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Abstract. The aim of this paper is to obtain a coupled coincidence point theorem and a
common coupled fixed point theorem of contractive type mappings involving rational
expressions in the framework of a complex-valued metric spaces. The results of this
paper generalize and extend the results of Bhaskar and Lakhmikantham [7], Azam et al.
[3] and several known results in complex-valued metric spaces.
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1. Introduction

The fixed point theory has gained impetus, due to its wide range of applicability
to resolve diverse problems emanating from the theory of non-linear differential
equations, theory of non-linear integral equations, game theory, mathematical eco-
nomics and so forth.

The first fixed point theorem was given by Brouwer [9] in 1912, but the credit
of making concept useful and popular goes to the Polish mathematician Stephan
Banach [5] who proved the famous contraction mapping theorem in 1922 which
states that: Let (X, d) be a complete metric space and let T : X — X be a contraction
on X, that is, there exists a constant A € [0, 1) such that d(Tx, Ty) < Ad(x, y) for all
X,y € X. Then T has a unique fixed point in X.

The Banach contraction principle [5] is one of the most important and useful
results in the metric fixed point theory. It guarantees the existence and uniqueness
of the fixed point of certain self-maps of metric spaces and provides a construc-
tive method to find those fixed points. This principle includes different direction
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in different spaces adopted by mathematicians; for example, 2-metric spaces, G-
metric spaces, partial metric spaces, cone metric spaces have already been obtained.

Recently, Azam et al [3] introduced a new space called complex-valued metric
space which is more general than the well-known metric space, and obtained suf-
ficient conditions for the existence of common fixed points of a pair of contractive
type mappings involving rational expression. Subsequently, several authors have
studied the existence and uniqueness of the fixed point and common fixed points
of self-mappings in view of contrasting contractive conditions. Some of these in-
vestigations are noted in ([6], [10], [14],[17], [21]).

Though the complex-valued metric spaces form a special class of cone metric
spaces, yet this idea is intended to define rational expressions which are not mean-
ingful in cone metric spaces and thus many result of analysis cannot be generalized
to cone metric spaces.

In [7], Bhaskar and Lakhmikantham introduced the concept of coupled fixed
points for a given partially ordered setX. Samet et al ([19], [20]) proved that most of
the coupled fixed point theorems ( on ordered metric spaces) are infect immediate
consequences of the well-known fixed point theorems in the literature. \Very re-
cently, Kutbi et al [14] proved the existence and uniqueness of the common coupled
fixed point in complete complex-valued metric spaces in view of diverse contrac-
tive condition.

The aim of this paper is to establish a coupled coincidence point theorem for
mappings on complex-valued metric spaces(in short CVMS) along with generalized
contraction involving rational expression and a unique common coupled fixed
point theorem using the notion of w-compatible mappings. Our results extend and
improve several existing fixed point results in the literature.

2. Preliminaries

Let C be the set of complex numbers and z;,z, € C, we define a partial order <
on C as follows:

71 <z ifand only if Re(z;) < Re(zz) and Im(z1) < Im(zy).
We write z; <z, if and only if Re(z1) < Re(zz) and Im(z;) < Im(zy).
Consistent with Azam et al. [3], we state some definitions and results about the

complex-valued metric space to prove our main results.

Definition 2.1. [3] Let X be a nonempty set. Suppose that the mapping d : X x
X — Csatisfies the following conditions:
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(d1) 0 <d(x,y)forall x,y € X;

(d2) d(x,y)=0ifandonly ifx =y forall x,y € X;
(d3) d(x,y) =d(y,x) forall x,y € X;

(d4) d(x,y) <d(x,z) +d(z,y) forall x,y € X;

Then d is called a complex-valued metric on X, and (X, d) is called a complex-valued
metric space.

Definition 2.2. [3] Let (X, d) be a complex-valued metric space.

. Apointx € Xiscalled interior point of aset B C X whenever thereexists0 < r € C
such that N(x, r) := {y € X : d(x,y) < r} CB.

I1. A point x € X is called limit point of a set B € X whenever there exists0 < r € C
such that N(x, r) N(B — {x}) # ¢.

I11. A subset B C X is called open whenever each element of B is an interior point
of B.

IV. A subset B C X is called closed whenever each limit point of B belongs to B.

V. The family F = {N(x,r) : x € X,0 < r} is a sub-basis for a topology on X. We
denote this complex topology by 7.. Indeed, the topology 7. is Hausdorff.

Definition 2.3. [3] Let (X, d) be a complex-valued metric space, and let {x,} be a
sequence in X and x € X.

I. If for every ¢ € C with 0 < c there is N € IN such that for all n > N, d(xy,X) < ¢
then {x,} is said to be convergent, if {x,} converges to x and x is the limit point
of {xn}. We denote this by x, — xasn — oo or limp_,. Xy = X.

Il. If foreveryc e Cwith0 < cthereis N € Nsuch thatforalln,m > N, d(X,, Xm) <
¢, then {x,} is said to be Cauchy sequence.

I11. If every Cauchy sequence in X is convergent, then (X, d) is said to be a complete
complex-valued metric space.

Lemma2.1. [3] Let (X, d) be a complex-valued metric space, and let {x,} be a sequence in
X. Then {x,} converges to x if and only if |d(x,, X)] = 0as n — co.

Lemma2.2. [3] Let (X, d) be a complex-valued metric space, and let {x,} be a sequence in
X. Then {xp} is a Cauchy sequence if and only if |d(Xn, Xn+m)| = 0as n — co.

Definition 2.4. [7] Anelement (x,y) € X x X is said to be a coupled fixed point of the
mapping F: X x X — X if F(x,y) = xand F(y,x) = y.
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Definition 2.5. [15] An element (x,y) € X x X is said to be

I. A coupled coincidence point of mappings F : XX X — Xand g : X = X if
gx = F(x,y)and gy = F(y, x), and (gx, gy) is called a coupled point of coincidence
if there exists (u,v) € X x X such that x = gu = F(u,v) and y = gv = F(v, u).

Il. A common coupled fixed point of mappings F: Xx X — Xand g : X — X if
x=gx=F(xy)andy = gy = F(y,X).

Definition 2.6. [2] The mappings F : X x X — X and g : X — X are called w-
compatible if g(F(x, y)) = F(gx, gy), whenever gx = F(x, y) and gy = F(y, X).

3. Main Results

3.1. Coupled Coincidence Point Result in Complex-Valued Metric Spaces

Theorem 3.1. Let (X, d) be a complex-valued metric space. Let F: X x X — X and
g © X — X be two mappings. Suppose that there exist nonnegative constants a; €
[0,1), i=1,2,..,6such that Z?:l a; < landforall x,y,u,veX

d(gx, F(x, y))d(gu, F(u,v))

d(F(x, y), F(u, v)) d(gx, gu)

IA

ad(gx, gu) + az(gy, gv) + as

d(gx, F(u,v))d(gu, F(X, y))
d(gx, gu)

d(gy, F(y, x))d(gv, F(v, u))
d(gy.gv)

d(gy, F(v, u))d(gv, F(y, X))
d(gy, gv)

+

+ a5

+ ap

Suppose F(X x X) € g(X) and g(X) is a complete subspace ofX. Then F and g have a
coupled coincidence point (x*, y*) € X x X.

Proof. Letxo and yo are arbitrary elements of X. Set gx1 = F(Xo, Yo0), gY1 = F(Yo, Xo),
this can be done because F(X x X) € g(X). Continuing this process, we obtain two
sequences {xn} and {yn} such that gxn+1 = F(Xn, yn) @and gyn+1 = F(yn, Xn) foralln > 0.
Then we have

d(F(Xn-1, Yn-1), F(Xn, Yn))

a1d(gXn-1, gXn) + 220(gYn-1, gYn)

d(an—l, F(Xn-1, yn—l))d(gxn/ F(Xn, Yn))
d(gXn-1, g%n)

d(gXn-1, F(Xn, Yn))d(gXn, F(Xn-1, Yn-1))
d(gXn-1, g%n)

d(an, an+1)

IA

+

as

+ a4
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d(gYn-1, F(Yn-1,Xn-1))d(gYn, F(Yn, Xn))
d(gYn-1,9Yn)
% d(QYn—l/ F(Yn, Xn))d(gyn/ F(Yn-1, Xn-1))
d(gyn-1,9Yn)
a1d(gXn-1, 9%n) + a20(gYn-1, gYn)
d(gXn-1, g%Xn)d(gXn, gXn+1)
ag
d(an—l, an)
a d(gXn-1, gXn+1)d(gXn, gXn)
d(gXn-1, g%n)
o J0Yn-1, 9Yn)d(gYry 9Yn+1)
d(gyn-1,9Yn)
2 J0Y-1, 9Yns1)d(gYny 9¥n)
d(gyn-1,9Yn)

+ as

IA

Which implies that

N

a1 |d(gXn-1, 7xn)| + 82 |d(7Yn-1, 7yn)|
as |d(an, an+1)) +as )d(!JYn, !]yn+1)| .

)d(an, an+1)|
(3.1)

+

Similarly, we can prove that

N

a1 |d(9Yn-1, 9yn)| + a2 |[d(gXn-1, 7%0)|
as |d(gyn/ gyn+l)) +as )d(gxn/ !]Xn+1)| .

)d(gYn, gYn+1)|
(3.2)

+

Putd, = IId(an, an+1)|| + ||d(9yn/ gyn+1)||-
Adding inequalities (3.1) and (3.2), one can assert that,

(3.3) dn < (a1 +@2)dn_1 + (a3 + as)dy,
that is,
di; + adp
< hdp- h h=— "~
dn dn-1 where 1= (@ +a)
Thus, we have
(3.4) dy < hdn_y < h?dy_ < h®dh3 < -+~ < h"dy

We shall show that {x,} and {y,} are Cauchy sequences. If m > n, then we have

)d(f]xn,!]Xm)) + )d(QYn,!]ym)) < )d(an,an+1)| + |d(gyn/EZYn+l)) + |d(an+1, !]Xn+2)|
+ )d(gynﬂ/ gYn+2)| R )d(gxm—l/ ng)) + d(g)’m—l/ gYm))
< dh+dpsr+ -+ dmot
< hndo + hn+1do 4+ 4 hm_ldo
n
< dp > 0 as n — oo.

1-h
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Hence {gxn} and {gyn} are Cauchy sequences in g(X). Since g(X) is complete, there
exists x* and y* € X such that gx, — gx* and gy, — gy*asn — oo.

On the other hand, we have

d(F(X, y"), 9x7) = d(F(X",¥"), g%n+1) + d(gXn+1, 9X7)
= d(F(X", ¥"), F(Xn, ¥n)) + d(gXn+1, 9X")
< ad(gx’, gxn) + a2d(gy", gyn)

as d(QX*, F(x", y*))d(gxn/ F(Xn, Yn))

+
d(gx*, g%n)
b oa d(gx*, F(Xn, Yn))d(gxn, F(X*, y*))
d(gx*, g%n)
¢ d(gy", F(y*, x"))d(gyn, F(Yn, Xn))
d(gy*, gyn)
d(gy”, F(yn, Xn))d(gyn, F(y*, X))
+
d(gy*, gyn)

+  d(gXn+1, 9X7)
< ad(gx’, gxn) + a2d(gy*, gyn)
2 d(gx*, F(x*, y)[d(gxn, gx*) + d(gX", gXn+1)]

- d(gx, gxn)

b oa d(gx", gXn+1)[d(gXn, gX*) + d(gx*, F(X", y))]
d(gx*, gxn)

.o d(gy”, F(y", x)[d(gyn, gy*) + d(gy", gYn+1)]
d(gy*, gyn)

boa d(gy*, gyn+1)[d(gyn, gy*) + d(gy=, F(y*, xx))]
d(gy*, gyn)

+ d(an+1, gX*),

which implies that

|d(FOx, y7), 9x7)

N

a [d(gx", gxn)| + a2 |d(gy", gyn)|
ld(gx, Fo<, y))| {|d(gxa, 9x)
|d(gx", gx)|
|d(gx", Pxns)| {|dlgxn, )| + [d(ox, F (X, )
|d(gx", 9x)|
{|d(gyn, 9y")
ld(gy", gyn)|
|d(gy", g¥ne)|{|d(yn 9y))| + [day", F(y", X))
ld(gy", gyn)|

+ |d(x, gxns)]}

}

+ a3

+ a4

ld(gy, Fly", x?) + |d(gy", gyn+)|}

|

+ as

+ ag
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+ |d(gxn+1, gX*)|

Since gx, — gx* and gy, — gy*asn — oo, we have |d(F(x*, y*), gx*)| < 0.

That is,F(x*, y*) = gx*.

Similarly one can show that F(y*, x*) = gy*.

Hence (x*, y*) is a coupled coincidence pointof Fand g. [

3.2.  Common Coupled Fixed Point Result in Complex-Valued Metric Spaces
The condition of Theorem 3.1 are not enough to prove the existence of a common
coupled fixed point for the mappings F and g. By applying the condition of w-
compatibility on F and g, we obtain the following common coupled fixed point
theorem.

Theorem 3.2. In addition to the hypotheses of Theorem 3.1 are not enough to prove the
existence of a common coupled fixed point for the mappings F and g. By applying the
condition of w-compatibility on F and g, we obtain the following common coupled fixed
point theorem, if F and g are w-compatible, then F and g have a unique common coupled
fixed point. Moreover, a common coupled fixed point of F and g is of the form (u, v) for
some u,Vv € X.

Proof. The existence of coupled coincidence point (x*, y*) of F and g follows from
Theorem 3.1. Then (gx7, gy*) is a coupled point of coincidence of F,g and so

gx* = F(x*, y*) and gy* = F(y*, X").
First we will show that this coupled point of coincidence is unique.

For this, suppose that F and g have another coupled point of coincidence (gx’, gy’),
that is, gx’ = F(X’, y") and gy’ = F(y’, x") where (x’,y") € X x X. Then we have

d(F(x", y"), F(X', y"))
ard(gx’, gx’) + axd(gy", gy’)
d(gx", F(x*, y))d(gx’, F(X', ¥'))
as
d(gx*, gx’)
d(gx", F(x’, y"))d(gx’, F(x*, ¥))
as
d(gx*, gx’)
d(gy", F(y", x")d(gy’, F(y’, X))
ds
d(gy, gy’)
d(gy", F(y’, x")d(gy’, F(y*, X))
dg .
d(gy+ gy’)

d(gx’, gx’)

IA

+
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This implies that

N

a |d(gx*, gxX)| + &z |d(_l]y*, qy’)
|d(gx, 9x7)|[d(gx’, gx)
|d(xs, gx)
e, 00t )
d(gx, gx’)
. ld(gy", 9y")|[d(gy’, gy")
d(gy*, gy’)
. ld(gy*, gy")||d(gy’, 9y")
digy*, gy’)
a [d(gx’, gx)| + a2 |d(gy", gy")
a [d(gx", gx)| + as [d(gy", gy")| -

|d(gx, 9x')

N

Hence

(3.5) ld(gx, gx')

Similarly, we can show that

< (ar+ay) d(gx, gx)| + (a2 + a6) [d(gy", 7y')].

(3.6) ld(gy", 9"

Adding inequalities (3.5) and (3.6), we get

< (an+a) [digy’, gy)| + (@2 + a6) [d(gx’, gx)

ld(gx", gx)| + [d(gy", gy")| < (a1 +az + a4 + a6){|d(gx", gxX)| + |d(gy", gy")|}-

Since (a; + a2 + a4 + ag) < 1. Therefore,

ld(gx’, gx)| + |d(gy", gy)| < 0

Hence d(gx*, gx’) = 0 and d(gy*, gy’) = 0, i.e.,gx* = gx" and gy” = gy’.

Thus, (gx*, gy*) = (u,V) (say) is the unique coupled point of coincidence of F
and g. Now if F and g are w-compatible, then gu = g(F(x*,y*)) = F(gx*, gy") =
F(u,v) = w(say). Similarly, we obtain gv = g(F(y*,x")) = F(gy*, 9x*) = F(v,u) = z
(say). So,(w, z) is another coupled point of coincidence of F and g. By uniqueness,
we have (u,V) = (w, z), that is, gu = F(u,v) = uand gv = F(v,u) = v.Thus (u, v) is the
unique common coupled fixed pointof Fand g. O

Next, we present an example to illustrate our results.
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Example 3.1. Let X = {ix : x € [0, 1]} and consider a complex-valued metricd : X x X —» X
defined by

d(x,y) =i|x—y| forall x,yeX
Then (X, d) is a complex-valued metric space.
Define the mappings F: X x X — X and g : X = X by F(x,y) = |(§ + %) and g(x) = i3 for all

x,y €[0,1].
Then we obtain,

d(F(x, y), F(u,v))

-Zi(E_E)+Zi(X_!)
o\2 2/ 7\2 2
X .U 2.1.Y .v
z"z\*?\'z"é\

< gi‘i

S 9
2 2

< gdlgxgu) +=d(gy,gv),

wherea; = 3, a, =2, 3 =0, i=234,56. Notethata;+a, = §+2 <1, F(Xx X) C g(X)and
g(X) is a complete subspace of X. Hence the condition of Theorem 3.1 are satisfied, that is, F
and g have a coupled coincidence point (0,0). Furthermore, since F and g are w-compatible,
hence, Theorem 3.2 shows that (0,0) is the unique common coupled fixed point of F and g.
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