
FACTA UNIVERSITATIS (NIŠ)
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Abstract. The aim of this paper is to establish some new nonlinear Gamidov integral
inequalities in two independent variables which can give the explicit bounds on un-
known functions. To show the feasibility of the obtained inequalities, some illustrative
examples are also introduced.
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1. Introduction

The integral inequalities which provide explicit bounds on unknown functions play
an important role in the development of the theory of differential and integral
equations. For instance, see [1− 19] and the references given therein. During the
past few years, an enormous amount of effort has been devoted to the discovery of
new types of inequalities and their applications in various branches of ordinary and
partial differential and integral equations.

In [8] , Sh.G.Gamidov, while studying the boundary value problem for higher
order differential equations, initiated the study of obtaining explicit upper bounds
on the integral inequalities of the forms

(1.1) u(t) ≤ c +

∫ t

a

f(s)u(s)ds +

∫ b

a

g(s)u(s)ds,

for t ∈ [a, b], under some suitable conditions on the functions involved in (1.1).

Pachpatte obtained the following interesting explicit bounds on certain integral
inequalities which appear in [14] :
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(1.2) u(t) ≤ a(t) +

∫ t

a

f(t, s)u(s)ds +

∫ b

a

g(s)u(s)ds.

Very recently, K. Cheng, C. Guo in [5] discussed the following general version
in two independent variables:
(1.3)

u(x, y) ≤ a(x, y)+b(x, y)

∫ x

0

∫ y

0

f(s, t)u(s, t)dsdt+c(x, y)

∫ M

0

∫ N

0

g(s, t)u(s, t)dsdt,

for (x, y) ∈ [0,M ] × [0, N ] .

Motivated by the results above and the inequalities obtained in [5,8,10,14], we
give a generalization of nonlinear Gamidov integral inequalities in two independent
variables which can be used as a tool to study the boundedness of solutions of
integral equations. Some applications are also given to illustrate the usefulness of
some of our results.

Before establishing our main results, we need the following lemmas.

Lemma 1.1. [5] Assume u(x, y), a(x, y), c(x, y), g(x, y) ∈ C([0,M ]×[0, N ] , [0,∞))
and

u(x, y) ≤ a(x, y) + c(x, y)

∫ M

0

∫ N

0

u(s, t)g(s, t)dsdt,

for (x, y) ∈ [0,M ] × [0, N ] . If
∫M

0

∫ N

0
c(s, t)g(s, t)dsdt < 1, then the following

explicit estimate

u(x, y) ≤ a(x, y) +
c(x, y)

∫M

0

∫ N

0
a(s, t)g(s, t)dsdt

1−
∫M

0

∫ N

0
c(s, t)g(s, t)dsdt

,

holds for (x, y) ∈ [0,M ]× [0, N ] .

Lemma 1.2. [9] Assume that a ≥ 0, p ≥ q ≥ 0 and p 6= 0, then

(1.4) a
q
p ≤ q

p
K

q−p
p a +

p− q

p
K

q
p ,

for any K > 0.

2. Main Result

In what follows, R denotes the set of real numbers R+ = [0,∞) , I1 = [0,M ] , and
I2 = [0, N ] are given subsets of R. Let ∆ = I1× I2, C(U, V ) denotes the collection
of continuous functions from U to V . Now let us give the main results of this paper.
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Lemma 2.1. Asssume that u(x, y), a(x, y), c(x, y), g(x, y) ∈ C(∆,R+) and n :
R+ → R+ a differentiable increasing function on ]0,+∞[ with the continuous non-
increasing first derivative n

′
on ]0,+∞[. If

(2.1) u(x, y) ≤ a(x, y) + c(x, y)

∫ M

0

∫ N

0

g(s, t)n(u(s, t))dsdt,

then the following explicit estimate

(2.2) u(x, y) ≤ a(x, y) +
c(x, y)

∫M

0

∫ N

0
g(s, t)n(a(s, t))dsdt

1−
∫M

0

∫ N

0
c(s, t)g(s, t)ń(a(s, t))dsdt

,

holds for (x, y) ∈ ∆, provided that

(2.3)

∫ M

0

∫ N

0

c(s, t)g(s, t)n′(a(s, t))dsdt < 1.

Proof. Obviously,
∫M

0

∫ N

0
g(s, t)n(u(s, t))dsdt is a constant.

Letting

(2.4) Ω =

∫ M

0

∫ N

0

g(s, t)n(u(s, t))dsdt,

from (2.1), we have

(2.5) u(x, y) ≤ a(x, y) + c(x, y)Ω.

Since n is increasing on ]0,+∞[, then

(2.6) n(u(x, y)) ≤ n(a(x, y) + c(x, y)Ω).

Applying the mean value Theorem for the function n, then for every x1 ≥ y1 > 0
there exists c ∈]y1, x1[ such that

(2.7) n(x1)− n(y1) = ń(c)(x1 − y1) ≤ n′(y1)(x1 − y1).

Which gives

(2.8) n(u(x, y)) ≤ n′(a(x, y))c(x, y)Ω + n(a(x, y)),

taking into account that g(x, y) is positive, then
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(2.9) g(x, y)n(u(x, y)) ≤ g(x, y)n′(a(x, y))c(x, y)Ω + g(x, y)n(a(x, y)).

Integrating both sides of (2.9) on ∆, we obtain

Ω =

∫ M

0

∫ N

0

g(s, t)n(u(s, t))dsdt(2.10)

≤ Ω

∫ M

0

∫ N

0

c(s, t)g(s, t)n′(a(s, t))dsdt

+

∫ M

0

∫ N

0

g(s, t)n(a(s, t))dsdt.

It follows from (2.10) that

Ω ≤
∫M

0

∫ N

0
g(s, t)n(a(s, t))dsdt

1−
∫M

0

∫ N

0
c(s, t)g(s, t)n′(a(s, t))dsdt

.

Substituting the inequality above into (2.5), we get the explicit estimate (2.2)
for u(x, y).

Remark 2.1. By taking n(x) = x, the inequality given in Lemma 2.1 reduces to the
inequality given in Lemma 1.1.

Corollary 2.1. Suppose that the conditions of Lemma 2.1 hold. Then

u(x, y) ≤ a(x, y) + c(x, y)

∫ M

0

∫ N

0

g(s, t) arctan(u(s, t))dsdt.

Implies

(2.11) u(x, y) ≤ a(x, y) +
c(x, y)

∫M

0

∫ N

0
g(s, t) arctan(a(s, t))dsdt

1−
∫M

0

∫ N

0

c(s, t)g(s, t)

1 + a2(s, t)
dsdt

, .

for (x, y) ∈ ∆, provided that∫ M

0

∫ N

0

c(s, t)g(s, t)

1 + a2(s, t)
dsdt < 1,

and if

u(x, y) ≤ a(x, y) + c(x, y)

∫ M

0

∫ N

0

g(s, t) ln(u(s, t) + 1)dsdt,
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then

u(x, y) ≤ a(x, y) +
c(x, y)

∫M

0

∫ N

0
g(s, t) ln(a(s, t) + 1)dsdt

1−
∫M

0

∫ N

0

c(s, t)g(s, t)

1 + a(s, t)
dsdt

,

for (x, y) ∈ ∆, provided that∫ M

0

∫ N

0

c(s, t)g(s, t)

1 + a(s, t)
dsdt < 1.

Theorem 2.1. Assume that a(x, y), b(x, y), c(x, y), f(x, y), g(x, y) ∈ C(∆,R+)
and a(x, y), b(x, y), c(x, y) are nondecreasing in x and y. Let n : R+ → R+is a
differentiable increasing function on ]0,+∞[ with continuous non-increasing first
derivative n′ on ]0,+∞[. If u(x, y) ∈ C(∆,R+) satisfies
(2.12)

u(x, y)≤a(x, y)+b(x, y)

∫ x

0

∫ y

0

f(s, t)u(s, t)dsdt+c(x, y)

∫ M

0

∫ N

0

g(s, t)n(u(s, t))dsdt,

then, we have

u(x, y) ≤ A∗(x, y) + C∗(x, y)×(2.13) ∫M

0

∫ N

0
g(s, t)n(A∗(s, t))dsdt

1−
∫M

0

∫ N

0
C∗(s, t)g(s, t)n′(A∗(s, t))dsdt

,

for (x, y) ∈ ∆, provided that∫ M

0

∫ N

0

C∗(s, t)g(s, t)n′(A∗(s, t))dsdt < 1,

where

A∗(x, y) = a(x, y) exp

{
b(x, y)

∫ x

0

∫ y

0

f(s, t)dsdt

}
,(2.14)

C∗(x, y) = c(x, y) exp

{
b(x, y)

∫ x

0

∫ y

0

f(s, t)dsdt

}
.

Proof. Fixing any arbitrary (X,Y ) ∈ ∆ , then for (x, y) ∈ ∆1 = [0, X]× [0, Y ],
from (2.12), we have

(2.15)

u(x, y)≤a(X,Y )+b(X,Y )

∫ x

0

∫ y

0

f(s, t)u(s, t)dsdt+c(X,Y )

∫ M

0

∫ N

0

g(s, t)n(u(s, t))dsdt,

where we apply that a(x, y), b(x, y), and c(x, y) are nondecreasing in x and y.
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Define a function v(x, y), (x, y) ∈ ∆1 by the right side of (2.15). Then, v(x, y)
is positive and nondecreasing in x and y and

(2.16) u(x, y) ≤ v(x, y).

Furthermore, we have

(2.17) v(0, y) = a(X,Y ) + c(X,Y )

∫ M

0

∫ N

0

g(s, t)n(u(s, t))dsdt,

∂

∂x
v(x, y) = b(X,Y )

∫ y

0

f(x, t)u(x, t)dt(2.18)

≤ b(X,Y )

∫ y

0

f(x, t)v(x, t)dt

≤ (b(X,Y )

∫ y

0

f(x, t)dt)v(x, y).

Since v(x, y) is nondecreasing in y, from (2.18), one gets

(2.19)
(∂/∂x) v(x, y)

v(x, y)
≤ b(X,Y )

∫ y

0

f(x, t)dt.

Now, keeping y fixed in (2.19), setting x = s, and integrating the last inequality
with respect to s from 0 to x, we get

(2.20) v(x, y) ≤ v(0, y) exp

{
b(X,Y )

∫ x

0

∫ y

0

f(s, t)dsdt

}
.

It follows from (2.16) and (2.17) that

u(x, y) ≤

[
a(X,Y ) + c(X,Y )

∫ M

0

∫ N

0

g(s, t)n(u(s, t))dsdt

]

× exp

{
b(X,Y )

∫ x

0

∫ y

0

f(s, t)dsdt

}
= a(X,Y ) exp

{
b(X,Y )

∫ x

0

∫ y

0

f(s, t)dsdt

}
+c(X,Y ) exp

{
b(X,Y )

∫ x

0

∫ y

0

f(s, t)dsdt

}
×
∫ M

0

∫ N

0

g(s, t)n(u(s, t))dsdt(2.21)

= A1(x, y,X, Y ) + C1(x, y,X, Y )

∫ M

0

∫ N

0

g(s, t)n(u(s, t))dsdt,
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where

A1(x, y,X, Y ) = a(X,Y ) exp

{
b(X,Y )

∫ x

0

∫ y

0

f(s, t)dsdt

}
,(2.22)

C1(x, y,X, Y ) = c(X,Y ) exp

{
b(X,Y )

∫ x

0

∫ y

0

f(s, t)dsdt

}
.

Using Lemma 2.1, from (2.21), we easily obtain

u(x, y) ≤ A1(x, y,X, Y ) + C1(x, y,X, Y )(2.23)

×
∫M

0

∫ N

0
g(s, t)n(A1(s, t,X, Y ))dsdt

1−
∫M

0

∫ N

0
C1(s, t,X, Y )g(s, t)n′(A1(s, t,X, Y ))dsdt

,

since the inequality (2.23) holds for all (x, y) ∈ ∆1 , taking x = X and y = Y , we
have

u(X,Y ) ≤ A1(X,Y,X, Y ) + C1(X,Y,X, Y )×(2.24) ∫M

0

∫ N

0
g(s, t)n(A1(s, t,X, Y ))dsdt

1−
∫M

0

∫ N

0
C1(s, t,X, Y )g(s, t)n′(A1(s, t,X, Y ))dsdt

= A∗(X,Y ) + C∗(X,Y )×∫M

0

∫ N

0
g(s, t)n(A∗(s, t))dsdt

1−
∫M

0

∫ N

0
C∗(s, t)g(s, t)n′(A∗(s, t))dsdt

,

for (X,Y ) ∈ ∆, where A∗(X,Y ) and C∗(X,Y ) are defined as in (2.14).

Taking into account that X and Y are arbitrary, we replace X and Y by x
and y, respectively, and we get the required inequality in (2.13).

Remark 2.2. If we take n(x) = x, then Theorem 2.1 reduces to Theorem 2 in [5].

Theorem 2.2. Let a(x, y), b(x, y), c(x, y), f(x, y) and g(x, y) be as in Theorem
2.1. If u(x, y) ∈ C(∆,R+) satisfies

(2.25)

up(x, y) ≤ a(x, y)+b(x, y)

∫ x

0

∫ y

0

f(s, t)uq(s, t)dsdt+c(x, y)

∫ M

0

∫ N

0

g(s, t)n(u(s, t))dsdt,

where p ≥ q ≥ 0, p ≥ 1 are constants, then

u(x, y) ≤ A∗(x, y) + C∗(x, y)×(2.26) ∫M

0

∫ N

0
G∗(s, t)n(A∗(s, t))dsdt

1−
∫M

0

∫ N

0
C∗(s, t)G∗(s, t)n′(A∗(s, t))dsdt

,
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for (x, y) ∈ ∆, provided that∫ M

0

∫ N

0

C∗(s, t)G∗(s, t)n′(A∗(s, t))dsdt < 1,

where

A∗(x, y) = A1(x, y) exp

{
B1(x, y)

∫ x

0

∫ y

0

F ∗(s, t)dsdt

}
,(2.27)

C∗(x, y) = C1(x, y) exp

{
B1(x, y)

∫ x

0

∫ y

0

F ∗(s, t)dsdt

}
,

and

A1(x, y) =
1

p
K

1−p
p b(x, y)

∫ x

0

∫ y

0

f(s, t)

[
q

p
K(q−p)/pa(s, t) +

p− q

p
Kq/p

]
dsdt

+
1

p
K

1−p
p a(x, y) +

p− 1

p
K

1
p ,

B1(x, y) =
q

p
K(q−p)/pb(x, y), C1(x, y) =

1

p
K

1−p
p c(x, y),

(2.28) F ∗(x, y) = f(x, y),

G∗(x, y) = g(x, y),

Proof. Define a function w(x, y) by

w(x, y) = b(x, y)

∫ x

0

∫ y

0

f(s, t)uq(s, t)dsdt(2.29)

+c(x, y)

∫ M

0

∫ N

0

g(s, t)n(u(s, t))dsdt,

for (x, y) ∈ ∆. Then, from (2.29) , we have

(2.30) up(x, y) ≤ a(x, y) + w(x, y).

Applying Lemma 1.2, we get

(2.31)

u(x, y) ≤ (a(x, y) + w(x, y))1/p ≤ 1

p
K

1−p
p (a(x, y) + w(x, y)) +

p−1

p
K

1
p = v(x, y).

uq(x, y) ≤ (a(x, y) + w(x, y))
q/p ≤ q

p
K(q−p)/p (a(x, y) + w(x, y)) +

p− q

p
Kq/p.
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It follows from (2.29),(2.30) and (2.31) that

w(x, y) ≤ b(x, y)

∫ x

0

∫ y

0

f(s, t)(2.32)

×
[
q

p
K(q−p)/p (a(s, t) + w(s, t)) +

p− q

p
Kq/p

]
dsdt

+c(x, y)

∫ M

0

∫ N

0

g(s, t)n(v(s, t))dsdt,

taking into-account that 1
pK

1−p
p w(x, y) ≤ v(x, y), we have

w(x, y) ≤ b(x, y)

∫ x

0

∫ y

0

f(s, t)

[
q

p
K(q−p)/pa(s, t) +

p− q

p
K

q/p

]
dsdt

+qK(q−1)/pb(x, y)

∫ x

0

∫ y

0

f(s, t)v(s, t)dsdt

+c(x, y)

∫ M

0

∫ N

0

g(s, t) n(v(s, t))dsdt.(2.33)

Multiplying both sides of (2.33) by 1
pK

1−p
p and adding 1

pK
1−p
p a(x, y) + p−1

p K
1
p

to both sides of the resultant inequality, we obtain

v(x, y) ≤ A1(x, y) + B1(x, y)

∫ x

0

∫ y

0

F ∗(s, t)v(s, t)dsdt(2.34)

+C1(x, y)

∫ M

0

∫ N

0

G∗(s, t)n(v(s, t))dsdt,

where A1(x, y), B1(x, y), C1(x, y), F ∗(x, y) and G∗(x, y) are defined as in (2.28).

Note that A1(x, y), B1(x, y) and C1(x, y) are nonnegative, continuous, and non-
decreasing for (x, y) ∈ ∆.A suitable application of Theorem 2.1 to (2.34) gives

u(x, y) ≤ v(x, y) ≤ A∗(x, y) + C∗(x, y)×(2.35) ∫M

0

∫ N

0
G∗(s, t)n(A∗(s, t))dsdt

1−
∫M

0

∫ N

0
C∗(s, t)G∗(s, t)n′(A∗(s, t))dsdt

,

where A∗(x, y) and C∗(x, y) are defined as in (2.27).

Remark 2.3. If we take n(x) = x, then Theorem 2.2 reduces to Theorem 6 in [5] .

3. Applications

In this section, we shall illustrate how our main results can be applied to study the
boundedness and uniqueness of the solution to certain integral equations in two
independent variables.
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Example 3.1. Consider the following integral equation:

(3.1) z(x, y) = a(x, y) + b(x, y)

∫ x

0

∫ y

0

F (s, t, z)dsdt + c(x, y)

∫ M

0

∫ N

0

G(s, t, z)dsdt,

for (x, y) ∈ ∆, where z(x, y) ∈ C(∆,R), a(x, y), b(x, y), c(x, y) ∈ C(∆,R+) are nondecreas-
ing in x and y, F (x, y, z), G(x, y, z) ∈ C(∆× R,R).

Theorem 3.1. Assume that the functions F and G in (3.1) satisfy the conditions

|F (s, t, z)| ≤ f(s, t) |z| ,(3.2)

|G(s, t, z)| ≤ g(s, t)n(|z|),

where f(s, t), g(s, t) and n are defined as in Theorem 2.1.

If z(x, y) is the unique solution of (3.1), then

|z(x, y)| ≤ A∗(x, y) + C∗(x, y)×(3.3) ∫M

0

∫ N

0
g(s, t)n(A∗(s, t))dsdt

1−
∫M

0

∫ N

0
C∗(s, t)g(s, t)n′(A∗(s, t))dsdt

,

for (x, y) ∈ ∆, provided that

(3.4)

∫ M

0

∫ N

0

C∗(s, t)g(s, t)n′(A∗(s, t))dsdt < 1,

where A∗(x, y), C∗(x, y) are defined in (2.14).

Proof. Assume that z(x, y) is the unique solution of (3.1) , from (3.2) we have

|z(x, y)| ≤ a(x, y) + b(x, y)

∫ x

0

∫ y

0

f(s, t) |z(s, t)| dsdt(3.5)

+c(x, y)

∫ M

0

∫ N

0

g(s, t)n(|z(s, t)|)dsdt.

Now an application of Theorem 2.1 to (3.5), yields the required inequality in
(3.3).

Corollary 3.1. If we take in (3.2), n(z) = arctan(z), then the unique solution of
(3.1) can be expressed as

|z(x, y)| ≤ A∗(x, y) + C∗(x, y)×∫M

0

∫ N

0
g(s, t) arctan(A∗(s, t))dsdt

1−
∫M

0

∫ N

0
C∗(s,t)g(s,t)dsdt

1+A∗2(s,t)

,
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provided that ∫ M

0

∫ N

0

C∗(s, t)g(s, t)dsdt

1 + A∗2(s, t)
< 1.

If we take n(z) = ln(z + 1), then the unique solution of (3.1) can be expressed as

|z(x, y)| ≤ A∗(x, y) + C∗(x, y)×∫M

0

∫ N

0
g(s, t) ln(A∗(s, t) + 1)dsdt

1−
∫M

0

∫ N

0
C∗(s,t)g(s,t)dsdt

1+A∗(s,t)

,

provided that ∫ M

0

∫ N

0

C∗(s, t)g(s, t)dsdt

1 + A∗(s, t)
< 1.

Proposition 3.1. Assume that the functions F and G in (3.1) satisfy the condi-
tions

|F (s, t, z)| − F (s, t, z) ≤ f(s, t) |z − z| ,(3.6)

|G(s, t, z)| −G(s, t, z) ≤ g(s, t)n(|z − z|),

where f(s, t), g(s, t) and n are defined as in Theorem 2.1 with n(0) = 0. If

∫ M

0

∫ N

0

C∗(s, t)g(s, t)n′(A∗(s, t))dsdt < 1,

where A∗and C∗are defined as in Theorem 2.1, and z(x, y) is a solution of (3.1),
then (3.1) has at most one solution.

Proof. Let z(x, y) and z(x, y) be two solutions of (3.1), then

z(x, y) = a(x, y) + b(x, y)

∫ x

0

∫ y

0

F (s, t, z)dsdt

+c(x, y)

∫ M

0

∫ N

0

G(s, t, z)dsdt,

z(x, y) = a(x, y) + b(x, y)

∫ x

0

∫ y

0

F (s, t, z)dsdt

+c(x, y)

∫ M

0

∫ N

0

G(s, t, z)dsdt.(3.7)
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From (3.7), we have

|z(x, y)− z(x, y)| ≤ b(x, y)

∫ x

0

∫ y

0

|F (s, t, z)− F (s, t, z)| dsdt(3.8)

+c(x, y)

∫ M

0

∫ N

0

|G(s, t, z)−G(s, t, z)| dsdt

≤ b(x, y)

∫ x

0

∫ y

0

f(s, t) |z − z| dsdt

+ c(x, y)

∫ M

0

∫ N

0

g(s, t)n(|z − z|)dsdt.

According to Theorem 2.1, we obtain that |z(x, y)− z(x, y)| ≤ 0, which implies
z(x, y) = z(x, y) for (x, y) ∈ ∆.
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