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Abstract. In this paper, we introduce almost generalized (α, β)-(ψ,ϕ)-contractive
maps, and prove some new fixed point results for this class of mappings in b-metric
spaces. We provide examples in support of our results. Our results extend/generalize
the results of Dutta and Choudhury [8] and Yamaod and Sintunavarat [14].
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1. Introduction

The development of fixed point theory is based on the generalization of contraction
conditions in one direction or/and generalization of metric space. Banach
contraction principle is one of the most useful results in fixed point theory. In the
direction of generalization of contraction conditions, in 1997, Alber and
Guerre-Delabriere [1] introduced weakly contractive maps, which are extensions of
contraction maps, and obtained fixed point results in the setting of Hilbert spaces.
Rhoades [12] extended this concept to metric spaces. In 2008, Dutta and
Choudhury [8] introduced (ψ, ϕ)- weakly contractive maps and proved the existence
of fixed points in complete metric spaces. In continuation to the extensions of
contraction maps, Berinde [4] initiated the concept, namely ‘weak contractions’,
which are renamed ‘almost contractions’, and established fixed point results. For
more work on almost contractions, we refer the reader to [3], [5], [8] and [12].

On the other hand, in the direction of generalization of metric spaces, in 1993,
Czerwik [7] introduced the concept of b-metric spaces and proved the Banach con-
traction mapping principle in this setting, where b-metric need not be continuous.
Afterwards, many mathematicians studied fixed point theorems for single-valued
and multi-valued mappings in b-metric spaces. In 2014, Alizadeh, Moradlou and
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Peyman [2] introduced the notation of cyclic (α, β)-admissible mappings and proved
some fixed point results in the setting of complete metric spaces.

The paper is organized as follows. In Section 2, we present preliminaries and
earlier papers that we require to develop the main results. In fact, motivated by the
work by Alizadeh, Moradlou and Peyman [2], Berinde [4] and Dutta and Choud-
hury [8], we introduce almost generalized (α, β)-(ψ, ϕ)-contractive mappings in this
section. In Section 3, we prove our main results in which we study the existence of
fixed points of almost generalized (α, β)-(ψ, ϕ)-contractive mappings. In Section 4,
we provide examples in support of our results. Our results extend/generalize the
results of Dutta and Choudhury [8] and Yamaod and Sintunavarat [14].

2. Preliminaries

Throughout this paper, R denotes the real line, and N is the set of all natural
numbers.

In this section, we mention some well-known notations, definitions and known
results in the literature that we use in the sequel.

Definition 2.1. [10] A function ψ : [0,∞) → [0,∞) is called an altering distance
function if the following properties hold:

(i) ψ is a continuous and nondecreasing function, and
(ii) ψ(t) = 0 if and only if t = 0.

We denote the class of all altering distance functions by Ψ

Definition 2.2. [7] Let X be a non-empty set. A function d : X ×X → [0,∞) is
said to be a b-metric if the following conditions are satisfied;
(i) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y,
(ii) d(x, y) = d(y, x) for all x, y ∈ X ,
(iii) there exists s ≥ 1 such that d(x, z) ≤ s

[

d(x, y) + d(y, z)
]

for all x, y, z ∈ X.

In this case, the pair (X, d) is called a b-metric space with the coefficient s.

Every metric space is a b-metric space with s = 1. In general, every b-metric
space is not a metric space.

Example 2.1. Let X = R, and let the mapping d : X × X → [0,∞) be defined by
d(x, y) = |x − y|2 for all x, y ∈ X. Then (X, d) is a b-metric space with coefficient s = 2,
but it is not a metric.

Example 2.2. Let 0 < p < 1. We write lp(R) = {{xn} ⊆ R|
∑

∞

n=1 |xn|
p < ∞}, and

define d : lp(R)×lp(R) → [0, ∞) by d(x, y) = (
∑

∞

n=1 |xn − yn|
p)

1

p for x = {xn}, y = {yn}

in lp(R). Then this d is a b-metric with the coefficient s = 2
1

p > 1.

Remark 2.1. A b-metric need not be a continuous function. For more details, we
refer [9].
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Definition 2.3. [6] Let (X, d) be a b-metric space.
(i) A sequence {xn} in X is called b-convergent if there exists x ∈ X

such that d(xn, x) → 0 as n→ ∞. In this case, we write limn→∞ xn = x.

(ii) A sequence {xn} in X is called b-Cauchy if d(xn, xm) → 0 as n,m→ ∞.
(iii) The b-metric space (X, d) is said to be b-complete if every b-Cauchy sequence

in X is b-convergent. In this case, we say that (X, d) is a complete b-metric
space. That is, a b-metric space which is b-complete is a complete b-metric
space.

Lemma 2.1. [9] Let (X, d) be a b-metric space with s ≥ 1.
(i) If a sequence {xn} ⊂ X is a b-convergent sequence, then it admits a unique

limit.
(ii) Every b-convergent sequence in X is b-Cauchy.

Definition 2.4. [6] Let (X, d) and (Y, d′) be two b-metric spaces. A function
f : X → Y is b-continuous at x ∈ X if it is b-sequentially continuous at X . That
is, whenever {xn} is b-convergent to x, {fxn} is b-convergent to fx.

Definition 2.5. [11] Let A and B be nonempty subsets of X. A mapping
f : A ∪B → A ∪B is said to be cyclic if f(A) ⊂ B and f(B) ⊂ A.

In the context of the metric space setting, weakly contractive maps are weaker
than the contraction maps [[1], [12]].

Theorem 2.1. [8] Let (X, d) be a complete metric space and f : X → X be a
selfmap of X. If there exist ψ, ϕ in Ψ such that

(2.1) ψ(d(fx, fy)) ≤ ψ(d(x, y)) − ϕ(d(x, y)) for all x, y ∈ X.

then f has a unique fixed point.

Here we note that if ψ(t) = t ≥ 0 in (2.1) then we say that f is a weakly contractive
map on X , and hence weakly contractive maps are a special case of the maps
satisfying the inequality (2.1).

Definition 2.6. [2] Let X be a nonempty set, f be a selfmap on X and
α, β : X → [0,∞) be two mappings. We say that f is a cyclic (α, β)-admissible
mapping if
(i) for any x ∈ X with α(x) ≥ 1 =⇒ β(fx) ≥ 1, and
(ii) for any y ∈ X with β(y) ≥ 1 =⇒ α(fy) ≥ 1.

In the metric space setting, Alizadeh, Moradlou and Peyman [2] defined
(α, β)-(ψ, ϕ)-contractive mappings as follows.

Definition 2.7. [2] Let (X, d) be a metric space and f : X → X be a cyclic
(α, β) - admissible mapping. We say that f : X → X is an (α, β)-(ψ, ϕ)- contractive
mapping if

x, y ∈ X with α(x)β(y) ≥ 1

=⇒ ψ(d(fx, fy)) ≤ ψ(d(x, y)) − ϕ(d(x, y))
(2.2)
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where
ψ : [0,∞) → [0,∞) is a continuous and increasing function and
ϕ : [0,∞) → [0,∞) is a lower semi-continuous function such that ϕ(t) = 0

if and only if t = 0.

Theorem 2.2. [2] Let (X, d) be a complete metric space, α, β : X → [0,∞) be
two mappings and f : X → X be an (α, β) − (ψ, ϕ)-contractive mapping. Suppose
that the following conditions hold:

(i) there exists x0 ∈ X such that α(x0) ≥ 1 and β(x0) ≥ 1. If either
(ii) f is continuous or
(iii) if {xn} is a sequence in X such that xn → x and β(xn) ≥ 1 for all n, then

β(x) ≥ 1;
then f has a fixed point in X .
Moreover, if α(x) ≥ 1 and β(x) ≥ 1 for all x, y ∈ Fix(f), where Fix(f) is the set of
all fixed points of f , then f has a unique fixed point.

Very recently, Yamaod and Sintunavarat [14] introduced (α, β)−(ψ, ϕ) -contractive
mappings in b-metric spaces as follows:

Definition 2.8. [14] Let (X, d) be a b-metric space with the coefficient s ≥ 1 and
let α, β : X → [0,∞) be two given mappings. We say that f : X → X is an
(α, β) − (ψ, ϕ)- contractive mapping if the following condition holds:
for any x, y ∈ X with α(x)β(y) ≥ 1 implies

(2.3) ψ(s3d(fx, fy)) ≤ ψ(Ms(x, y)) − ϕ(Ms(x, y))

where
Ms(x, y) = max{d(x, y), d(x, fx), d(y, fy), d(x,fy)+d(y,fx)

2s } and
ψ, ϕ : [0,∞) → [0,∞) are altering distance functions.

Theorem 2.3. [14] Let (X, d) be a complete b-metric space with the coefficient
s ≥ 1, α, β : X → [0,∞) be two mappings and f : X → X be an
(α, β)-(ψ, ϕ)-contractive mapping. Suppose that
(1) one of the following condition holds;
(1.1) there exists x0 ∈ X such that α(x0) ≥ 1
(1.2) There exists y0 ∈ X such that β(y0) ≥ 1

(2) f is continuous
(3) f is cyclic (α, β) -admissible mapping.

Then f has a fixed point. Moreover, if the sequence {xn} in X defined by
xn = fxn−1 for all n ∈ N is such that x0 is an initial point in the condition (1.1)
and the sequence {yn} in X defined by yn = fyn−1 for all n ∈ N is such that y0 is
an initial point in the condition (1.2) then {xn} and {yn} converge to a fixed point
of f .

Remark 2.2. While proving the Cauchy part of Theorem 2.3, the authors
Yamaoda and Sintunavarat [14] claimed the following:
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”If {xn} is not Cauchy, then there exists an ǫ > 0 for which we can find
subsequences {xm(k)} and {xn(k)} such that n(k) > m(k) ≥ k, m(k) is even and
n(k) is odd, d(xm(k), xn(k)) ≥ ǫ and n(k) is the smallest number such that
d(xm(k), xn(k)) ≥ ǫ and d(xm(k), xn(k)−1) < ǫ.”

But ’m(k) is even and n(k) is odd’ may not be possible due to the following
example:

Example 2.3. Let X = R with the b-metric defined by d(x, y) = |x − y|2, x, y ∈ R. We
define the sequence {xn} in X by

xn =

{

3n if n = 1, 3, 5, 7, ....
3n+1 if n = 2, 4, 6, 8, .....

Then clearly the sequence {xn} is not b-Cauchy. Let ǫ > 0. If {m(k)} and {n(k)} are
sequences withm(k) is even and n(k) is odd with n(k) > m(k) ≥ k and n(k) is the smallest
number such that d(xm(k), xn(k)) ≥ ǫ, then we have
n(k) 6= m(k) + 1, since d(xm(k), xn(k)) = d(xm(k), xm(k)+1) = 0.

Now, d(xm(k), xn(k)) = d(3m(k)+1, 3n(k)) ≥ ǫ. But

d(xm(k), xn(k)−1) = d(3m(k)+1, 3n(k)−1+1) = d(3m(k)+1, 3n(k)) ≮ ǫ. Hence in the negation
of the Cauchy part, it is not possible to mention that ”m(k) is even and n(k) is odd ”.

Thus, in order to get the valid argument, to prove the Cauchy part of the sequence
{xn} of Theorem 2.3, we replace the condition (1) of Theorem 2.3 by the following:

(H): ” there exists x0 in X such that α(x0) ≥ 1 and β(x0) ≥ 1”.

Thus the modified version of Theorem 2.3 is the following, and since it follows
as a corollary to Theorem 3.1 (we prove Theorem 3.1 in Section 3) and the proof
of the Cauchy part of Theorem 3.1 is proved without using the property ‘m(k) is
even and n(k) is odd’ (Remark 2.2), we just state this result without proof.

Theorem 2.4. Let (X, d) be a complete b-metric space with the coefficient
s ≥ 1, α, β : X → [0,∞) be two mappings and f : X → X be an
(α, β)-(ψ, ϕ)-contractive mapping. Suppose that
(1) there exists x0 ∈ X such that α(x0) ≥ 1 and β(x0) ≥ 1
(2) f is continuous
(3) f is cyclic (α, β)-admissible mapping.

Then f has a fixed point.

Moreover, for x0 ∈ X which is as in (1), if the sequence {xn} in X defined by
xn+1 = fxn then the sequence {xn} is Cauchy and {xn} converges to a fixed point
of f .

Now, we introduce almost generalized (α, β)-(ψ, ϕ)-contractive mappings in
b-metric spaces in the following:

Definition 2.9. Let (X, d) be a b-metric space with the coefficient s ≥ 1, and let
α, β : X → [0,∞) be two given mappings. Let f : X → X be a selfmap of X. If
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there exist ψ, ϕ ∈ Ψ and L ≥ 0 such that

for all x, y ∈ X with α(x)β(y) ≥ 1

=⇒ ψ(s3d(fx, fy)) ≤ ψ(Ms(x, y))− ϕ(M
′

(x, y)) + LN(x, y),
(2.4)

where
Ms(x, y) = max{d(x, y), d(x, fx), d(y, fy), d(x,fy)+d(y,fx)

2s }

M
′

(x, y) = max{d(x, y), d(y, fy)} and
N(x, y) = min{d(x, fx), d(y, fx)},

then we say that f is an almost generalized (α, β)-(ψ, ϕ) - contractive mapping.

Here we note that if L = 0 in (2.4), it becomes:

for all x, y ∈ X with α(x)β(y) ≥ 1

=⇒ ψ(s3d(fx, fy)) ≤ ψ(Ms(x, y))− ϕ(M
′

(x, y)).
(2.5)

Further, by the nondecreasing nature of ϕ, the inequality (2.3) implies (2.5) so that
the inequality (2.5) is weaker than (2.3).

Example 2.4. Let X = [0, 1] ∪ {2, 3, ..., }. We define d : X ×X → [0,∞) by

d(n,m) =















0 if n = m

| 1
n
− 1

m
| if n,m ∈ {2, 4, 6, ...}

5 if n,m ∈ {1, 3, 5, ...}
2 otherwise .

Clearly d is a b-metric space with the coefficient s = 5
4
.

Now, we define f : X → X by

f(x) =

{

x if x ∈ [0, 1]
2x− 1 if x ∈ {1, 2, 3, ...}

and α, β : X → [0,∞) by

α(x) =

{

0 if x ∈ [0, 1]
x+1
2

if x ∈ {1, 2, 3, ...}
and β(x) =

{

0 if x ∈ [0, 1]
x+2
3

if x ∈ {1, 2, 3, ...}.

Now, we show that f is cyclic (α, β)-admissible mapping. Since for any x ∈ X

α(x) ≥ 1 ⇔ x ∈ {1, 2, 3, ...}, we have β(fx) = β(2x−1) = 2x+1
3

≥ 1 for all x ∈ {1, 2, 3, ...}.
Also, for any x ∈ X β(x) ≥ 1 ⇔ x ∈ {1, 2, 3, ...}, we have
α(fx) = α(2x− 1) = 2x

2
= x ≥ 1 for all x ∈ {1, 2, 3, ...}.

Therefore, f is a cyclic (α, β)-admissible mapping.

For x, y ∈ X with α(x)β(x) ≥ 1 ⇐⇒ x, y ∈ {1, 2, 3, ...}, which implies that fx = 2x−1
and fy = 2y − 1, therefore fx and fy are odd, and hence
d(fx, fy) = d(2x− 1, 2y − 1) = 5 for all x, y ∈ {1, 2, 3, ...}.

We choose ψ(t) = t, ϕ(t) = 3t
4
, t ≥ 0.

Now, we consider the following cases to show that f is almost generalized
(α, β)-(ψ,ϕ)- contractive mapping with L = 25

4
.
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Case (i) : x, y ∈ {1, 3, 5, ...}.
In this case,

Ms(x, y) = max{d(x, y), d(x, fx), d(y, fy),
d(x, fy) + d(y, fx)

2
(

5
4

) }

= max{5, 5, 5, 2
(5 + 5

5

)

} = max{5, 4} = 5,

M ′(x, y) = max{d(x, y), d(y, fy)} = max{5, 5} = 5, and
N(x, y) = min{d(x, fx), d(y, fx)} = min{5, 5} = 5.
Now, we have

ψ(s3d(fx, fy)) = ψ((
5

4
)3d(2x− 1, 2y − 1)) = ψ(

625

64
) =

625

64

≤ 5−
(3

4

)

5 +
(25

4

)

5

≤ ψ(Ms(x, y)) − ϕ(M
′

(x, y)) + LN(x, y)

where L = 25
4
.

Case (ii) : x, y ∈ {2, 4, 6, ...}.
Here

Ms(x, y) = max{d(x, y), d(x, fx), d(y, fy),
d(x, fy) + d(y, fx)

2
(

5
4

) }

= max{|
1

x
−

1

y
|, 2, 2, 2

(2 + 2

5

)

} = max{|
1

x
−

1

y
|, 2,

8

5
} = 2,

M ′(x, y) = max{d(x, y), d(y, fy)} = max{| 1
x
− 1

y
|, 2} = 2, and

N(x, y) = min{d(x, fx), d(y, fx)} = min{2, 2} = 2.
Now, we have

ψ(s3d(fx, fy)) = ψ((
5

4
)3d(2x− 1, 2y − 1)) = ψ(

625

64
) =

625

64
≤ 2− (

3

4
)2 + (

25

4
)2

≤ ψ(Ms(x, y))− ϕ(M
′

(x, y)) + LN(x, y)

where L = 25
4
.

Case (iii) : x ∈ {1, 3, 5, ...}, y ∈ {2, 4, 6, ...}.
Here

Ms(x, y) = max{d(x, y), d(x, fx), d(y, fy),
d(x, fy) + d(y, fx)

2
(

5
4

) }

= max{2, 5, 2, 2
(5 + 2

5

)

} = max{5, 2,
14

5
} = 5,

M ′(x, y) = max{d(x, y), d(y, fy)} = max{2, 2} = 2, and
N(x, y) = min{d(x, fx), d(y, fx)} = min{5, 2} = 2.
Now, we have

ψ(s3d(fx, fy)) = ψ((
5

4
)3d(2x− 1, 2y − 1)) = ψ(

625

64
) =

625

64

≤ 5− (
3

4
)2 + (

25

4
)2

≤ ψ(Ms(x, y))− ϕ(M
′

(x, y)) + LN(x, y)
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where L = 25
4

Case (iv) : y ∈ {1, 3, 5, ...}, x ∈ {2, 4, 6, ...}.
In this case
Ms(x, y) = max{2, 2, 5, 2

(

5+2
5

)

} = 5,
M ′(x, y) = max{d(x, y), d(y, fy)} = max{2, 5} = 5, and
N(x, y) = min{d(x, fy), d(y, fx)} = min{2, 5} = 2.
Now, we have

ψ(s3d(fx, fy)) = ψ((
5

4
)3d(2x− 1, 2y − 1)) = ψ(

625

64
)

≤ ψ(Ms(x, y))− ϕ(M
′

(x, y)) + LN(x, y),

as in the case (iii).
Hence, from all the above cases f is an almost generalized (α, β)− (ψ,ϕ)-contractive
mapping. Here we observe that if L = 0 then for any x, y ∈ {1, 3, 5, ...}

ψ(s3d(fx, fy)) = ψ((
5

4
)3d(2x− 1, 2y − 1)) = ψ(

625

64
) � ψ(5)

� ψ(5)− ϕ(5) = ψ(Ms(x, y))− ϕ(Ms(x, y))

for any ψ,ϕ ∈ Ψ, so that f is not an (α, β)-(ψ,ϕ)- contractive mapping.

Hence the class of ’almost generalized (α, β)− (ψ,ϕ)- contractive maps’ is larger than
’the class of (α, β)-(ψ,ϕ)- contractive maps’.

Further, we observe that the metric d defined in this example is not a metric in the usual
sense for, by choosing x = 1, y = 2 and z = 3, we have d(x, y) = 5 � 2+2 = d(x, z)+d(z, y).

We state the following lemma which is useful to prove our main results.

Lemma 2.2. [13] Suppose (X, d) is a b-metric space and {xn} be a sequence in X
such that d(xn, xn+1) → 0 as n→ ∞. If {xn} is not a Cauchy sequence then there
exists an ǫ > 0 and sequences of positive integers {mk} and {nk} with nk > mk ≥ k

such that d(mk, nk) ≥ ǫ. For each k > 0, corresponding to mk, we can choose nk to
be the smallest positive integer such that d(xmk

, xnk
) ≥ ǫ, d(xmk

, xnk−1) < ǫ and
(i) ǫ ≤ lim sup

k→∞

d(xmk
, xnk

) ≤ sǫ

(ii) ǫ
s
≤ lim inf

k→∞

d(xmk
, xnk+1) ≤ lim sup

k→∞

d(xmk
, xnk+1) ≤ s2ǫ

(iii) ǫ
s
≤ lim inf

k→∞

d(xmk+1, xnk
) ≤ lim sup

k→∞

d(xmk+1, xnk
) ≤ s2ǫ

(iv) ǫ
s2

≤ lim inf
k→∞

d(xmk+1, xnk+1) ≤ lim sup
k→∞

d(xmk+1, xnk+1) ≤ s3ǫ.

3. Main results

Theorem 3.1. Let (X, d) be a complete b-metric space with the coefficient s ≥ 1.
Let f : X → X be a selfmapping of X. Assume that there exist two mappings
α, β : X → [0,∞) and ψ, ϕ ∈ Ψ such that f is an almost generalized
(α, β) − (ψ, ϕ) - contractive mapping.
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Further, suppose that
(1) there exists x0 ∈ X such that α(x0) ≥ 1 and β(x0) ≥ 1,
(2) f is continuous,
(3) f cyclic (α, β) - admissible mapping.

Then the sequence {xn} in X defined by xn+1 = fxn, n = 0, 1, 2, ... , where x0 ∈ X

is given as in (1) is b-Cauchy and it is b-convergent to z (say) in X, and z is a fixed
point of f .

Proof. By (1) we have x0 ∈ X such that α(x0) ≥ 1 and β(x0) ≥ 1,
Now, we define an iterative sequence {xn} by xn+1 = fxn for n = 0, 1, 2, . . . . If
xn0+1 = xn0

for some n0 ∈ N ∪ {0}, we have fxn0
= xn0+1 = xn0

, so that xn0

is a fixed point of f and we are through.
Hence, without loss of generality, we assume that xn+1 6= xn for all n ∈ N ∪ {0}.

Since α(x0) ≥ 1 and f is cyclic (α, β)-admissible mapping, we have
β(x1) = β(fx0) ≥ 1, and this implies that α(x2) = α(fx1) ≥ 1. By continuing this
process, we obtain

(3.1) α(x2k) ≥ 1 and β(x2k+1) ≥ 1 for all k ∈ N ∪ {0}.

Since, β(x0) ≥ 1 and f is a cyclic (α, β)-admissible mapping, we have
α(x1) = α(fx0) ≥ 1 and this implies that β(x2) = β(fx1) ≥ 1. On continuing this
process, we obtain

(3.2) β(x2k) ≥ 1 and α(x2k+1) ≥ 1 for all k ∈ N ∪ {0}.

Therefore, from (3.1) and (3.2) we have α(xn) ≥ 1 and β(xn) ≥ 1 for all n ∈ N∪{0}.
First we claim that limn→∞ d(xn, xn+1) = 0.
Since α(xn)β(xn+1) ≥ 1 for all n ∈ N ∪ {0}, from (2.4), we have

ψ(s3d(fxn, fxn+1)) ≤ ψ(Ms(xn, xn+1))− ϕ(M
′

(xn, xn+1))

+ LN(xn, xn+1)
(3.3)

where

Ms(xn, xn+1) = max{d(xn, xn+1), d(xn, fxn), d(xn+1, fxn+1),
d(xn, fxn+1) + d(xn+1, fxn)

2s
}

= max{d(xn, xn+1), d(xn+1, xn+2),
d(xn, xn+2)

2s
}

= max{d(xn, xn+1), d(xn+1, xn+2)},

M ′(xn, xn+1) = max{d(xn, xn+1), d(xn+1, fxn+1)} = max{d(xn, xn+1), d(xn+1, xn+2)},
and

N(xn, xn+1) = min{d(xn, fxn), d(xn+1, fxn)}

= min{d(xn, xn+1), d(xn+1, xn+1)}

= min{d(xn, xn+1), 0} = 0.
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Now, if d(xn, xn+1) < d(xn+1, xn+2) for some n ∈ N∪{0}, it follows from (3.3) that

ψ(d(xn+1, xn+2)) = ψ(d(fxn, fxn+1))

≤ ψ(s3d(fxn, fxn+1))

≤ ψ(d(xn+1, xn+2))− ϕ(d(xn+1, xn+2)) + L(0)

= ψ(d(xn+1, xn+2))− ϕ(d(xn+1, xn+2))

< ψ(d(xn+1, xn+2)),

a contradiction.
Hence
d(xn, xn+1) ≥ d(xn+1, xn+2) for all n ∈ N ∪ {0}.
Therefore we have

ψ(d(xn+1, xn+2)) = ψ(d(fxn, fxn+1))

≤ ψ(s3d(fxn, fxn+1))

≤ ψ(d(xn, xn+1))− ϕ(d(xn, xn+1))

< ψ(d(xn, xn+1)).

Since ψ is nondecreasing, the sequence {d(xn, xn+1)} is decreasing and bounded
from below. Thus there exists r ≥ 0 such that lim

n→∞

d(xn, xn+1) = r. Suppose r > 0.

Hence we have

ψ(d(xn+1, xn+2)) = ψ(d(fxn, fxn+1))

≤ ψ(s3d(fxn, fxn+1))

≤ ψ(d(xn, xn+1))− ϕ(d(xn, xn+1)) + θ(0)

= ψ(d(xn, xn+1))− ϕ(d(xn, xn+1)).

(3.4)

On letting n→ ∞ and using the continuity of ψ and ϕ in (3.4), we have
ψ(r) ≤ ψ(s3r) ≤ ψ(r)) − ϕ(r) < ψ(r),
a contradiction.
Hence r = 0, i.e., limn→∞ d(xn, xn+1) = 0.
We now prove that {xn} is a b-Cauchy sequence. Suppose {xn} is not a b-Cauchy

sequence. Then by Lemma 2.2 there exist ǫ > 0 and sequences of positive
integers {nk} and {mk} with nk > mk > k such that d(xmk

, xnk
) ≥ ǫ,

d(xmk
, xnk−1) < ǫ and (i) - (iv) of Lemma 2.2 hold.

Since α(xmk
) ≥ 1 and β(xnk

) ≥ 1 which implies that α(xmk
)β(xnk

) ≥ 1. Now,
from (2.4) we have

ψ(d(xmk+1, fxnk+1)) = ψ(d(fxmk
, fxnk

))

≤ ψ(s3d(fxmk
, fxnk

))

≤ ψ(Ms(xmk
, xnk

)− ϕ(M
′

(xmk
, xnk

))

+ LN(xmk
, xnk

),

(3.5)

where
Ms(xmk

, xnk
) = max{d(xmk

, xnk
), d(xmk

, fxmk
), d(xnk

, fxnk
),

d(fxmk
,xnk

)+d(xmk
,fxnk

)

2s },
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M ′(xmk
, xnk

) = max{d(xmk
, xnk

), d(xnk
, fxnk

)}, and
N(xmk

, xnk
) = min{d(xmk

, fxmk
), d(xnk

, fxmk
)}.

On taking Limit supremum as n→ ∞, we have

ǫ ≤ lim sup
k→∞

Ms(xmk
, xnk

) ≤ max{sǫ, 0,
s2ǫ+ s2ǫ

2s
} = sǫ,

ǫ ≤ lim sup
k→∞

M ′(xmk
, xnk

) ≤ max{sǫ, 0, } = sǫ, and

lim sup
k→∞

N(xmk
, xnk

) ≤ max{sǫ, 0, } = 0.

(3.6)

Also on taking limit infimum as k → ∞, we have
ǫ ≤ lim inf

k→∞

M ′(xmk
, xnk

) ≤ lim sup
k→∞

M ′(xmk
, xnk

) ≤ max{sǫ, 0} = sǫ.

Now, using (3.5), we have

ψ(sǫ) = ψ(s3
ǫ

s2
) ≤ ψ(s3 lim sup

k→∞

d(xmk+1, xnk+1))

= ψ(s3 lim sup
k→∞

d(fxmk
, fxnk

)

≤ ψ(lim sup
k→∞

Ms(xmk
, xnk

)− ϕ(lim inf
k→∞

M
′

(xmk
, xnk

))

+ L lim sup
k→∞

N(xmk
, xnk

))

≤ ψ(sǫ)− ϕ(ǫ)

< ψ(sǫ),

a contradiction. So we conclude that {xn} is a b-Cauchy sequence in (X, d).
Since (X, d) is b-complete, it follows that there exists z ∈ X such that
lim
n→∞

xn = z.

Since f is continuous , we have lim
n→∞

fxn = fz, and

fz = lim
n→∞

fxn = lim
n→∞

xn+1 = z.

Theorem 3.2. Let (X, d) be a complete b-metric space with the coefficient s ≥ 1.
Let f : X → X be a selfmapping of X. Assume that there exist two mappings
α, β : X → [0,∞) and ψ, ϕ ∈ Ψ such that f is an almost generalized
(α, β) − (ψ, ϕ) - contractive mapping.

Further, suppose that
(1) there exists x0 ∈ X such that α(x0) ≥ 1 and β(x0) ≥ 1,
(2) f cyclic (α, β) - admissible mapping,
(3) If {xn} is a sequence in X such that xn → z and β(xn) ≥ 1 for all n, then

β(z) ≥ 1.
Then f has a fixed point.

Proof. From the similar arguments as in the proof of Theorem 3.1 we obtain the
sequence {xn} is Cauchy and β(xn) ≥ 1 for all n ∈ N ∪ {0}. Since (X, d) is
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b- complete b- metric space, there exists z ∈ X such that xn → z as n→ ∞. From
(3) we have β(z) ≥ 1.
We assume that fz 6= z. From the triangular inequality, we have
d(z, fz) ≤ s[d(z, fxn) + d(fxnfz)].
On taking the limit supremum as n→ ∞, we have

(3.7)
1

s
d(z, fz) ≤ lim sup

n→∞

d(fxn, fz).

Also we have d(fxn, fz) ≤ s[d(fxn, z) + d(zfz)].
On taking the limit supremum as n→ ∞, we have

(3.8) lim sup
n→∞

d(fxn, fz) ≤ sd(z, fz).

From (3.7) and (3.8), we have

(3.9)
1

s
d(z, fz) ≤ lim sup

n→∞

d(fxn, fz) ≤ sd(z, fz).

From (2.4), we have

ψ(d(z, fz)) ≤ ψ(s2d(z, fz)) = ψ(s3[
1

s
d(z, fz)])

≤ ψ(s3[lim sup
n→∞

d(fxn, fz)])

= lim sup
n→∞

ψ(s3[d(fxn, fz)])

≤ lim sup
n→∞

[ψ(Ms(xn, z))− ϕ(M
′

(xn, z))

+ LN(xn, z)].

(3.10)

Hence we have

ψ(d(z, fz)) ≤ ψ(s2d(z, fz)) ≤ lim sup
n→∞

ψ(Ms(xn, z))

+ lim sup
n→∞

(−ϕ(M
′

(xn, z)))

+ L lim sup
n→∞

N(xn, z),

(3.11)

where
d(z, fz) ≤Ms(xn, z) = max{d(xn, z), d(xn, fxn), d(z, fz),

d(xn,fz)+d(z,fxn)
2s },

d(z, fz) ≤M ′(xn, z) = max{d(xn, z), d(z, fz)},
N(xn, z) = min{d(xn, fxn), d(z, fxn)}.

On taking the limits of Ms(xn, z), M
′(xn, z) and N(xn, z) as n→ ∞ and using

(3.9), we have
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d(z, fz) ≤ lim
n→∞

Ms(xn, z) = max{0, 0, d(z, fz), lim sup
n→∞

d(xn,fz)
2s } = d(z, fz),

lim
n→∞

M ′(xn, z) = max{0, d(z, fz)} = d(z, fz),

lim sup
k→∞

N(xn, z) = {0, 0, } = 0.

From (3.11) we have

ψ(d(z, fz)) ≤ ψ(d(z, fz))− ϕ(d(z, fz))

< ψ(d(z, fz)),
(3.12)

a contradiction. Hence fz = z.

Theorem 3.3. In addition to the hypothesis of Theorem 3.1 (Theorem 3.2), if
α(u) ≥ 1 or β(u) ≥ 1 whenever fu = u. Then f has a unique fixed point.

Proof. Suppose that u and w be two fixed points of f with u 6= w, that is, fu = u

and fw = w. By the hypothesis we have α(u) ≥ 1 or β(u) ≥ 1 and α(w) ≥ 1 or
β(w) ≥ 1. Since f is a cyclic (α, β)-admissible mapping, we have
α(u) ≥ 1 =⇒ β(u) = β(fu) ≥ 1, and β(u) ≥ 1 =⇒ α(u) = α(fu) ≥ 1,
Therefore we have β(u) ≥ 1 and α(u) ≥ 1. And also
α(w) ≥ 1 =⇒ β(w) = β(fw) ≥ 1, and β(w) ≥ 1 =⇒ α(w) = α(fw) ≥ 1. then
we have β(w) ≥ 1 and α(w) ≥ 1. Hence we have α(w) ≥ 1, α(u) ≥ 1, β(w) ≥ 1
and β(u) ≥ 1 this implies α(u)β(w) ≥ 1.
Now, from (2.4) we have

ψ(d(u,w)) = ψ(d(fu, fw)) ≤ ψ(s3d(fu, fw))

≤ ψ(Ms(u,w))− ϕ(M
′

(u, u)) + LN(u,w)
(3.13)

Where

Ms(u,w) = max{d(u,w), d(u, fu), d(w, fw),
d(u, fw) + d(w, fu)

2s
}

= max{d(u,w), d(u, u), d(w,w),
d(u,w) + d(w, u)

2s
}

= max{d(u,w), 0,
d(u,w)

s
}

= d(u,w)

(3.14)

M
′

(u,w) = max{d(u,w), d(w, fw)} = max{d(u,w), d(w,w)} = max{d(u,w), 0} = d(u,w),
N(u,w) = min{d(u, fu), d(w, fu)} = min{d(u, u), d(w, u)} = min{0, d(w, u)} = 0.
by using the inequality (3.13), we have

ψ(d(u,w)) = ψ(d(fu, fw)) ≤ ψ(s3d(fu, fw))

≤ ψ(Ms(u,w))− ϕ(M
′

(u, u)) + LN(u,w)

= ψ(d(u,w)) − ϕ(d(u,w)) + Lθ(0)

= ψ(d(u,w)) − ϕ(d(u,w))

< ψ(d(u,w)),

(3.15)
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a contradiction.Therefore u = w

Hence f has a unique fixed point.

Definition 3.1. Let (X, d) be a b-metric space with coefficient s ≥ 1, and A and
B be two closed subsets of X such that A ∩ B 6= Ø. Let f : A ∪ B → A ∪ B be a
mapping. If there exist ψ, ϕ ∈ Ψ and L ≥ 0 such that

(3.16) ψ(s3d(fx, fy)) ≤ ψ(Ms(x, y))− ϕ(M
′

(x, y)) + LN(x, y),

for all x ∈ A and y ∈ B. Then we say that f is an almost generalized
(A,B)-(ψ, ϕ)-contractive mapping.

Theorem 3.4. Let A and B be two nonempty closed subsets of a complete
b-metric space (X, d) such that A ∩B 6= Ø, and let f : A ∪B → A ∪B be a cyclic
mapping. If f is an almost generalized (A,B)-(ψ, ϕ)-contractive mapping, then f
has a unique fixed point in A ∩B.

Proof. Let us define α, β : A ∪B → A ∪B by

α(x) =

{

1 if x ∈ A

0 otherwise
β(x) =

{

1 if x ∈ B

0 otherwise

For any x, y ∈ A ∪ B with α(x)β(y) ≥ 1, this implies that x ∈ A and y ∈ B, then
from the hypothesis we have
ψ(s3d(fx, fy)) ≤ ψ(Ms(x, y))− ϕ(M

′

(x, y)) + LN(x, y).
Thus, inequality (3.16) holds. Therefore f is an almost generalized
(α, β) − (ψ, ϕ)-contractive mapping.
Since A∩B 6= Ø there exists x0 ∈ A∩B this implies that x0 ∈ A and x0 ∈ B hence
α(x0) ≥ 1 and β(x0) ≥ 1.
Let {xn} be a sequence in X such that β(xn) ≥ 1 for all n ∈ N ∪ {0} and xn → x

as n→ ∞, then xn ∈ B for all n ∈ N∪ {0}. Since B is closed we have x ∈ B hence
β(x) ≥ 1.
Therefore all hypotheses of Theorem 3.2 hold.
Hence f has a fixed point. Let u (say) be the fixed point of f . If u ∈ A, then
u = fu ∈ B. Similarly, if u ∈ B, then u = fu ∈ A.

Hence u ∈ A ∩ B. And also α(u) ≥ 1 and β(u) ≥ 1. Therefore, by Theorem 3.3, f
has a unique fixed point.

4. Corollaries and examples

Corollary 4.1. Let (X, d) be a complete b-metric space with the coefficient s ≥ 1
and f : X → X be a continuous selfmaping of X . If there exist ψ, ϕ ∈ Ψ such that
ψ(s3d(fx, fy)) ≤ ψ(Ms(x, y))− ϕ(M

′

(x, y)) + LN(x, y) for all x, y ∈ X.

Then f has a fixed point.

Proof. By choosing α(x) = β(x) = 1 in Theorem 3.1, the conclusion of this corollary
follows.
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Corollary 4.2. Let (X, d) be a complete b-metric space with the coefficient s ≥ 1.
Let f : X → X be a selfmapping of X. Assume that there exist two mappings
α, β : X → [0,∞) and ψ, ϕ ∈ Ψ such that for all x, y ∈ X with α(x)β(y) ≥ 1

=⇒ ψ(d(fx, fy)) ≤ ψ(M(x, y))− ϕ(M
′

(x, y)) + LN(x, y).
Further, suppose that
(1) there exists x0 ∈ X such that α(x0) ≥ 1 and β(x0) ≥ 1,
(2) f is continuous,
(3) f cyclic (α, β) - admissible mapping.

Then the sequence {xn} in X defined by xn+1 = fxn, n = 0, 1, 2, ... , where x0 ∈ X

is given as in (1) is b-Cauchy and it is b-convergent to z (say) in X, and z is a fixed
point of f .

Proof. The result follows from Theorem 3.1 by taking s = 1.

By choosing s = 1 and α(x) = β(x) = 1 in Theorem 3.1, we have the following.

Corollary 4.3. Let (X, d) be a complete metric space and f : X → X be
selfmapping of X . If there exist ψ, ϕ ∈ Ψ such that
ψ(d(fx, fy)) ≤ ψ(M(x, y)) − ϕ(M

′

(x, y)) + LN(x, y) for all x, y ∈ X.

Then f has a fixed point.

Remark 4.1. Here we observe that Theorem 2.1 is a corollary to Corollary 4.3.
For any x, y ∈ X we have

ψ(d(fx, fy)) ≤ ψ(d(x, y)) − ϕ(d(x, y)) ≤ ψ(Ms(x, y)) − ϕ(M ′

s(x, y))

≤ ψ(Ms(x, y))− ϕ(M
′

(x, y)) + LN(x, y).

Corollary 4.4. (Theorem 2.4) Let (X, d) be a complete b-metric space with the
coefficient s ≥ 1. Let f : X → X be a selfmapping of X. Assume that there exist
two mappings α, β : X → [0,∞) and ψ, ϕ ∈ Ψ such that for all
x, y ∈ X with α(x)β(y) ≥ 1

=⇒ ψ(s3d(fx, fy)) ≤ ψ(Ms(x, y))− ϕ(Ms(x, y))
Further, suppose that
(1) there exists x0 ∈ X such that α(x0) ≥ 1 and β(x0) ≥ 1,
(2) f is continuous,
(3) f cyclic (α, β) - admissible mapping.

Then the sequence {xn} in X defined by xn+1 = fxn, n = 0, 1, 2, ... , where x0 ∈ X

is given as in (1) is b-Cauchy and it is b-convergent to z (say) in X, and z is a fixed
point of f .

Proof. By hypothesis, we have for all x, y ∈ X with α(x)β(y) ≥ 1

=⇒ ψ(s3d(fx, fy)) ≤ ψ(Ms(x, y))− ϕ(Ms(x, y))

≤ ψ(Ms(x, y))− ϕ(M
′

(x, y))

≤ ψ(Ms(x, y))− ϕ(M
′

(x, y)) + LN(x, y)
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Therefore, f satisfies the inequality (2.4) with L = 0. Hence by Theorem 3.1, f has
a fixed point

Corollary 4.5. Let A and B be two nonempty closed subsets of a complete metric
space (X, d) such that A ∩B 6= Ø, and let f : A∪B → A∪B be a cyclic mapping.
If there exist ψ, ϕ ∈ Ψ and L ≥ 0 such that
ψ(d(fx, fy)) ≤ ψ(Ms(x, y)) − ϕ(M

′

(x, y)) + LN(x, y), then f has a unique fixed
point in A ∩B.

Proof. By choosing s = 1 in Theorem 3.4 the conclusion of the corollary follows.

Corollary 4.6. Let A and B be two nonempty closed subsets of a complete metric
space (X, d) such that A ∩B 6= Ø, and let f : A∪B → A∪B be a cyclic mapping.
If there exist ψ, ϕ ∈ Ψ such that
ψ(s3d(fx, fy)) ≤ ψ(Ms(x, y)) − ϕ(M

′

(x, y)), then f has a unique fixed point in
A ∩B.

Proof. follows from Theorem 3.4 by taking L = 0.

Example 4.1. Let X = [2, 3] ∪ {4, 5, 6, ...}, we define d : X ×X → [0,∞) by

d(x, y) =















0 if x = y
1
x
+ 1

y
if x, y ∈ [2, 3]

4 + 1
x
+ 1

y
if x, y ∈ {4, 5, 6, ...}

2 otherwise.

Clearly, d is a b-metric space with the coefficient s ≥ 89
80
.

We define f : X → X by

f(x) =

{

3− x
4

if x ∈ [2, 3]
2 + 3

4x
if x ∈ {3, 4, 5, 6, ...}.

and α, β : X → [0,∞) by

α(x) =

{

3
x

if x ∈ [2, 3]
0 otherwise,

β(x) =

{

4
x

if x ∈ [2, 3]
0 otherwise.

Since for any x ∈ X,α(x) ≥ 1 ⇐⇒ x ∈ [2, 3], we have
β(fx) = 3

fx
= 3

3− x
4

≥ 1, and also x ∈ X, β(x) ≥ 1 ⇐⇒ x ∈ [2, 3], we have

α(fx) = 4
fx

= 4
3− x

4

≥ 1. Therefore, f is cyclic (α, β) - admissible mapping.

Next, we show that f is an almost generalized (α, β)− (ψ,ϕ)- contractive mapping.

For x, y ∈ X with α(x)β(x) ≥ 1 ⇐⇒ x, y ∈ [2, 3]. Hence, for x, y ∈ [2, 3]
fx = 3− x

4
and fy = 3− y

4
and for x 6= y we have

Ms(x, y) = max{d(x, y), d(x, fx), d(y, fy),
d(x, fy) + d(y, fx)

2s
}

= max{
1

x
+

1

y
,
1

x
+

1

fx
,
1

y
+

1

fy
,

1
x
+ 1

fy
+ 1

y
+ 1

fx

2( 89
80
)

} ≥
2

3
,
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M ′(x, y) = max{d(x, y), d(y, fy) = max{ 1
x
+ 1

y
, 1
y
+ 1

fy
} ≤ 1, and

N(x, y) = min{d(x, fx), d(y, fx)} = min{ 1
y
+ 1

fx
, 1
x
+ 1

fx
} ≥ 2

5
.

We now choose ψ(t) = t, ϕ(t) = t
4
, t ≥ 0 then, we have

ψ(s3d(fx, fy)) = d((
89

80
)3d(3−

x

4
, 3−

y

4
))

= (
89

80
)3(

1

3− x
4

+
1

3− y

4

)

≤ (
89

80
)3(

8

9
)

≤
2

3
−

1

4
(1) + 3(

2

5
)

≤ ψ(Ms(x, y) − ϕ(M ′(x, y)) + LN(x, y).

(4.1)

Hence f is an almost generalized (α, β)− (ψ,ϕ)- contractive mapping with L = 3.
Therefore, f satisfies all the hypotheses of Theorem 3.1 and x = 12

5
is a fixed point of f.

Here we observe that when L = 0, the inequality (2.4) fails to hold for x = 2 and
y = 3, we have

ψ(s3d(fx, fy)) = d((
89

80
)3d(f2, f3)) = (

89

80
)3(

38

45
)

� ψ(
9

10
)− ϕ(

5

6
)

= ψ(Ms(2, 3) − ϕ(M ′(2, 3)) = ψ(Ms(x, y) − ϕ(M ′(x, y)).

for any ψ and ϕ. Hence f is not an (α, β)-(ψ,ϕ)-contractive mapping. Therefore
Theorem 2.4 is not applicable.

Further, this example shows the importance of L in the inequality (2.4) of the almost
generalized (α, β)-(ψ,ϕ)- contractive mapping.

Remark 4.2. From Example 4.1 and Corollary 4.4 we observe that
Theorem 3.1(Theorem 3.2) is a generalization of Theorem 2.4.

Example 4.2. Let X = {0, 1
2
, 1
3
, 1
4
, ...} ∪ [1, 2]. We define

d : X ×X → [0,∞) by

d(x, y) =















0 if x = y

|x− y| if x, y ∈ {0, 1
2
, 1
4
, 1
6
, ...}

6 if x, y ∈ { 1
3
, 1
5
, 1
7
, ...} and x 6= y

2 otherwise.

Then it is easy to see that (X, d) is a b-metric space with the coefficient s = 3
2
.

Now, we define f : X → X by

fx =

{

2− x if x ∈ {0, 1, 1
2
, 1
3
, 1
4
, ...}

x
2
+ 1

2
if x ∈ [1, 2].

and α, β : X → [0,∞) by

α(x) = β(x) =

{

x if x ∈ [1, 2]
0 otherwise. .
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Since for any x ∈ X,α(x) ≥ 1 ⇐⇒ x ∈ [1, 2], we have
β(fx) = β(x

2
+ 1

2
) = x

2
+ 1

2
≥ 1. Since α(x) = β(x), clearly f is a

cyclic (α, β)-admissible mapping.
We choose ψ(t) = t, ϕ(t) = t

4
for t ≥ 0.

Now, we show that f is almost generalized (α, β) − (ψ,ϕ)- contractive mapping with
L = 22

8
.

Since α(x)β(y) ≥ 1 ⇐⇒ x, y ∈ [1, 2], for x, y ∈ [1, 2], we have

Ms(x, y) = max {d(x, y), d(x, fx), d(y, fy), d(x,fy)+d(y,fx)

2
(

3

2

) } = {2, 2+2

2( 3

2
)
} = 2,

M ′(x, y) = max {d(x, y), d(y, fy)} = {2, 2} = 2 and
N(x, y) = Min {d(x, fx), d(y, fx)} = {2, 2} = 2.
Hence, for x, y ∈ [1, 2], we have

ψ(s3d(fx, fy)) = ψ((
3

2
)3d(

x

2
+

1

2
,
y

2
+

1

2
)) = ψ(

27

8
2) =

27

4

≤ 2−
2

4
+

(22

8

)

2

≤ ψ(Ms(x, y)) − ϕ(M
′

(x, y)) + LN(x, y).

Hence f is an almost generalized (α, β)-(ψ,ϕ) - contractive mapping with
L = 22

8
and the condition (3) of Theorem 3.2 holds trivially. Therefore f satisfies all the

hypotheses of Theorem 3.2 and x = 1 is a fixed point of f.

Here we observe that when L = 0, the inequality (2.4) fails to hold for x = 1 and
y = 2, we have

ψ(s3d(fx, fy)) = ψ((
3

2
)3d(f1, f2)) = ψ((

3

2
)3(2)) = ψ(

27

8
(2))

� ψ(2)− ϕ(2) = ψ(Ms(x, y)) − ϕ(Ms(x, y))

for any ψ and ϕ, so that f is not an (α, β)-(ψ,ϕ)-contractive mapping.

Further, we observe that the metric d defined in this example is not a metric in the
usual sense, for x = 1

3
, y = 1

5
and z = 1

2
then

d(x, y) = 6 � 2 + 2 = d(x, z) + d(z, y).

Example 4.3. Let X = [0.5,∞) and let d : X ×X → [0,∞) be defined by

d(x, y) =















0 if x = y
1
x
+ 1

y
if x, y ∈ [0.5, 1]

4 + 1
x
+ 1

y
if x, y ∈ (1,∞)

2 otherwise

Clearly, d is a b-metric space with the coefficient s ≥ 3
2
.

Let A = [0.5, 1] and B = [1,∞), we define f : A ∪B → A ∪B by

f(x) =

{

1
x

if x ∈ A
1
2
+ 1

2x
if x ∈ B.

Now, we have for x ∈ A, fx = 1
x
∈ [1,∞) = B which implies that fA ⊂ B and also for

x ∈ B, fx = 1
2
+ 1

2x
∈ [0.5, 1] = A which implies that fB ⊂ A. Hence f is cyclic.
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We choose ψ(t) = t, ϕ(t) = t
2
t ≥ 0.

For x ∈ A and y ∈ B we have

Ms(x, y) = max{d(x, y), d(x, fx), d(y, fy),
d(x, fy) + d(y, fx)

2s
}

= max{2, 2, 2,

1
x
+ 1

1

2
+ 1

2x

+ 4 + 1
y

2( 3
2
)

} ≥ 2,

M ′

s(x, y) = max{d(x, y), d(y, fy)} = max{2, 2} = 2,
and N(x, y) = min{d(x, fx), d(y, fx} = max{2, 4 + 1

y
+ x} = 2.

Now, we have

ψ(s3d(fx, fy)) = ψ(
3

2
d(

1

x
,
1

2
+

1

2x
)

= ψ((
3

2
)3(2)

≤ 2−
2

2
+ 6(2)

≤ ψ(Ms(x, y))− ϕ(Ms(x, y)) + LN(x, y).

(4.2)

Therefore f is an almost generalized (A,B)-(ψ,ϕ)-contractive mapping with L = 6.

Hence f satisfies all the hypotheses of Theorem 3.4 and x = 1 is a unique fixed point
of f.

Further, we observe the following:
if we define

α(x) =

{

1 if x ∈ A

0 otherwise,
β(x) =

{

1 if x ∈ B

0 otherwise,

then f is a cyclic (α, β)-admissible mapping and by (4.2), we have f is an almost gener-
alized (α, β)-(ψ,ϕ)-contractive mapping. Hence f satisfies all the hypotheses of Theorem
3.1, along with the hypothesis of Theorem 3.3, and f has a unique fixed point 1.

But for x = 67
100

and y = 1, we have

ψ(d(fx, fy)) = ψ(d(f
67

100
, f1)) = ψ(d(|

100

67
− 1|) = ψ(

33

67
)

� ψ(
33

100
)− ϕ(

33

100
) = ψ(d(x, y)) − ϕ(d(x, y)),

for any ψ,ϕ ∈ Ψ so that the inequality (2.1) fails to hold. Hence Theorem 2.1 is not
applicable.

REFERENCES

1. Ya. I. and Alber m S. Guerre-Delabriere , Principle of weakly contractive
maps in Hilbert spaces, New Results in Operational Theory and Its Application,
Oper. Theory Adv. Appl., 98, Birkhauser, Basel, (1997), 7-22.

2. S. Alizadeh, F. Moradlou and P. Salimi , Some fixed point results for
(α, β)-(ψ, φ)-contractive mappings, Filomat., 28(3) (2014), 635-647.



196 G. V. R. Babu and T. M. Dula

3. G. V. R. Babu, M. L. Sandhya and M. V. R Kameswari : A note on a
fixed point theorem of Berinde on weak contractions, Carpathian J. Math., 24 (2008),
8-12.

4. V. Berinde, Approximating fixed points of weak contractions using the Picard
iteration, Nonlinear Anal. Forum, 9 (2004), 43-53.

5. V. Berinde , General contractive fixed point theorem for ciric- type almost contrac-
tions in metric space, Carpathian J. Math., 24 (2008), 10-19.

6. M. Boriceanu, M. Bota and A. Petrusel, Mutivalued fractals in b-metric spaces,
Cent. Eur. J. Math, 8 (2010), 367 - 377.

7. S. Czerwik , Contraction mappings in b-metric spaces, Acta Math. Inform. Univ.
Ostraviensis, 1 (1993), 5 - 11.

8. P. N. Dutta and B. S. Choudhury, A generalization of contraction principle in
metric spaces, Fixed Point Theory and Appl., (2008), Article ID 406368, 8 pages.

9. N. Hussain, D. Doric, Z. Kadelburg and S. Radenovic, Suzuki-type fixed point
results in metric type spaces. Fixed Point Theory Appl. 2012, 126 (2012).
doi:10.1186/1687-1812-2012-126.

10. M. S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distances
between the points, Bull. Aust. Math. Soc., 30 (1984), 1-9.

11. W. A. Kirk, P. S. Srinivasan and P. Veeramani, Fixed points for mappings
satisfying cyclical contractive conditions, Fixed Point Theory, 4 (2003), 79 - 89.

12. B. E. Rhoades, Some theorems on weakly contractive maps. Nonlinear Anal. 47
(2001), 2683-2693.

13. J. R. Roshan, V. Parvaneh and Z. Kadelburg, Common fixed point theorems
for weakly isotone increasing mappings in ordered b-metric spaces, Jour. Nonlinear
Sci. and Appl., 7(2014), 229-245.

14. O. Yamaoda and W. Sintunavarat, Fixed point theorems for (α, β)-(ψ,ϕ)-
contractive mappings in b-metric spaces with some numerical results and applica-
tions, J.
Nonlinear Sci. Appl. 9 (2016), 22- 33.

G. V. R. Babu

Department of Mathematics

Andhra University

Visakhapatnam-530 003, India.

gvr babu@hotmail.com

T. M. Dula

Present address :

Department of Mathematics

Andhra University,

Visakhapatnam-530 003, India.

Permanent address :

Department of Mathematics

Wollega University,

Nekemte-395, Ethiopia.

dulamosissa@gmail.com


