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SOME TYPES OF n-RICCI SOLITONS ON LORENTZIAN
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Abstract. In this paper, we study some types of n-Ricci solitons on Lorentzian para-
Sasakian manifolds and we give an example of n-Ricci solitons on a 3-dimensional
Lorentzian para-Sasakian manifold. We obtain the conditions for n-Ricci solitons on
p-conformally flat, p-conharmonically flat and @-projectively flat Lorentzian para-
Sasakian manifolds. The existence of n-Ricci solitons implies that (M, ¢) is an n-Einstein
manifold. In these cases there is no Ricci soliton on M with the potential vector field
&.
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1. Introduction

In 1982, Hamilton [12] introduced the notion of Ricci flow to find a canonical
metric on a smooth manifold. The Ricci flow is an evolution equation for metrics
on a Riemannian manifold:

0

779 (t) = —2Ry;.

A Ricci soliton is a natural generalization of an Einstein metric and is defined
on a Riemannian manifold (M,g). A Ricci soliton is a triple (g,V,A) with g a
Riemannian metric, V' a vector field and A a real scalar such that

Lyg+25+2\g =0,

where S is a Ricci tensor of M and Ly denotes the Lie derivative operator along
the vector field V. The Ricci soliton is said to be shrinking, steady and expanding
accordingly as A is negative, zero and positive, respectively. Ricci solitons have
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been studied in many contexts: on Kéhler manifolds [10], on contact and Lorentzian
manifolds [1, 7, 15, 21], on Sasakian [14], a-Sasakian [15], on Kenmotsu [2] etc. In
paracontact geometry, Ricci solitons firstly appeared in the paper of G. Calvaruso
and D. Perrone [8]. Ricci solitons on 3-dimensional normal paracontact manifolds
were studied by C. L. Bejan and M. Crasmareanu [3].

A more general notion is that of n-Ricci soliton introduced by J. T. Cho and
M. Kimura [9], which was treated by C. Calin and M. Crasmareanu on Hopf hyper-
surfaces in complex space forms [7]. Recently, n-Ricci solitons on para-Kenmotsu
manifolds were studied by A. M. Blaga [4] and n-Ricci solitons on Lorentzian para-
Sasakian manifolds were also studied by A. M. Blaga [5].

Let (M,g), n =dimM > 3, be a connected semi-Riemannian manifold of class
C* and V be its Levi-Civita connection. The Riemannian-Christoffel curvature
tensor R (see [20]), the Weyl conformal curvature tensor C' (see [23]), the conhar-

monic curvature tensor H (see [16]) and the projective curvature tensor P (see [23])
of (M, g) are defined by

(1.1) R(X,Y)Z = VxVyZ - VyVxZ - VixyiZ,
C(X,Y)Z = R(X,Y)Z— ﬁ[S(Y, 2)X — S(X,Z)Y
+9(Y, 2)QX — g(X, Z)QY]
(1.2) +m[9(ya Z)X —g(X, 2)Y],
HX,Y)Z = R(X,Y)Z- ﬁ[sm X — 5(X, 2)Y
(1.3) +9(Y, 2)QX — g(X, 2)QY],
(1.4) P(X,Y)Z = R(X,Y)Z — rin[g(}/’ 2)QX —g(X, 2)QY],

respectively, where @ is the Ricci operator, defined by S(X,Y) = ¢(QX,Y), S is
the Ricci tensor, r = tr(S) is the scalar curvature and X,Y, Z € x(M), x(M) being
the Lie algebra of vector fields of M.

This paper is organized as follows: Section 2 consists of the basic definitions
of the Lorentzian para-Sasakian manifold. In Section 3, we define Ricci and 7-
Ricci soliton on (M, p,€&,m,9) and also give an example of n-Ricci solitons on a
3-dimensional Lorentzian para-Sasakian manifold. In Section 4, we obtain the
conditions for n-Ricci solitons on ¢-conformally flat, ¢-conharmonically flat and
p-projectively flat Lorentzian para-Sasakian manifolds. The existence of n-Ricci
solitons implies that (M, g) is an n-Einstein manifold. In these cases there is no
Ricci soliton on M with the potential vector field &.
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2. Lorentzian para-Sasakian manifolds

The notion of a Lorentzian para-Sasakian manifold was introduced by K. Mat-
sumoto [17].

An n-dimensional differential manifold M™ is a Lorentzian para-Sasakian (LP-
Sasakian) manifold if it admits a (1, 1)-tensor field ¢, contravariant vector field &,
a covariant vector field 7 and a Lorentzian metric g, which satisfy

(2.1) PX =X +n(X)E ) =-1,
which imply
(2.2) (@) €=0, (b) n(eX)=0, (c) rank(e)=n—1,

Then M™ admits a Lorentzian metric g, such that

(2.3) 9(pX, V) = g(X,Y) + n(X)n(Y),

and M™ is said to admit a Lorentzian almost paracontact structure (p,&,7,g). In
this case, we have

(2.4) (@) g(X,&) =n(X), (b) Vx&=pX,

(2.5) (Vx@)Y = g(X,Y)E+n(Y)X + 2n(X)n(Y)E,

where V denotes the operator of covariant differentiation with respect to the Lorentzian
metric g.

If we put
(2'6) Q(va) :g(Xv SDY) =g(90X,Y) :Q(YvX)a

for any vector fields X and Y, then the tensor field Q(X,Y") is a symmetric (0, 2)-
tensor field.

Also, since the vector field is closed in an LP-Sasakian manifold, we have

27 (Vxn)(Y) =QX,Y) = g(¢X,Y) = (Vyn)(X), Ven=0,

for any vector fields X and Y.

Also, in an LP-Sasakian manifold (M™, ¢,£,n,g), for any XY, Z € x(M™), the
following relations hold:

(2.8) n(Vx§) =0, V=0,
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(2.9) 9(R(X,Y)Z,§) = n(R(X,Y)Z) = g(Y, Z)n(X) — (X, Z)n(Y),

(2.10) n(R(X,Y)E) =0,
(2.11) R(X,Y)§ =n(Y)X —n(X)Y,
(2.12) Lep =0, Len=0, Leg=29(¢),

where R is the Riemann curvature tensor field, L is the Lie derivatives and V is the
Levi-Civita connection associated to g.

3. Ricci and 7n-Ricci Solitons on (M, p,&,1n,9)

Let (M, p,&,m, g) be paracontact metric manifolds. Consider the equation

(3.1) Leg+254+2Mg+2un®n =0,

where L¢ is the Lie derivative operator along the vector field &, S is the Ricci
curvature tensor field of the metric g, and A and p are real constants. Writing L¢g
in terms of the Levi-Civita connection V, we have:

(32) 25(X,Y) = —g(Vx¢&,Y) = g(X, Vy &) = 2Ag(X,Y) — 2un(X)n(Y),

for any X,Y € x(M), or equivalent:

for any X,Y € x(M). The data (g,&, \, ) satisfying the equation (3.1) is said to
be an 7-Ricci soliton on M [9]; in particular, if 4 = 0, (g,&, A) is a Ricci soliton
[13] and it is called shrinking, steady or expanding accordingly as A is negative,

zero or positive, respectively [11]. In [18] and [19] the the authors proved that on a
Lorentzian para-Sasakian manifold (M, ¢, &, n, g), the Ricci tensor field satisfies

(3.4) S(X;€) = (dim(M) — 1)n(X),

(3.5) S(eX,¢Y) = S(X,Y) + (dim(M) — )n(X)n(Y).
Again putting X = ¢X and Y = ¢Y in the equation (3.3), we get

(3.6) S(pX,pY) = —g(X,9Y) — Ag(pX, ¢Y),

for any X,Y € x(M). From (3.3) and (3.4), we obtain

(3.7) p—A=n-—1.
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Putting X =Y =¢; in (3.3) and summing over ¢ = 1,2, ...,n, we have

n

(3.8) T=ZS(ei,ei) =—1— In — pu,

i=1

where ¢ = tro.

Example 3.1. We consider the 3-dimensional manifold M = {(z,y,2) € R® : z > 0},
where (z,y, z) are standard coordinates in R3. Let {Eh, E3, E3} be a linearly independent
frame field on M given by [22]

where a is a non-zero constant such that a # 1. Let g be the Lorentzian metric defined by

g(Eh, E3) = g(E2, E3) = g(E1, E2) =0,

g(Er, Br) = g(E2, E2) =1, g(Es, E3) = —1.

Let n be the 1-form defined by n(U) = ¢(U, E3), for any U € x(M) and ¢ be the
(1,1)-tensor field defined by

4,0E1 = _E17 @Ez =—Fs and QDES =0.

Then, using the linearity of ¢ and g, we have n(F3) = —1,0?U = U + n(U)FE; and
9(eU, W) = g(U W) + n(U)n(W), for any U, W € x(M). Thus for E3 = &, (¢,€,n,9)
defines a Lorentzian paracontact structure on M.

Let V be the Levi-Civita connection with respect to the Lorentzian metric g. Then
we have

[E1, B2) = —ae®Ea, [F1,E3) = —E1, [E2,FE3] = —Eo.

The Riemannian connection V of the Lorentzian metric g is given by

29(VxY,Z) = X9V, Z)+Yg(Z,X)—Zg(X,Y)—g(X,[Y, Z])
_g(Yv[sz])+g(Z7[X7Y])7

which is known as Koszul’s formula. Using Koszul’s formula, we can easily calculate

VE1E1 = —E‘37 VEIEQ = O, VElEg = —El,
VE2E1 = anEg, VE2E2 = —aezEl — E‘37 VE2E3 = —Ez,

Vi, E1 =0, Vi,Ey=0, Vig,FEs=0.

It can be easily seen that for Es =&, (¢, &, n, g) is a Lorentzian para-Sasakian structure
on M. Consequently, (M, p,&,n,g) is a Lorentzian para-Sasakian manifold.
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Also, the Riemannian curvature tensor R is given by

R(X,Y)Z =VxVyZ —VyVxZ - VixyZ,
R(E1, E2)Ez = (1 — a*e**)E1, R(E1, E3)Es = —FE1, R(E2, E1)E1 = (1 — a°€**)Ea,

R(E27E3)E3 = —E27 R(E37E1)E1 = E‘g7 R(E37E2)E2 = E3 + aezEl.

Then, the Ricci tensor S is given by
S(Er, E1) = S(E2, E2) = —a’e”, S(Es, E3) = —2.

From (3.3), we obtain S(E1, E1) = 1— X and S(F3,E3) = A—p, therefore A = 14-a?%e*?,
and pu = 3 + a®e?*. The data (g,&, A\, p) for A = 14 a?e®*, and p = 3 + a?e®* defines an
n-Ricci soliton on the Lorentzian para-Sasakian manifold M.

4. Main results

In this section, we consider an 7-Ricci soliton on y-conformally flat,
p-conharmonically flat and p-projectively flat Lorentzian para-Sasakian manifolds.

Let C be the Weyl conformal curvature tensor of M™. Since at each point p €
M™ the tangent space T,,(M™) can be decomposed into the direct sum T,(M") =
o(Tp(M™)) & L(&p), where L(&,) is a 1-dimensional linear subspace of T,,(M™) gen-
erated by &,, we have

C:Tp(M™) x Ty (M™) x Tp(M™) = p(Tp(M™)) ® L(&p).

Let us consider the following particular cases:

(1) C:T(M™) x Tp(M™) x T,(M™) — L(&,), i.e., the projection of the image
of C'in (T,(M™)) is zero.

(2) C : Tp(M™) x Tp(M™) x Tp,(M™) = ¢(T,(M™)), i.e., the projection of the
image of C' in L(&,) is zero.

(4.1) C(X,Y)E = 0.

(3) C: p(Tp(M™)) x p(Tp(M™)) x p(Tp(M™)) = L(&p), i-e., when C is restricted

to @(Tp(M™)) x o(T,(M™)) x o(Tp(M™)), the projection of the image of C in
@(T,(M™)) is zero. This condition is equivalent to
(4.2) P?ClpX, oY )pZ =0,

(see[6]).
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Here the cases (1), (2) and (3) are conformally symmetric, £-conformally flat and
-conformally flat, respectively. The cases (1) and (2) were considered in [24] and
[25], respectively. The case (3) was considered in [6] for M a K-contact manifold.

Now we will study the condition (4.2) for n-Ricci solitons on Lorentzian para-
Sasakian manifolds.

Definition 4.1. A differentiable manifold (M™, g),n > 3, satisfying the condition
(4.2) is called ¢-conformally flat.

Suppose that (M™,g),n > 3, is a p-conformally flat Lorentzian para-Sasakian
manifold. It is easy to see that p?C(pX, Y )pZ = 0 holds if and only if

9(C(pX, Y )pZ, W) = 0,

for any X,Y, Z, W € x(M™). So by the use of (1.2), p-conformally flat means

1
9B X, oY )pZ, oW) = ——g(¢Y, pZ)S(pX, W)
—9(X,0Z)S(pY, W) + g(p X, oW)S(9Y, p2Z)
r
—9(Y, oW)S (X, 0Z)] — ———
(n—1)(n—2)
(4.3) [9(0Y, 0Z)g(e X, eW) — g(0 X, 0Z)g(pY, oW)].
Let {e1, e, ....,en—1,&} be alocal orthonormal basis of vector fields in M™; then
{pe1, pea, ....,pen_1,&} is also a local orthonormal basis. Putting X =W =¢; in
(4.3) and summing over i = 1,.....,n — 1, we get
1 n—1
Zg (pei, oY )pZ,pei) = — > 9(pY, 0Z)S(pei, pei)
i=1
—9(pei, 0Z)S(0Y, pei) + g(pei, pei) S(pY, pZ)
r
(Y, pei)S(pes, p2)) — ————
9(pY, pei)S(pei, 7)) CEICEE)
n—1
(4.4) > la(eY. 0 Z)g(pei, pei) — glpei, 0Z)g(Y, pei)].
i=1
It can be easy to verify that
(4.5) Z R(pei, oY )pZ, pe;) = S(0Y,0Z) + g(¢Y, ¢Z),

n—1

(46) ZS(@GH(/)GZ) =r+n-— 15

=1
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n—1
(4.7) > glpei, pZ)S(pY, pei) = S(9Y,02),
=1
n—1
(4.8) > gleei, pei) =n+1,
1=1
and
n—1
(4.9) g(wei, 0Z)g(@Y, pei) = g(@Y, 0Z).

1

.
Il

So applying (4.5) — (4.9) into (4.4), we obtain

(4.10) S(pY, pZ) = (ﬁ - 1> 9(QY, 92Z).

Using (3.6) and (3.8) in (4.10), we get
(4.11) (n=1)g(Y,0Z) = (¥ + p+ A +n—1)g(pY, 02),
for any Y, Z € x(M™) and for Y — @Y, we get
(4.12) (n—=1)g(eY,pZ) = (b +pu+A+n—-1)g((Y,¢Z).

Adding the previous two equations, we have

(4.13) (W +p+A+2n=2)[g(Y,0Z) — g(¢Y, 0Z)] =0,
for any Y, Z € x(M™) and follows

(4.14) Y+ pu+A+2n—2=0.

Now using (3.7) in (4.24), we get

_3—v—3n 1—¢Y—n
(4.15) A= —— —

(lnd =
2
Hence, we can state the fOHOWing:

is a Lorentzian para-Sasakian structure on the n-

Theorem 4.1. If (¢,£,1,9)
(9,&, A, 1) is an n-Ricci soliton on M™ and M™ is -

dimensional manifold M™,
conformally flat, then

3—1—3 1——
)\:# and u:#.
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Corollary 4.1. If(p,&,n,g) is a p-conformally flat Lorentzian para-Sasakian struc-
ture on the n-dimensional manifold M™, then there is no Ricci soliton with a po-
tential vector field &.

From (3.3), (3.7) and (4.11), we obtain

Yv+nA+pu+n—1
n—1

(4.16) S(X,Y) = —( )g(X,Y)

) a0,

(Y H+A+pn+n—1
n—1

Hence, we can state the following:

Proposition 4.1. If (¢,&,n,9) is a Lorentzian para-Sasakian structure on the n-
dimensional manifold M™, (g,&, A\, 1) is an n-Ricci soliton on M™ and M™ is -
conformally flat, then (M™, g) is an n-Einstein manifold.

Let H be the conharmonic curvature tensor of M™.

Definition 4.2. A differentiable manifold (M", g),n > 3, satisfying the condition
Y H(pX, pY)pZ =0,
is called @p-conharmonically flat.

Now our aim is to find the characterization of n-Ricci solitons on Lorentzian
para-Sasakian manifolds satisfying the above condition.

Assume that (M™, g),n > 3, is a p-conharmonically flat Lorentzian para-Sasakian
manifold. It can be easily seen that ©?H (¢ X, pY )9pZ = 0 holds if and only if

g(H (X, oY )pZ, W) =0,
for any X,Y, Z, W € x(M™). Using (1.3), p-conharmonically flat means

1
9(B(pX, @Y)pZ, oW) = ——g(¢Y, pZ)S(pX, W)
—9(p X, 0Z)S(pY, W) + g(0 X, oW)S(¢Y, p2)
(4.17) —9(Y, oW)S(pX, pZ)].
In a manner similar to the method in the proof of Theorem (4.1), choosing

{e1,€2,....,en—1,&} the local orthonormal basis of vector fields in M™, then
{pe1, pea, ....,pen_1,&} is also a local orthonormal basis. Putting X =W =¢; in
(4.17) and summing over i = 1,.....,n — 1, we get

n—1 n—1

1
> 9(R(pei, Y )oZ,0ei) = — > l9(9Y,02)S(pei, pei)
i=1 i=1

—g(wei, Z)S (Y, ve;) + glpei, pei)S(@Y, Z)
(4.18) —9(pY, pe;)S(pei, 9 Z)).



226 A. Singh and S. Kishor
So applying (4.5) — (4.9) into (4.18), we get
(4.19) S(#Y,0Z) = =(r+1)g(Y,pZ).
Using (3.6) and (3.8) in the above equation, we get
(4.20) 9(Y,9Z) = (=t = An = A= p+ 1)g(¢Y, 0 Z),
for any Y, Z € x(M™) and for Y — @Y, we get
(4.21) 9(@Y, 0Z) = (= = In =X —pu+1)g(Y,0Z).

Adding the previous two equations, we have

(4.22) (=t =An = A= pu+2)[g(Y,0Z) — g(¢Y,pZ)] = 0,
for any Y, Z € x(M™) and follows
(4.23) [+ An+1)+p—2]=0.

In view of (3.7) and (4.23), we obtain

(W +n—3)
AT —m

=Y +n?+1

(4.24) and p= nt2)

Hence, we can state the following:

Theorem 4.2. If (v,€,7n,9) is a Lorentzian para-Sasakian structure on the n-
dimensional manifold M™, (g,&, A\, 1) is an n-Ricci soliton on M™ and M™ is -
conharmonically flat, then

_ —(+n-23) —p4+n?+1

(n+2)

Corollary 4.2. If(v,&,n,9) is a p-conharmonically flat Lorentzian para-Sasakian
structure on the n-dimensional manifold M™, then there is no Ricci soliton with the

potential vector field €.

From (3.3), (3.7) and (4.20), we obtain

(4.25) S(X,Y) = (p+nr+p—1)g(X,Y)
@ +np+ A= Dn(X)n(Y).

Hence, we can state the following;:
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Proposition 4.2. If (p,&,1,9) is a Lorentzian para-Sasakian structure on the n-
dimensional manifold M™, (g,&, A\, 1) is an n-Ricci soliton on M™ and M™ is -
conharmonically flat, then (M™, g) is n-Einstein manifold.

Let P be the projective curvature tensor of M™.
Definition 4.3. A differentiable manifold (M™, g),n > 3, satisfying the condition
¢*PlpX,¢Y)pZ =0,

is called @-projectively flat.

Assume that (M™,g),n > 3, is a p-projectively flat Lorentzian para-Sasakian
manifold. It can be easily seen that ©?P(pX, pY )¢pZ = 0 holds if and only if

9(P(pX, oY )pZ, oW) =0,
for any X,Y, Z, W € x(M™). Using (1.4), p-projectively flat means
1

9(B(pX, oY)pZ, W) = ——[9(0Y,9Z)S(pX, oW)
(4.26) —9(eX, 0Z)S(pY, pW).
Similar to the proof of Theorem (4.1), we can suppose that {ej,es,....;en_1,&}
is a local orthonormal basis of vector fields in M™, then {¢e1, pes, ..., pen_1,&} is

also a local orthonormal basis. Putting X = W = ¢; in (4.26) and summing over
i=1,...,n—1, we get

1 n—1
1
9(R(pei,9Y)pZ,pei) = —= > [9(¢Y,92)S(pei, pei)
=1 =1

(4.27) —g(ei, pZ)S(pY, pe;)].

n

So applying (4.5) — (4.9) into (4.27), we get
(4.28) nS(pY,pZ) = rg(¢Y, pZ),

In view of (3.6), (3.8) and (4.28), we obtain

(4.29) ng(Y,0Z) = (¥ + u)g(eY, ¢Z),
for any Y, Z € x(M™) and for Y — @Y, we get
(4.30) ng(@Y, pZ) = (Y + u)g(Y, pZ).

Adding the previous two equations, we have
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(4.31) (¥ +p+n)lg(Y,92) — g(pY, 92)] =0,
for any Y, Z € x(M™) and follows
(4.32) b+ p+n=0.

In view of (3.7) and (4.32), we obtain

(4.33) A=—t¢—2n+1 and p=—-(¥+n).
Hence, we can state the following:

Theorem 4.3. If (v,£,71,9) is a Lorentzian para-Sasakian structure on the n-
dimensional manifold M™, (g,&, A\, 1) is an n-Ricci soliton on M™ and M™ is -
projectively flat, then

A== —=2n+1 and p=—(¢Y+n).

Corollary 4.3. If(p,&,m,g) is a p-projectively flat Lorentzian para-Sasakian struc-
ture on the n-dimensional manifold M™, then there is no Ricci soliton with the
potential vector field €.

From (3.3), (3.7) and (4.29), we obtain

(4.34) S(X,Y) = (W)mx,y)

() ).

n
Hence, we can state the following:

Proposition 4.3. If (v,&,n,9) is a Lorentzian para-Sasakian structure on the n-
dimensional manifold M™, (g,&, A\, 1) is an n-Ricci soliton on M™ and M™ is -
projectively flat, then (M™,g) is an n-Finstein manifold.

REFERENCES

1. C. S. BAGEWADI and G. INGALAHALLI: Ricci solitons in Lorentzian a-Sasakian
manifolds. Acta Math. Academiae Paedagogicae Nyiregyhdziensis, 28 (2012), no.
1, 59-68.

2. C. S. BAGEWADI, G. INGALAHALLI and S. R. ASHOKA: A Study on Ricci Solitons
in Kenmotsu Manifolds. ISRN Geometry, vol. 2013, Article ID 412593, (2013), 1-
6.



10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

Some types of n-Ricci Solitons on Lorentzian para-Sasakian manifolds 229

C. L. BEJAN and M. CRASMAREANU: Second order parallel tensors and Ricci soli-
tons in 3-dimensional normal paracontact geometry. Anal. Global Anal. Geom.,
DOI:10.1007/s10455-014-9414-4.

A. M. BLAGA: n-Ricci Solitons on Para-Kenmotsu Manifolds. Balkan J. Geom.
Appl. 20 (2015), no. 1,1-13.

A. M. BLAGA: n-Ricci Solitons on Lorentzian Para-Sasakian Manifolds. Filomat
30 (2016), no. 2, 489-496.

J. L. CABRERIZO, L. M. FERNANDEZ, M. FERNANDEZ and G. ZHEN: The struc-
ture of a class of K-contact manifolds. Acta Math. Hungar, 82 (1999), no. 4,
331-340.

C. CALIN and M. CRASMAREANU: n-Ricci solitons on Hopf hypersurfaces in
complex space forms. Revue Roumaine de Mathematiques pures et appliques 57
(2012), no. 1, 55-63.

G. CALVARUSO and D. PERRONE: Geometry of H -paracontact metric manifolds.
arxiv:1307.7662v1.2013.

. J. T. CHO and M. KIMURA: Ricci solitons and real hypersurfaces in a complex

space form. Tohoku Math. J. 61 (2009), no. 2, 205-212.

O. CHODOSH and F. T. -H. FONG: Rotational symmetry of conical Kdhler-Ricci
solitons. arxiv:1304.0277v2.2013.

B. Cuow, P. Lu and L. N1: Hamilton’s Ricci Flow. Graduate Studies in Math-
ematics, AMS, Providence, RI, USA 77 (2006).

R. S. HAMILTON: Three-manifolds with positive Ricci curvature. J. Diff. Geom.,
17 (1982), no. 2, 255-306.

R. S. HAMILTON: The Ricci flow on surfaces. Mathematics and General Relativity
(Santa Cruz, CA, 1986), Contemp. Math. 71, American Math. Soc. 1988, 237-262.
C. HE and M. Zuu: The Ricci solitons on Sasakian manifolds.
arxiv1109.4407v2.2011.

G. INGALAHALLI and C. S. BAGEWADI: Ricci solitons in  «a-Sasakian manifolds.
ISRN Geometry, vol. 2012, Article ID 421384, (2012), 1-13.

Y. IsHIil: On conharmonic transformations. Tensor N.S, 7 (1957), 73-80.

K. MATSUMOTO: On Lorentzian paracontact manifolds. Bull. of Yamagata Univ.
Nat. Sci, 12 (1989), no. 2, 151-156.

K. MATsuMOTO and I. MIHAL: On a certain transformation in a Lorentzian para-
Sasakian manifold. Tensor N. S., 47 (1988), 189-197.

I. MiHA1, A. A. SHAIKH and U. C. DE: On Lorentzian para-Sasakian manifolds.
Rendiconti del Seminario Matematico di Messina, Serie II (1999).

C. OzZGUR: ¢-conformally flat Lorentzian para-Sasakian manifolds. Radovi Math-
ematicki, 12, (2003), 99-106.

M. M. TRIPATHI: Ricci  solitons in  contact metric  manifolds.
http://arxiv.org/abs/0801.4222.

S. K. Yapav and D. L. SUTHAR: Some global properties of LP-Sasakian mani-
folds. Fundamental Journal of Mathematics and Mathematical Sciences, 3 (2015),
no. 1, 69-82.

K. YANO and M. KON: Structures on manifolds. Series in Pure Mathematics,
World Scientific Publishing Co., Singapore 3 (1984).



230

24.

25.

A. Singh and S. Kishor

G. ZHEN: On conformal symmetric K -contact manifolds. Chinese Quart. J. of
Math, 7 (1992), 5-10.

G. ZHEN, J. L. CABRERIZO, L. M. FERNANDEZ and M. FERNAANDEZ: On &-
conformally flat contact metric manifolds. Indian J. Pure Appl. Math, 28 (1997),
725-734.

Abhishek Singh

Department of Mathematics and Astronomy
University of Lucknow,

Lucknow-226007,

India.

lkoabhi27@gmail.com

Shyam Kishor

Department of Mathematics and Astronomy,
University of Lucknow,

Lucknow-226007,

India.

skishormath@gmail.com



