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EXISTENCE OF SOLUTIONS FOR NONLINEAR IMPULSIVE

DYNAMIC EQUATIONS ON A TIME SCALE

Abdelouaheb Ardjouni, Ahcene Djoudi

Abstract. Let T be a time scale such that 0, ti, T ∈ T, i = 1, 2, . . . , n, and 0 < ti < ti+1.
Assume each ti is dense. Using a fixed point theorem due to Krasnoselskii-Burton, we
show that the nonlinear impulsive dynamic equation







y∆(t) = −a(t)h (yσ(t)) + f(t, y(t)), t ∈ (0, T ],
y(0) = 0,
y(t+

i
) = y(t−

i
) + I(ti, y(ti)), i = 1, 2, . . . , n,

where y(t±
i
) = lim

t→t
±

i

y(t), and y∆ is the ∆-derivative on T, has a solution.

Keywords: Fixed point, large contraction, time scales, nonlinear impulsive dynamic
equations.

1. Introduction

Let T be a time scale such that 0, ti, T ∈ T, for i = 1, 2, . . . , n, 0 < ti < ti+1,
and assume that ti is dense in T for each i = 1, 2, . . . , n. In this paper, we are
interested in the analysis of qualitative theory of solutions to impulsive dynamic
equations. Motivated by the papers [1]–[4], [8]–[15], [19] and the references therein,
we consider the following totally nonlinear impulsive dynamic equation

(1.1)





y∆(t) = −a(t)h (yσ(t)) + f(t, y(t)), t ∈ (0, T ],
y(0) = 0,
y(t+i ) = y(t−i ) + I(ti, y(ti)), i = 1, 2, . . . , n,

where y(t±i ) = limt→t
±

i

y(t), y(ti) = y(t−i ), a : T → R is a positive rd-continuous

real-valued function, h : R → R is continuous function, f, I : T × R → R satisfying
the Lipschitz condition, [0, T ] = {t ∈ T : 0 ≤ t ≤ T }. Note that the intervals [α, β),
(α, β] and (α, β) are defined similarly.
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In 1988, Stephan Hilger [12] introduced the theory of time scales (measure
chains) as a means of unifying discrete and continuum calculi. Since Hilger’s initial
work there has been significant growth in the theory of dynamic equations on time
scales, covering a variety of different problems; see [6, 7] and references therein. The
study of impulsive initial and boundary value problems is extensive. For the theory
and classical results, we direct the reader to the monographs [5, 16, 17].

Our purpose here is to use a modification of Krasnoselskii’s fixed point theorem
due to Burton (see [8] Theorem 3) to show the existence of solutions on time scales
for equation (1.1). Clearly, the present problem is totally nonlinear so that the
variation of parameters can not be applied directly. Then, we resort to the idea of
adding and subtracting a linear term. As noted by Burton in [8], the added term
destroys a contraction already present in part of the equation but it replaces it with
the so called a large contraction mapping which is suitable for fixed point theory.
During the process we have to transform (1.1) into an integral equation written as
a sum of two mapping; one is a large contraction and the other is compact. After
that, we use a variant of Krasnoselskii fixed point theorem, to show the existence
of a solution for equation (1.1).

In Section 2, we present some preliminary material that we will need through
the remainder of the paper. We will state some facts about the exponential function
on a time scale as well as the modification of Krasnoselskii’s fixed point theorem
established by Burton (see ([8] Theorem 3) and [9]). For details on Krasnoselskii’s
theorem we refer the reader to [18]. We present our main results in Section 3.

2. Preliminaries

The reader can find more details on the materials and basic properties used here
in the first chapter of Bohner and Peterson book [6] and can find good examples on
dynamic equations in Chapter 2 of [7].

A time scale T is a closed nonempty subset of R. For t ∈ T the forward jump
operator σ, and the backward jump operator ρ, respectively, are defined as σ (t) =
inf {s ∈ T : s > t} and ρ (t) = sup {t ∈ T : s < t}. These operators allow elements
in the time scale to be classified as follows. We say t is right scattered if σ (t) > t
and right dense if σ (t) = t. We say t is left scattered if ρ (t) < t and left dense if
ρ (t) = t. The graininess function µ : T → [0,∞), is defined by µ (t) = σ (t) − t
and gives the distance between an element and its successor. We set inf Ø = supT
and supØ = inf T. If T has a left scattered maximum M , we define Tk = T� {M}.
Otherwise, we define Tk = T. If T has a right scattered minimum m, we define
Tk = T� {m}. Otherwise, we define Tk = T.

Let t ∈ Tk and let f : T → R. The delta derivative of f (t), denoted f△ (t), is
defined to be the number (when it exists), with the property that, for each ǫ > 0,
there is a neighborhood U of t such that

∣∣f (σ (t))− f (s)− f△ (t) [σ (t)− s]
∣∣ ≤ ǫ |σ (t)− s| ,



Nonlinear impulsive dynamic equations 81

for all s ∈ U . If T = R then f△ (t) = f ′ (t) is the usual derivative. If T = Z then
f△ (t) = △f (t) = f (t+ 1)− f (t) is the forward difference of f at t.

A function f is right dense continuous (rd-continuous), f ∈ Crd = Crd (T,R),
if it is continuous at every right dense point t ∈ T and its left-hand limits exist at
each left dense point t ∈ T. The function f : T → R is differentiable on Tk provided
f△ (t) exists for all t ∈ Tk. f ∈ C1

rd = C1
rd (T,R) if f

△ ∈ Crd (T,R).

We are now ready to state some properties of the delta-derivative of f . Note
fσ (t) = f (σ (t)).

Theorem 2.1. ([6, Theorem 1.20]) Assume f, g : T → R are differentiable at
t ∈ Tk and let α be a scalar.

(i) (f + g)
△
(t) = g△ (t) + f△ (t).

(ii) (αf)
△
(t) = αf△ (t).

(iii) The product rules

(fg)
△
(t) = f△ (t) g (t) + fσ (t) g△ (t) ,

(fg)△ (t) = f (t) g△ (t) + f△ (t) gσ (t) .

(iv) If g (t) gσ (t) 6= 0 then

(
f

g

)△

(t) =
f△ (t) g (t)− f (t) g△ (t)

g (t) gσ (t)
.

The next theorem is the chain rule on time scales ([6, Theorem 1.93]).

Theorem 2.2. (Chain Rule) Assume ν : T → R is strictly increasing and T̃ :=

ν (T) is a time scale. Let ω : T̃ → R. If ν△ (t) and ω△̃ (ν (t)) exist for t ∈ Tk, then

(ω ◦ ν)
△

=
(
ω△̃ ◦ ν

)
ν△.

In the sequel we will need to differentiate and integrate functions of the form
f (t− τ (t)) = f (ν (t)) where, ν (t) := t−τ (t). Our next theorem is the substitution
rule ([6, Theorem 1.98]).

Theorem 2.3. (Substitution) Assume ν : T → R is strictly increasing and T̃ :=
ν (T ) is a time scale. If f : T → R is rd-continuous function and ν is differentiable
with rd-continuous derivative, then for a, b ∈ T ,

∫ b

a

f (t) ν△ (t)△t =

∫ ν(b)

ν(a)

(
f ◦ ν−1

)
(s) △̃s.

A function p : T → R is said to be regressive provided 1 + µ (t) p (t) 6= 0 for all
t ∈ Tk. The set of all regressive rd-continuous function f : T → R is denoted by R
while the set R+ = {f ∈ R : 1 + µ (t) f (t) > 0 for all t ∈ T}.
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Let p ∈ R and µ (t) 6= 0 for all t ∈ T. The exponential function on T is defined
by

ep (t, s) = exp

(∫ t

s

1

µ (z)
Log (1 + µ (z) p (z))△z

)
.

It is well known that if p ∈ R+, then ep (t, s) > 0 for all t ∈ T. Also, the exponential
function y (t) = ep (t, s) is the solution to the initial value problem y△ = p (t) y,
y (s) = 1. Other properties of the exponential function are given in the following
lemma.

Lemma 2.1. ([6]) Let p, q ∈ R. Then

(i) e0 (t, s) = 1 and ep (t, t) = 1;

(ii) ep (σ (t) , s) = (1 + µ (t) p (t)) ep (t, s) ;

(iii)
1

ep (t, s)
= e⊖p (t, s) , where ⊖p (t) = −

p (t)

1 + µ (t) p (t)
;

(iv) ep (t, s) =
1

ep (s, t)
= e⊖p (s, t) ;

(v) ep (t, s) ep (s, r) = ep (t, r) ;

(vi) e△p (., s) = pep (., s) and

(
1

ep (., s)

)△

= −
p (t)

eσp (., s)
.

Lemma 2.2. ([1]) If p ∈ R+, then

0 < ep (t, s) ≤ exp

(∫ t

s

p (u)△u

)
, ∀t ∈ T.

Corollary 2.1. ([1]) If p ∈ R+ and p (t) < 0 for all t ∈ T, then for all s ∈ T with
s ≤ t we have

0 < ep (t, s) ≤ exp

(∫ t

s

p (u)△u

)
< 1.

Krasnoselskii (see [8] or [18]) combined the contraction mapping theorem and
Schauder’s theorem and formulated the following hybrid and attractive result.

Theorem 2.4. Let M be a closed convex nonempty subset of a Banach space
(S, ‖.‖). Suppose that A and B map M into S such that

(i) ∀x, y ∈M ⇒ Ax+By ∈M ,

(ii) A is continuous and AM is contained in a compact set,

(iii) B is a contraction with constant α < 1.

Then there is a z ∈M with z = Az +Bz.

This is a captivating result and has a number of interesting applications. In
recent year much attention has been paid to this theorem. Burton [8] observed that
Krasnoselskii result can be more interesting in applications with certain changes
and formulated in Theorem 2.6 below (see [8] for the proof).
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Definition 2.1. ([8]) Let (M,d) be a metric space and B :M →M . B is said to
be a large contraction if ϕ, ψ ∈ M , with ϕ 6= ψ then d(Bϕ,Bψ) < d(ϕ, ψ) and if
for all ε > 0 there exists δ < 1 such that

[ϕ, ψ ∈M, d(ϕ, ψ) ≥ ε] ⇒ d(Bϕ,Bψ) ≤ δd(ϕ, ψ).

Theorem 2.5. ([8]) Let (M,d) be a complete metric space and B be a large con-
traction. Suppose there is an x ∈ M and L > 0, such that d (x,Bnx) ≤ L for all
n ≥ 1. Then B has a unique fixed point in M .

Theorem 2.6. (Krasnoselskii-Burton) Let M be a closed bounded convex non-
empty subset of a Banach space (S, ‖.‖). Suppose that A, B map M into M and
that

(i) ∀x, y ∈M ⇒ Ax+By ∈M,

(ii) A is continuous and AM is contained in a compact subset of M,

(iii) B is a large contraction.

Then there is a z ∈M with z = Az +Bz.

It is obvious that if we want to apply the above theorem we need to construct
two mappings, one is large contraction and the other is compact.

3. Existence of solutions

We will state and prove our main results in this section.

Define tn+1 ≡ T and let J0 = [0, t1] and for k = 1, 2, . . . , n, let Jk = (tk, tk+1].
Define

PC = {y : [0, T ] → R | y ∈ Crd(Jk), y(t
±
k ) exist and y(t

−
k ) = y(tk), k = 1, . . . , n},

and

PC1 = {y : [0, T ] → R | y ∈ C1
rd(Jk), k = 1, . . . , n},

where Crd(Jk) is the space of all real valued rd-continuous functions on Jk and
C1

rd(Jk) is the space of all rd-continuously delta-differentiable functions on Jk. The
set PC is a Banach space when it is endowed with the supremum norm

‖u‖ = max
0≤k≤n

{‖u‖k} ,

where ‖u‖k = supt∈Jk
|u(t)|.

In this paper, we make the following conditions

(A) a ∈ R+ is rd-continuous and a (t) > 0 for all t ∈ T.

(F) f ∈ C (T× R,R) and there exists a positive constant k1 such that
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(3.1) |f (t, x)− f (t, y)| ≤ k1 ‖x− y‖ , for x, y ∈ R.

(I) There exists a positive constant k2 such that

(3.2) |I (t, x)− I (t, y)| ≤ k2 ‖x− y‖ , for x, y ∈ R.

Lemma 3.1. The function y ∈ PC1 is a solution of equation (1.1) if and only if
y ∈ PC is a solution of

y(t) =

∫ t

0

e⊖a(t, s)a (s)H(y(s))∆s

+

∫ t

0

e⊖a(t, s)f(s, y(s))∆s+
∑

{i:ti<t}

e⊖a(t, ti)I (ti, y(ti)) ,(3.3)

where

(3.4) H (y (s)) = yσ (s)− h (yσ (s)) .

Proof. For t ∈ J0, the solution of (1.1) satisfying y(0) = 0 is

y(t) =

∫ t

0

e⊖a(t, s)a (s)H(y(s))∆s+

∫ t

0

e⊖a(t, 0)f(s, y(s))∆s.

See [6] for details. To find the solution of (1.1) on J1 we consider the initial value
problem

y∆(t) = −a(t)h (yσ(t)) + f(t, y(t)), t ∈ J1,

y(t+1 ) =

∫ t1

0

e⊖a(t1, s)a (s)H(y(s))∆s

+

∫ t1

0

e⊖a(t1, s)f(s, y(s))∆s+ I(t1, y(t1)).

The solution to this initial value problem is

y(t) =

∫ t

0

e⊖a(t, s)a (s)H(y(s))∆s

+

∫ t

0

e⊖a(t, s)f(s, y(s))∆s+ e⊖a(t, t1)I(t1, y(t1)).

We proceed inductively to obtain that if y ∈ PC1 is a solution of (1.1), then y ∈ PC
is a solution of

y(t) =

∫ t

0

e⊖a(t, s)a (s)H(y(s))∆s

+

∫ t

0

e⊖a(t, s)f(s, y(s))∆s+
∑

{i:ti<t}

e⊖a(t, ti)I (ti, y(ti)) .

The converse statement follows trivially and the proof is complete.



Nonlinear impulsive dynamic equations 85

To apply Theorem 2.6, we need to define a Banach space B, a closed bounded
convex subset ML of B and construct two mappings, one is a large contraction and
the other is compact. So, we let (B, ‖.‖) = (PC, ‖.‖) and ML = {ϕ ∈ B : ‖ϕ‖ ≤ L},
where L is positive constant. We express equation (3.3) as

ϕ (t) = (Bϕ) (t) + (Aϕ) (t) = (Cϕ) (t) ,

where A,B : ML → B are defined by

(3.5) (Aϕ)(t) =

∫ t

0

e⊖a(t, s)f(s, ϕ(s))∆s +
∑

{i:ti<t}

e⊖a(t, ti)I (ti, ϕ(ti)) ,

and

(3.6) (Bϕ)(t) =

∫ t

0

e⊖a(t, s)a (s)H(ϕ(s))∆s.

We need the following assumptions

(3.7) k1L+ |f (t, 0)| ≤ αLa (t) ,

(3.8) nk2L+

n∑

i=1

|I (ti, 0)| ≤ βL,

(3.9) J (α+ β) ≤ 1,

(3.10) max (|H (−L)| , |H (L)|) ≤
2L

J
,

where α, β and J are constants with J ≥ 3.

We begin with the following proposition (see [1]) and for convenience we present,
below, its proof. In the next proposition we prove that, for a well chosen function h,
the mapping H in (3.4) is a large contraction on ML. So, let us make the following
assumptions on the function h : R → R.

(H1) h is continuous on UL = [−L,L] and differentiable on (−L,L).

(H2) h is strictly increasing on UL.

(H3) sup
s∈(−L,L)

h′ (s) ≤ 1.

Proposition 3.1. Let h : R → R be a function satisfying (H1)–(H3). Then the
mapping H in (3.4) is a large contraction on the set ML.

Proof. Let φ, ϕ ∈ ML with φσ 6= ϕσ. Then φσ (t) 6= ϕσ (t) for some t ∈ T. Define
the set

D (φ, ϕ) = {t ∈ T : φσ (t) 6= ϕσ (t)} .
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Note that ϕσ (t) ∈ UL for all t ∈ T whenever ϕ ∈ML. Since h is strictly increasing

(3.11)
h (ϕσ (t))− h (φσ (t))

ϕσ (t)− φσ (t)
=
h (φσ (t))− h (ϕσ (t))

φσ (t)− ϕσ (t)
> 0,

holds for all t ∈ D (φ, ϕ). On the other hand, for all t ∈ D (φ, ϕ), we have

|(Hφ) (t)− (Hϕ) (t)| = |φσ (t)− h (φσ (t))− ϕσ (t) + h (ϕσ (t))|

= |φσ (t)− ϕσ (t)|

∣∣∣∣1−
(
h (φσ (t))− h (ϕσ (t))

φσ (t)− ϕσ (t)

)∣∣∣∣ .(3.12)

For each fixed t ∈ D (φ, ϕ), define the set Ut ⊂ UL by

Ut =

{
(ϕσ (t) , φσ (t)) , if φσ (t) > ϕσ (t) ,
(φσ (t) , ϕσ (t)) , if ϕσ (t) > φσ (t) ,

for t ∈ D (φ, ϕ) .

The mean value theorem implies that for each fixed t ∈ D (φ, ϕ) there exists a real
number ct ∈ Ut such that

h (φσ (t))− h (ϕσ (t))

φσ (t)− ϕσ (t)
= h′ (ct) .

By (H2) and (H3), we have

(3.13) 1 ≥ sup
t∈(−L,L)

h′ (t) ≥ sup
t∈Ut

h′ (t) ≥ h′ (ct) ≥ inf
s∈Ut

h′ (s) ≥ inf
t∈(−L,L)

h′ (t) ≥ 0.

Consequently, by (3.11)–(3.13), we obtain

(3.14) |(Hφ) (t)− (Hϕ) (t)| ≤

∣∣∣∣1− inf
u∈(−L,L)

h′ (u)

∣∣∣∣ |φ
σ (t)− ϕσ (t)| ,

for all t ∈ D (φ, ϕ). Hence, the mapping H is a large contraction in the supremum
norm. Indeed, fix ǫ ∈ (0, 1) and assume that φ and ϕ are two functions in ML

satisfying
‖φ− ϕ‖ = sup

t∈D(φ,ϕ)

|φ (t)− ϕ (t)| ≥ ǫ.

If |φσ (t)− ϕσ (t)| ≤ ǫ/2 for some t ∈ D (φ, ϕ), then from (3.13) and (3.14), we get

(3.15) |(Hφ) (t)− (Hϕ) (t)| ≤ |φσ (t)− ϕσ (t)| ≤
1

2
‖φ− ϕ‖ .

Since h is continuous and strictly increasing, the function h
(
u+ ǫ

2

)
−h (u) attains its

minimum on the closed and bounded interval [−L,L]. Thus, if ǫ
2 < |φσ (t)− ϕσ (t)|

for some t ∈ D (φ, ϕ), then from (H2) and (H3) we conclude that

1 ≥
h (φσ (t))− h (ϕσ (t))

φσ (t)− ϕσ (t)
> λ,
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where,

λ =
1

2L
min

{
h
(
u+

ǫ

2

)
− h (u) , u ∈ [−L,L]

}
> 0.

Therefore, from (3.12), we have

(3.16) |(Hφ) (t)− (Hϕ) (t)| ≤ (1− λ) ‖φ− ϕ‖ .

Consequently, it follows from (3.15) and (3.16) that

|(Hφ) (t)− (Hϕ) (t)| ≤ η ‖φ− ϕ‖ ,

where

η = max

{
1

2
, 1− λ

}
< 1.

The proof is complete.

We shall prove that the mapping C has a fixed point which solves (1.1), whenever
its derivative exists.

Lemma 3.2. For A defined in (3.5), suppose that (A)–(I) and (3.7)–(3.9) hold.
Then A : ML → ML is continuous in the supremum norm and maps ML into a
compact subset of ML.

Proof. We first show that A : ML → ML. It is clear that A : ML → PC. In view
of (3.1) and (3.2) we arrive at

|f (t, x)| ≤ |f (t, x)− f (t, 0)|+ |f (t, 0)| ≤ k1 ‖x‖+ |f (t, 0)| ,

|I (t, x)| ≤ |I (t, x) − I (t, 0)|+ |I (t, 0)| ≤ k2 ‖x‖ + |I (t, 0)| .

So, for any ϕ ∈ML, we have

|(Aϕ) (t)| ≤

∫ t

0

e⊖a(t, s) |f(s, ϕ(s))|∆s+
∑

{i:ti<t}

e⊖a(t, ti) |I (ti, ϕ(ti))| ,

≤

∫ t

0

e⊖a(t, s) (k1L+ |f (s, 0)|)∆s+

n∑

i=1

e⊖a(t, ti) (k2L+ |I (ti, 0)|) ,

≤ αL

∫ t

0

e⊖a(t, s)a (s)∆s+ nk2L+

n∑

i=1

|I (ti, 0)|

≤ αL + βL = (α+ β)L ≤
L

J
< L.

Thus, Aϕ ∈ML. Consequently, we have A : ML →ML.
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We show that A is continuous in the supremum norm. Toward this, let ϕ, ψ ∈
ML. Note that from a (t) > 0 we have max

s∈[0,t]
{e⊖a (t, s)} ≤ 1. So,

|(Aϕ) (t)− (Aψ) (t)| ≤

∫ t

0

e⊖a(t, s) |f(s, ϕ(s))− f(s, ψ(s))|∆s

+
∑

{i:ti<t}

e⊖a(t, ti) |I (ti, ϕ(ti))− I (ti, ψ(ti))| ,

≤ k1T ‖ϕ− ψ‖+ nk2 ‖ϕ− ψ‖

≤ (k1T + nk2) ‖ϕ− ψ‖ .

Let ǫ > 0 be arbitrary. Define θ = ǫ/K with K = k1T + nk2, where k1 and k2 are
given by (3.1) and (3.2). Then, for ‖ϕ− ψ‖ < θ we obtain

‖Aϕ−Aψ‖ ≤ K ‖ϕ− ψ‖ < ǫ.

This proves that A is continuous.

It remains to show that A is compact. Let ϕn ∈ ML, where n is a positive
integer and let

(3.17) γ = max
t∈[0,T ]

{a (t)} , µ = max
t∈[0,T ]

|f (t, 0)| .

Then, as above, we see that
‖Aϕn‖ ≤ L.

Moreover, a direct calculation shows that

(Aϕn)
△
(t) = −a (t) (Aϕn) (t) + f(t, ϕn(t)).

By invoking (3.1) and (3.17) we obtain
∣∣∣(Aϕn)

△ (t)
∣∣∣ ≤ (γ + k1)L+ µ ≤ D,

for some positive constant D. Hence the sequence (Aϕn) is uniformly bounded
and equicontinuous. The Ascoli-Arzela theorem implies that a subsequence (Aϕnk

)
of (Aϕn) converges uniformly. Thus A is continuous and AML is contained in a
compact subset of ML.

Lemma 3.3. Let B be defined by (3.6) and that (H1)–(H3) and (3.10) hold. Then
B :ML →ML is a large contraction.

Proof. We first show that B : ML → ML. Clearly, B : ML → PC. So, for any
ϕ ∈ML, we get by (3.6) that

|(Bϕ) (t)| ≤

∫ t

0

e⊖a (t, s) a (s) |H (ϕ (s))|△s

≤ max (|H (−L)| , |H (L)|)

∫ t

0

e⊖a (t, s) a (s)△s

≤
2L

J
< L.
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Thus Bϕ ∈ML. Consequently, we have B :ML →ML.

It remains to show that B is large contraction with a unique fixed point in ML.
Form the proof of Proposition 3.1 we have for φ, ϕ ∈ML, with φ 6= ϕ

|(Bφ) (t)− (Bϕ) (t)| ≤

∫ t

0

e⊖a (t, s)a (s) |H (φ (s))−H (ϕ (s))|△s

≤ ‖φ− ϕ‖

∫ t

0

e⊖a (t, s) a (s)△s

≤ ‖φ− ϕ‖ .

Then ‖Bφ −Bϕ‖ ≤ ‖φ− ϕ‖. Now, let ǫ ∈ (0, 1) be given and let φ, ϕ ∈ ML with
‖φ− ϕ‖ ≥ ǫ. From the proof of Proposition 3.1, we have found a η < 1, such that

|(Bϕ) (t)− (Bψ) (t)| ≤

∫ t

0

e⊖a (t, s) a (s) |H (φ (s))−H (ϕ (s))|△s

≤ η ‖φ− ϕ‖

∫ t

0

e⊖a (t, s)a (s)△s

≤ η ‖ϕ− ψ‖ .

Then ‖Bφ−Bϕ‖ ≤ η ‖ϕ− ψ‖. Consequently, B is a large contraction on ML.

Theorem 3.1. Let ML = {ϕ ∈ PC : ‖ϕ‖ ≤ L}, where L is a positive constant.
Suppose (A)–(I), (H1)–(H3) and (3.7)–(3.10) hold. Then equation (1.1) has a
solution ϕ in the subset ML.

Proof. By Lemma 3.2, A : ML → ML is continuous and AML is contained in
a compact set. Also, from Lemma 3.3, the mapping B : ML → ML is a large
contraction. Next, note that if φ, ϕ ∈ML, we have

‖Aφ+Bϕ‖ ≤ ‖Aφ‖ + ‖Bϕ‖ ≤
L

J
+

2L

J
≤ L.

Thus Aφ+Bϕ ∈ML.

Clearly, all the hypotheses of the Krasnoselskii-Burton’s theorem (Theorem 2.6) are
satisfied. Thus there exists a fixed point ϕ ∈ ML such that ϕ = Aϕ + Bϕ. Hence
the equation (1.1) has a solution in ML.
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