλ)−Nf(x)−
∑

λ∈Φ

f(λy)

∥
∥
∥
∥
∥
≤ δ, x, y ∈ S.

Then there exists a unique generalized polynomial function P ∈ FS of degree at
most N such that
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1. P is a solution of the equation

∑

λ∈Φ

f(x+ λy + aλ) = Nf(x) +
∑

λ∈Φ

f(λy), x, y ∈ S.

2. P satisfies the inequality

‖f(x)− P (x)‖ ≤
δ

|N |
2 , x ∈ S.

Corollary 3.6. Let Φ be a finite subgroup of the group of automorphisms of S,
N = card(Φ), aλ ∈ S and (λ ∈ Φ). Assume that f : S → F satisfies the following
inequality ∥

∥
∥
∥
∥

∑

λ∈Φ

f(x+ λy + aλ)−Nf(x)−Nf(y)

∥
∥
∥
∥
∥
≤ δ,

for all x, y ∈ S. Then there exists a unique generalized polynomial function P :
S → F of degree at most N such that P is a solution of the equation (1.7) and

‖f(x)− P (x)‖ ≤
δ

|N |
2 for all x ∈ S.

REFERENCES

1. J. Aczél, J. K. Chung and C. T. Ng, Symmetric second differences in product form

on groups, in: Th. M. Rassias (Ed.), Topics in mathematical analysis, 1-22, Ser. Pure
Math. 11, World Scientific, Singapore-Teaneck, N.Y., 1989.

2. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc.
Japan, 2, 1950, 64-66.

3. L. M. Arriola and W. A. Beyer, Stability of the Cauchy functional equation over p-adic

fields, Real Analysis Exchange, 31 (1), 2005, 125-132.

4. J. Baker, A general functional equation and its stability, Proc. Amer. Math. Soc.,
133(6), 2005, 1657-1664.

5. A. Chahbi, A. Charifi, B. Bouikhalene and S. Kabbaj, Operatorial approach to the non-

Archimedean stability of a Pexider K-quadratic functional equation, Arab J. Math. Sci.,
21 (1), 2015, 67-83.

6. A. Charifi, M. Almahalebi, J. M. Rassias and S. Kabbaj, Ultrametric approximations

of a Drygas functional equation, Adv. Pure Appl. Math., 7 (3), 2016, 155-164.

7. A. Charifi, B. Bouikhalene and E. Elqorachi, Hyers-Ulam-Rassias stability of a gener-

alized Pexider functional equation, Banach J. Math. Anal., 1 (2), 2007, 176-185.

8. A. Charifi, B. Bouikhalene, E. Elqorachi and A. Redouani, Hyers-Ulam-Rassias stabil-

ity of a generalized Jensen functional equation, Austral. J. Math. Anal. Appl. , 6 (1) ,
2009, 1-16.

9. A. Charifi, S. Kabbaj and D. Zeglami, Non-Archimedian stability of generalized

Jensen’s and quadratic equations, Acta Universitatis Apulensis, 45, 2016, 11-29.



726 A. Charifi, R.  Lukasik and M. Almahalebi

10. P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math.,
27, 1984, 76-86.

11. J. K. Chung, B. R. Ebanks, C. T. Ng and P. K. Sahoo, On a quadratic trigonometric

functional equation and some applications, Trans. Amer. Math. Soc., 347 (4), 1995,
1131-1161.

12. S. Czerwik, On the stability of the quadratic mapping in normed spaces. Abh. Math.
Sem. Univ. Hamburg, 62, 1992, 59-64.

13. B. R. Ebanks, P. L. Kannappan and P. K. Sahoo, A common generalization of func-

tional equations characterizing normed and quasi-inner-product spaces, Canad. Math.
Bull., 35, 1992, 321-327.

14. G. Z. Eskandani, H. Vaezi and Y. N. Dehghan, Stability of a mixed additive and

quadratic functional equation in non-Archimedean Banach modules, Taiwanese J.
Math. 14 (4), 2010, 1309-1324 .

15. Z. Gajda, On the stability of additive mappings, Internat. J. Math. Sci., 14, 1991,
431-434.
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