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MULTIGENERATOR GABOR FRAMES ON LOCAL FIELDS

Owais Ahmad and Neyaz A.Sheikh

Abstract. The main objective of this paper is to provide a complete characterization of
multigenerator Gabor frames on a periodic set Ω in K. In particular, we provide some
necessary and sufficient conditions for the multigenerator Gabor system to be a frame
for L

2(Ω). Furthermore, we establish a complete characterization of multigenerator
Parseval Gabor frames.
Keywords: Multigenerator Gabor frames, periodic set, signal processing.

1. Introduction

The concept of frames in a Hilbert space was originally introduced by Duffin and
Schaeffer [3] in the context of non-harmonic Fourier series. In signal processing,
this concept has become very useful in analyzing the completeness and stability
of linear discrete signal representations. Frames did not seem to generate much
interest until the ground-breaking work of Daubechies et al. [4]. They combined
the theory of continuous wavelet transforms with the theory of frames to introduce
wavelet (affine) frames for L2(R). Since then the theory of frames began to be more
widely investigated, and now it is found to be useful in signal processing, image
processing, harmonic analysis, sampling theory, data transmission with erasures,
quantum computing and medicine. Recently, more applications of the theory of
frames are found in diverse areas including optics, filter banks, signal detection and
in the study of Bosev spaces and Banach spaces. We refer the reader to [1], [5] for
an introduction to frame theory and its applications.

The most important concrete realization of frame is Gabor frame. Gabor sys-
tems are collections of functions

(1.1) G(a, b, ψ) =
{

MmbTnaψ(x) =: e2πimaxψ(x− na) : m,n ∈ Z

}

which are built by the combined action of modulations and translations of a single
function and hence can be viewed as the set of time-frequency shifts of ψ(x) ∈ L2(R)
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along the lattice aZ× bZ in R2. Such systems, also called Weyl-Heisenberg systems,
were introduced by Gabor [2] with the aim of constructing efficient, time-frequency
localized expansions of signals as an infinite linear combinations of elements in [1.1].
The system G(a, b, ψ) given by [1.1] is called a Gabor frame if there exist constants
A,B > 0 such that

(1.2) A
∥

∥f
∥

∥

2

2
6
∑

m∈Z

∑

n∈Z

∣

∣

〈

f,MmbTnaψ
〉∣

∣

2
6 B

∥

∥f
∥

∥

2

2
,

holds for every f ∈ L2(R), and we call the optimal constants A and B the lower
frame bound and the upper frame bound, respectively. A tight Gabor frame refers
to the case when A = B, and a normalized tight frame refers to the case when
A = B = 1. Gabor systems that form frames for L2(R) have a wide variety
of applications. One of the most important problem in practice is therefore to
determine conditions for Gabor systems to be frames. In practice, once the window
function has been chosen, the first question to investigate for Gabor analysis is to
find the values of the time-frequency parameters a, b such that G(a, b, ψ) is a frame.
Therefore, the product ab will decide whether the system G(a, b, ψ) constitutes a
frame or is even complete for L2(R) or not. In this context, a useful tool is the Ron
and Shen [8] criterion. By using this criterion, Gröchenig et al.[6] have proved that
the system G(a, b, ψ) cannot be a frame for L2(R) if |ab| > 1 and have also shown
that the system G(a, b, ψ) will form an orthonormal basis for L2(R) if |ab| = 1.

Gabor analysis is a pervasive signal processing method for decomposing and
reconstructing signals from their time frequency projections and also in the con-
text of speech processing, texture segmentation, pattern and object recognition.
In order to analyze the dynamic time frequency samples of the signals that con-
tain a wide range of spatial and frequency components, the resolution of which is
normally very poor, the single windowed Gabor expansion is not suitable. To ad-
dress this issue, one of the best choices is the multigenerator Gabor system with
a set of multiple windows of various time frequency localizations in frame system.
The representation of signals of multiple and time-varying frequencies would have
their corresponding windowing templates and resolutions relate to. The concept
of multigenerator Gabor system is introduced by Zibulski and Zeevi [12] and they
[13] discussed the frame operator associated with the multigenerator Gabor frame
by invoking the concept of piecewise Zak transform. They pointed out that the
Ballian-Low theorem for the multigenerator Gabor frame is more generalized to the
consideration of a scheme of multigenerator which makes it possible to overcome in
a way the constraint imposed by the single window in the original theorem. Since
then a lot of research [13]-[18] has been carried out in both theory and application
aspects of the multigenerator Gabor frame as they can increase the degree of free-
dom by incorporating windows of various types and widths. For more information
on this topic, we refer the reader to [1], [5].

For modeling a signal that appears periodically but intermittently, aZ-periodic
set in R can be used. In this direction, some authors considered the Gabor analysis
in L2(S), where S is an aZ-periodic set in R. Although the classical Gabor analysis
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tools in L2(S) can be adjusted to treat such a scenario by padding with zeros
outside the set S, Gabor systems that fit exactly such a scenario might have been
more efficient. Gabardo and Li [19] obtained density results for Gabor systems
associated with periodic subsets of the real line. Lian and Li [20] studied the Gabor
frame sets for subspaces. They pointed out that only a periodic S in R is suitable
for Gabor analysis.

A field K equipped with a topology is called a local field if both the additive
and multiplicative groups of K are locally compact Abelian groups. For example,
any field endowed with a discrete topology is a local field. For this reason we
consider only non-discrete fields. Local fields are essentially of two types (excluding
connected local fields R and C). Local fields of the characteristic zero include the
p-adic field Qp. Examples of local fields of positive characteristic are the Cantor
dyadic group and the Vilenkin p-groups. Local fields have attracted the attention
of several mathematicians, and have found innumerable applications not only in the
number theory, but also in the representation theory, division algebras, quadratic
forms and algebraic geometry. As a result, local fields are now consolidated as a
part of the standard repertoire of contemporary mathematics. For more details we
refer the reader to the book by Taibleson [11].

The local field K is a natural model for the structure of Gabor frame systems,
as well as a domain upon which one can construct Gabor basis functions. Recently,
there has been a substantial body of work concerned with the construction of Gabor
frames on K or, more generally, on local fields of positive characteristic. Jiang
et al.[7] constructed Gabor frames on local fields of positive characteristic using
basic concepts of operator theory and have established a necessary and sufficient
conditions for the system

{

Mu(m)bTu(n)aψ =: χm(bx)ψ
(

x− u(n)a
)}

m,n∈N0

to be

a frame for L2(K). Shah [9] established a complete characterization of Gabor
frames on local fields by virtue of two basic equations in the frequency domain
and provides the algorithm for constructing an orthonormal Gabor basis for L2(K).
Recent results related to Gabor frames on local fields of positive characteristic can
be found in [9],[10], and the references therein.

Motivated and inspired by the above work, our aim is to investigate multigener-
ator Gabor systems on a periodic set in local field and provide complete characteri-
zations for such systems to be frameS. Moreover, necessary and sufficient condition
for such a system to be a Parseval Gabor frame. Our results also hold for the
Cantor dyadic group and the Vilenkin groups as they are local fields of positive
characteristic.

The rest of this paper is organized as follows. In Section 2., we discuss some
preliminary facts about Fourier analysis on local fields of positive characteristic and
also some results to be used throughout the paper. In Section 3., we establish nec-
essary and sufficient conditions for the multigenerator Gabor system to be a frame
for L2(Ω). In Section 4., we obtain a complete characterization of multigenerator
Parseval Gabor frames.
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2. Preliminaries on local fields and basic facts about frames

Let K be a field and a topological space. Then K is called a local field if both K+

and K∗ are locally compact Abelian groups, where K+ and K∗ denote additive
and multiplicative groups of K, respectively. If K is any field and is endowed with
a discrete topology, then K is a local field. Further, if K is connected, then K is
either R or C. If K is not connected, then it is totally disconnected. Hence by
a local field we mean a field K which is locally compact, non-discrete and totally
disconnected. p-adic fields are examples of local fields. More details can be found
in [11,13]. In the rest of this paper, we use the symbols N,N0 and Z to denote sets
of natural, non-negative integers and integers, respectively.

Let K be a local field. Let dx be the Haar measure on the locally compact
Abelian group K+. If α ∈ K and α 6= 0, then d(αx) is also a Haar measure. Let
d(αx) = |α|dx. We call |α| the absolute value of α. Moreover, the map x → |x|
has the following properties: (a) |x| = 0 if and only if x = 0; (b) |xy| = |x||y| for
all x, y ∈ K; and (c) |x + y| 6 max {|x|, |y|} for all x, y ∈ K. The property (c)
is called the ultrametric inequality. The set D = {x ∈ K : |x| 6 1} is called the
ring of integers in K. Define B = {x ∈ K : |x| < 1}. The set B is called the prime
ideal in K. The prime ideal in K is the unique maximal ideal in D and hence as a
result B is both principal and prime. Since the local field K is totally disconnected,
there exists an element of B of maximal absolute value. Let p be a fixed element
of maximum absolute value in B. Such an element is called the prime element of
K. Therefore, for such an ideal B in D, we have B = 〈p〉 = pD. As it was proved
in [11], the set D is compact and open. Hence, B is compact and open. Therefore,
the residue space D/B is isomorphic to a finite field GF (q), where q = pk for some
prime p and k ∈ N.

LetD∗ = D\B = {x ∈ K : |x| = 1}. Then, it can be proved thatD∗ is a group of
units in K∗ and if x 6= 0, then we may write x = pkx′, x′ ∈ D∗. For the proof of this
fact we refer the reader to [11]. Moreover, each Bk = pkD =

{

x ∈ K : |x| < q−k
}

is a compact subgroup of K+ and usually known as the fractional ideals of K+.
Let U = {ai}

q−1
i=0 be any fixed full set of coset representatives of B in D, then every

element x ∈ K can be expressed uniquely as x =
∑∞

ℓ=k cℓp
ℓ with cℓ ∈ U . Let χ be a

fixed character on K+ that is trivial on D but is non-trivial on B−1. Therefore, χ is
constant on cosets of D so if y ∈ Bk, then χy(x) = χ(yx), x ∈ K. Suppose that χu

is any character on K+, then clearly the restriction χu|D is also a character on D.
Therefore, if {u(n) : n ∈ N0} is a complete list of the distinct coset representative
of D in K+, then, as it was proved in [13], the set

{

χu(n) : n ∈ N0

}

of distinct
characters on D is a complete orthonormal system on D.

The Fourier transform f̂ of a function f ∈ L1(K) ∩ L2(K) is defined by

(2.1) f̂(ξ) =

∫

K

f(x)χξ(x)dx.

It is noted that

(2.2) f̂(ξ) =

∫

K

f(x)χξ(x)dx =

∫

K

f(x)χ(−ξx)dx.
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Furthermore, the properties of the Fourier transform on a local field K are much
similar to those on the real line. In particular, the Fourier transform is unitary on
L2(K).

We now impose a natural order on the sequence {u(n)}∞n=0. We have D/B ∼=
GF (q) where GF (q) is a c-dimensional vector space over the field GF (p). We choose

a set {1 = ζ0, ζ1, ζ2, . . . , ζc−1} ⊂ D∗ such that span {ζj}
c−1
j=0

∼= GF (q). For n ∈ N0

satisfying

0 ≤ n < q, n = a0 + a1p+ · · ·+ ac−1p
c−1, 0 ≤ ak < p, and k = 0, 1, . . . , c− 1,

we define

(2.3) u(n) = (a0 + a1ζ1 + · · ·+ ac−1ζc−1) p
−1.

Also, for

n = b0 + b1q + b2q
2 + · · ·+ bsq

s, n ∈ N0, 0 ≤ bk < q, k = 0, 1, 2, . . . , s,

we set

(2.4) u(n) = u(b0) + u(b1)p
−1 + · · ·+ u(bs)p

−s.

This defines u(n) for all n ∈ N0. In general, it is not true that u(m + n) =
u(m) + u(n). But, if r, k ∈ N0 and 0 6 s < qk, then u(rqk + s) = u(r)p−k + u(s).
Further, it is also easy to verify that u(n) = 0 if and only if n = 0 and {u(ℓ)+u(k) :
k ∈ N0} = {u(k) : k ∈ N0} for a fixed ℓ ∈ N0. Hereafter we use the notation
χn = χu(n), n > 0.

Let the local field K be of characteristic p > 0 and ζ0, ζ1, ζ2, . . . , ζc−1 be as
above. We define the character χ on K as follows:

(2.5) χ(ζµp
−j) =

{

exp(2πi/p), µ = 0 and j = 1,
1, µ = 1, . . . , c− 1 or j 6= 1.

We also denote the test function space onK by S, i.e., each function f in S is a finite
linear combination of functions of the form 1k(x−h), h ∈ K, k ∈ Z, where 1k is the
characteristic function of Bk. Then, it is clear that S is dense in Lp(K), 1 6 p <∞,
and each function in S is of compact support and so is its Fourier transform.

A measurable set Ω in a local field K is said to be a− periodic if Ω+u(n)a = Ω,
for every n ∈ N0. Let Ω be an a-periodic subset of K. Then it is clear that Ω is
av-periodic for every v ∈ N. Denote Ω0 = Ga ∩ Ω and

(2.6) L2(Ω) =
{

f ∈ L2(K) : supp(f) ⊂ Ω
}

where Ga = {x ∈ Ω : |x| 6 |a|}. Clearly, it is a Hilbert space with the inner product
in L2(K).
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Definition 2.1. Let a and b be any two fixed elements in K. For a fixed positive
integer L, let Ψ = {ψ1, ψ2, . . . , ψL} ⊆ L2(Ω), define the multi-generator Gabor
system
(2.7)

G(a, b,Ψ) :=
{

Mu(m)bℓTu(n)aψ
ℓ =: χm(bℓx)ψ

ℓ
(

x− u(n)a
)

: n,m ∈ N0, 1 6 ℓ 6 L
}

,

where Mu(m)bℓf(x) = χm(bℓx)f(x) and Tu(n)af(x) = f
(

x − u(n)a
)

are the
modulation and translation operators defined on L2(K), respectively. We call the
Gabor system G(a, b,Ψ) a Gabor frame for L2(Ω), if there exist constants C and D,
0 < C 6 D <∞ such that

(2.8) C
∥

∥f
∥

∥

2

2
6

L
∑

ℓ=1

∑

m∈N0

∑

n∈N0

∣

∣

〈

f,Mu(m)bℓTu(n)aℓ
ψℓ
〉∣

∣

2
6 D

∥

∥f
∥

∥

2

2

The following Lemma follows from the frames associated with shift invariant spaces(see
[11] or [1]).

Lemma 2.1. Let {fn}
∞
n=1 be a family of elements in L2(K) and suppose that for

b > 0,

(2.9) B =
1

|b|
sup
x∈K

∑

k∈N0

∣

∣

∣

∣

∣

∑

n∈N0

fn(x)fn(x− b−1u(k))

∣

∣

∣

∣

∣

<∞,

then
{

Mu(m)bfn : m,n ∈ N0

}

is Bessel sequences with the upper bound B for L2(K).
Furthermore, if

(2.10) A =
1

|b|
inf
x∈K

{

∑

n∈N0

|fn(x)|
2 −

∑

k∈N

∣

∣

∣

∣

∣

∑

n∈N0

fn(x)fn(x − b−1u(k))

∣

∣

∣

∣

∣

}

> 0,

then
{

Mu(m)bfn : m,n ∈ N0

}

is a frame with bounds A and B.

3. Necessary and Sufficient Conditions for Multigenerator Gabor

System to be frame for L2(Ω)

In this section, we establish some necessary and sufficient conditions for the multi-
generator Gabor system G(a, b,Ψ) given by (2.7) to be a frame for L2(Ω). Before
we proceed to the main results, we first provide the relationship between the Gabor
system in L2(K) and its subspace L2(Ω).

Theorem 3.1. Let Ψ = {ψ1, ψ2, . . . , ψL} ⊆ L2(Ω) and a, b > 0, then the following
results hold.

(a) If the Gabor system G(a, b,Ψ) given by (2.7) is a frame for L2(K), then it
is a frame for L2(Ω).

(b) If the Gabor system G(a, b,Ψ) given by (2.7) is a Bessel sequence for L2(Ω)
with the upper bound B, then it is a Bessel sequence for L2(K) with the same upper
bound.
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Proof. The part (a) clearly follows from the fact that L2(Ω) ⊂ L2(K). Now we
proceed to prove part(b). Suppose that the multigenerator Gabor system G(a, b,Ψ)
given by (2.7) is a Bessel sequence for L2(Ω). Then there exists a constant B > 0
such that

(3.1)

L
∑

ℓ=1

∑

n∈N0

∣

∣

〈

f,Mu(m)bTu(n)aψ
ℓ
〉
∣

∣

2
6 B‖f‖,. ∀f ∈ L2(Ω).

Further we observe that

(3.2)

〈

f,Mu(m)bTu(n)aψ
ℓ
〉

=

∫

K

f(x)ψℓ(x− u(n)a)χm(bx) dx

=

∫

Ω

f(x)ψℓ(x− u(n)a)χm(bx) dx,

as fψℓ ∈ L2(Ω), 1 6 ℓ 6 L, for all f ∈ L2(K). Therefore, it follows that

(3.3)
〈

f,Mu(m)bTu(n)aψ
ℓ
〉

=
〈

f1Ω,Mu(m)bTu(n)aψ
ℓ
〉

Thus for all f ∈ L2(K), we have

(3.4)

L
∑

ℓ=1

∑

n∈N0

∣

∣

〈

f,Mu(m)bTu(n)aψ
ℓ
〉∣

∣

2
=

L
∑

ℓ=1

∑

n∈N0

∣

∣

〈

f1Ω,Mu(m)bTu(n)aψ
ℓ
〉∣

∣

2

6 B‖f1Ω‖
2

6 B‖f‖2.

This clearly implies that the multigenerator Gabor system G(a, b,Ψ) given by (2.7)
is a Bessel sequence for L2(K) with the same upper bound B.

Now we state the sufficient condition for the multigenerator Gabor system
G(a, bΨ) given by (2.7) to be a frame for L2(Ω).

Theorem 3.2. Let Ψ = {ψ1, ψ2, . . . , ψL} ⊆ L2(K) and a, b > 0 suppose that

(3.5) B =
1

|b|
sup

x∈G
b−1

∑

k∈N0

∣

∣

∣

∣

∣

L
∑

ℓ=1

∑

n∈N0

T(n)aψ
ℓ(x)Tu(n)aψℓ(x− b−1u(k))

∣

∣

∣

∣

∣

<∞,

then the multigenerator Gabor system G(a, b,Ψ) given by (2.7) is a Bessel se-
quences with the upper bound B for L2(Ω). Furthermore, if
(3.6)

A =
1

|b|
inf

x∈G
b−1







∑

n∈N0

∣

∣

∣

∣

∣

L
∑

ℓ=1

Tu(n)aψ
ℓ(x)

∣

∣

∣

∣

∣

2

−
∑

k∈N

∣

∣

∣

∣

∣

L
∑

ℓ=1

∑

n∈N0

T(n)aψ
ℓ(x)Tu(n)aψℓ(x− b−1u(k))

∣

∣

∣

∣

∣







> 0,

then the multigenerator Gabor system G(a, b,Ψ) given by (2.7) is a frame for
L2(Ω) with bounds A and B.
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Proof. Define

(3.7) H1(x) =
∑

k∈N0

∣

∣

∣

∣

∣

L
∑

ℓ=1

∑

n∈N0

T(n)aψ
ℓ(x)Tu(n)aψℓ(x− b−1u(k))

∣

∣

∣

∣

∣

.

(3.8)

H2(x) =
∑

n∈N0

∣

∣

∣

∣

∣

L
∑

ℓ=1

Tu(n)aψ
ℓ(x)

∣

∣

∣

∣

∣

2

−
∑

k∈N

∣

∣

∣

∣

∣

L
∑

ℓ=1

∑

n∈N0

T(n)aψ
ℓ(x)Tu(n)aψℓ(x− b−1u(k))

∣

∣

∣

∣

∣

Clearly H1 and H2 are b−1−periodic functions. Thus

(3.9) B =
1

|b|
sup
x∈K

∑

k∈N0

∣

∣

∣

∣

∣

L
∑

ℓ=1

∑

n∈N0

T(n)aψ
ℓ(x)Tu(n)aψℓ(x − b−1u(k))

∣

∣

∣

∣

∣

<∞,

(3.10)

A =
1

|b|
inf
x∈K







∑

n∈N0

∣

∣

∣

∣

∣

L
∑

ℓ=1

Tu(n)aψ
ℓ(x)

∣

∣

∣

∣

∣

2

−
∑

k∈N

∣

∣

∣

∣

∣

L
∑

ℓ=1

∑

n∈N0

T(n)aψ
ℓ(x)Tu(n)aψℓ(x− b−1u(k))

∣

∣

∣

∣

∣







> 0,

Define

(3.11) fn(x) = Tu(k)aψ
ℓ(x),

where n = ℓ+ su(k), 1 6 ℓ 6 L. Then, one obtains from (3.9) and (3.10) that

(3.12) B =
1

|b|
sup
x∈K

∑

k∈N0

∣

∣

∣

∣

∣

∑

n∈N0

fn(x)fn(x− b−1u(k))

∣

∣

∣

∣

∣

<∞,

(3.13) A =
1

|b|
inf
x∈K

{

∑

n∈N0

|fn(x)|
2 −

∑

k∈N

∣

∣

∣

∣

∣

∑

n∈N0

fn(x)fn(x − b−1u(k))

∣

∣

∣

∣

∣

}

> 0,

respectively. By invoking Lemma 2.1, and the fact L2(Ω) ⊂ L2(K), the result
follows.

Now we prove the necessary condition for the multigenerator Gabor system
G(a, b,Ψ) given by (2.7) to be a frame for L2(Ω), which depends on the interplay
among the functions ψ1, ψ2, . . . , ψL and the parameters a, b1, . . . , bL and the peri-
odic set Ω.

Theorem 3.3. Let Ψ = {ψ1, ψ2, . . . , ψL} ⊆ L2(Ω), and a, b1, b2, . . . , bL > 0. Sup-
pose that the Gabor system G(a, b,Ψ) given by (2.7) is a multigenerator Gabor frame
for L2(Ω) with bounds A and B, then

(3.14) A1Ω(x) 6

L
∑

ℓ=1

{

1

|bℓ|

∑

n∈N0

|ψℓ(x − u(n)a)|2

}

6 B1Ω(x), a.e. K.
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Proof. We first note that Ω is an a-periodic subset ofK. Therefore, ψℓ (· − u(n)a) ∈
L2(Ω) for all n ∈ N, 1 6 ℓ 6 L. Thus

(3.15)

L
∑

ℓ=1

{

1

|bℓ|

∑

n∈N0

|ψℓ(x− u(n)a)|2

}

= 0, a.e. K \ Ω.

We establish the proof by contradiction. Assume that the upper bound condition
in (3.14) is not true on Ω. Then there exists a measurable set Ξ ⊂ Ω with positive
measure such that

(3.16)

L
∑

ℓ=1

{

1

|bℓ|

∑

n∈N0

|ψℓ(x− u(n)a)|2

}

> B a.e. on Ξ.

We can assume that Ξ is contained in a ball Υ with the diameter of |b|−1. Setting

Ξ0 =

{

x ∈ Ξ :
1

|bℓ|

∑

n∈N0

|ψℓ(x− u(n)a)|2 >
1

|bℓ|
+B

}

and

Ξk =

{

x ∈ Ξ :
1

|bℓ|(k + 1)
+B 6

1

|bℓ|

∑

n∈N0

|ψℓ(x− u(n)a)|2 <
1

|bℓ|k
+B

}

, k ∈ N.

Thus we obtain a partition of Ξ into disjoint measurable sets among which at least
one say, Ξs, has positive measure.

Now consider the function f = 1Ξs
, the characteristic function on Ξs and note

that ‖f‖2 = |Ξs|. Clearly, for any n ∈ N0, the function fTu(n)aψℓ has support in
Ξs. Since Ξs is contained in a ball Υ with the diameter of |b|−1 and the functions
{

√

|bℓ|χm(bℓx) : m ∈ N0, 1 6 ℓ 6 L
}

constitutes an orthonormal basis for L2(Υ) for

every ball Υ of the diameter |b|−1, we have

∑

m∈N0

∣

∣

〈

f,Mu(m)bℓTu(n)aℓ
ψℓ
〉∣

∣

2
=
∑

m∈N0

∣

∣

∣

〈

fTu(n)aℓ
ψℓ,Mu(m)bℓ

〉
∣

∣

∣

2

= 1
|bℓ|

∫

K

|f(x)|2 |ψℓ(x − u(n)a)|2dx.

Thus

∑

m∈N0

∣

∣

〈

f,Mu(m)bℓTu(n)aℓ
ψℓ
〉
∣

∣

2
= 1

|bℓ|

∫

Ξs

|f(x)|2
∑

n∈N0

|ψℓ(x− u(n)a)|2 dx

>

{

B + 1
|bℓ|(s+1)

}

‖f‖2.
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This is a contradiction to the assumption that B is the upper frame bound for the
multigenerator Gabor system G(a, b,Ψ) given by (2.7). In a similar vein, we can
show that if the lower bound condition in (3.14) is violated, then A cannot be the
lower bound for the multigenerator Gabor system G(a, b,Ψ) given by (2.7).

4. Characterizations of Parseval Multigenerator Gabor Frame

In this section, we will provide the characterization of Parseval multigenerator Ga-
bor frames. The following Lemma is very useful in this section.

Lemma 4.1. Let f be a bounded measurable function with compact support and
let Ψ = {ψ1, ψ2, . . . , ψL} ⊆ L2(Ω), then for a, b > 0 and 1 6 ℓ 6 L, we have

∑

m∈N0

∑

n∈N0

∣

∣〈f,Mu(m)bTu(n)aψ
ℓ〉
∣

∣

2

=
1

|b|

∫

K

|f(x)|2|
∑

n∈N0

ψℓ
(

x− u(n)a)
)

|2 dx

+
∑

k∈N0

1

|b|

∫

K

f(x)ψℓ
(

x− u(n)a
)

×
∑

n∈N

ψℓ
(

x+ b−1u(k)
)

ψℓ
(

x+ b−1u(k)− u(n)a
)

dx
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Proof. We have

∑

m∈N0

∑

n∈N0

∣

∣〈f,Mu(m)bTu(n)aψ
ℓ〉
∣

∣

2

=
∑

m∈N0

∑

n∈N0

∫

K

∣

∣

∣
f(x)ψℓ

(

x− u(n)a
)

χm(bx) dx
∣

∣

∣

2

=
∑

m∈N0

∑

n∈N0

∫

K

∣

∣

∣
f(x+ u(n)a)ψℓ

(

ξ
)

χm(bx) dx
∣

∣

∣

2

=
∑

n∈N0

1

|b|

∫

K

f
(

x+ u(n)a)ψℓ(ξ)

×
∑

ℓ∈N0

f
(

x+ b−1u(ℓ) + u(n)a
)

ψℓ
(

x+ b−1u(ℓ)
)

, dx

=
∑

n∈N0

1

|b|

∫

K

|f
(

x+ u(n)a)|2|ψℓ(x)|2 dx

+
∑

n∈N0

1

|b|

∫

K

f
(

x+ u(n)a
)

ψℓ(x)

×
∑

k∈N

f
(

x+ b−1u(k) + u(n)a
)

ψℓ
(

x+ b−1u(k)
)

dx

=
∑

n∈N0

1

|b|

∫

K

|f(x)|2|ψℓ
(

x− u(n)a)
)

|2 dx

+
∑

n∈N0

1

|b|

∫

K

f(x)ψℓ
(

x− u(n)a
)

×
∑

k∈N

f
(

x+ b−1u(k)
)

ψℓ
(

x+ b−1u(k)− u(n)a
)

dx.

Theorem 4.1. Let Ψ = {ψ1, ψ2, . . . , ψL} ⊆ L2(Ω), and a, b1, b2, . . . , bL > 0. Sup-
pose that the Gabor system G(a, b,Ψ) given by (2.7) is a tight frame for L2(Ω) with
A = 1,then

(4.1)

L
∑

ℓ=1

1

|bℓ|

{

∑

n∈N0

ψℓ
(

x− u(n)a)
)

|2

}

= 1Ω, a.e. K.
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Furthermore, if b1 = b2 = · · · = bL = b(say), then for k ∈ N, we have

(4.2)

L
∑

ℓ=1

{

∑

n∈N0

ψℓ
(

x− u(n)a)
)

|2

}

= |b|1Ω, a.e. K.

(4.3)

L
∑

ℓ=1

{

∑

k∈N

ψℓ
(

x+ b−1u(m)
)

ψℓ
(

x+ b−1u(k)− u(n)a
)

}

= 0,

hold a.e in K.

Proof. Define

(4.4) ν1 = min

{

1

|bℓ|
: 1 6 ℓ 6 L

}

Consider

(4.5) D =
{

f : f ∈ L2(Ω) and suppf ⊂ (Gν1 ∩ Ω)
}

Since G(a, b,Ψ) given by (2.7) is a tight frame for L2(Ω) with A = 1. Then

(4.6)

L
∑

ℓ=1

∑

m∈N0

∑

n∈N0

∣

∣〈f,Mu(m)bTu(n)aψ
ℓ〉
∣

∣

2
6 ‖f‖2, ∀f ∈ D.

By Invoking Lemma4.1, for all f ∈ D and fixed ℓ, n, we have

(4.7)
∑

m∈N0

∑

n∈N0

∣

∣〈f,Mu(m)bTu(n)aψ
ℓ〉
∣

∣

2
=
∑

m∈N0

∣

∣

∣

∣

∫

K

f(x)ψℓ(x− u(n)a)χm(bℓx) dx

∣

∣

∣

∣

2

= 1
|bℓ|

∫

K

|f(x)ψℓ(x − u(n)a)|2 dx

=
1

|bℓ|

∫

G
ν1

|f(x)ψℓ(x − u(n)a)|2 dx

Thus for any f ∈ D, we have

(4.8)

∫

G
ν1

|f(x)|2 dx =

∫

G
ν1

|f(x)|2
L
∑

ℓ=1

{

∑

n∈N0

ψℓ
(

x− u(n)a)
)

|2

}

dx

implies that

(4.9)

L
∑

ℓ=1

{

∑

n∈N0

ψℓ
(

x− u(n)a)
)

|2

}

= 1 a.e.Gν1 ∩ Ω.
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which gives the desired result (4.1) and its particular case (4.2).

Next we proceed to prove (4.3). For fixed ℓ, 1 6 ℓ 6 L, by using Lemma 4.1, we
have
(4.10)

∑

m∈N0

∑

n∈N0

∣

∣〈f,Mu(m)bTu(n)aψ
ℓ〉
∣

∣

2

=
1

|b|

∫

K

|f(x)|2|
∑

n∈N0

ψℓ
(

x− u(n)a)
)

|2 dx

+
∑

k∈N0

1

|b|

∫

K

f(x)ψℓ
(

x− u(n)a
)

×
∑

n∈N

ψℓ
(

x+ b−1u(k)
)

ψℓ
(

x+ b−1u(k)− u(n)a
)

dx

Then,

(4.11)
L
∑

ℓ=1

∑

m∈N0

∑

n∈N0

∣

∣〈f,Mu(m)bTu(n)aψ
ℓ〉
∣

∣

2

=

∫

K

|f(x)|2|

L
∑

ℓ=1

1

|b|

∑

n∈N0

ψℓ
(

x− u(n)a)
)

|2 dx

+
∑

k∈N0

1

|b|

∫

K

f(x)ψℓ
(

x− u(n)a
)

×
L
∑

ℓ=1

(

∑

n∈N

ψℓ
(

x+ b−1u(k)
)

ψℓ
(

x+ b−1u(k)− u(n)a
)

)

dx

By combining (4.11) with (4.2), it follows that
(4.12)

∑

k∈N0

1

|b|

∫

K

f(x)ψℓ
(

x− u(n)a
)

×

L
∑

ℓ=1

(

∑

n∈N

ψℓ
(

x+ b−1u(k)
)

ψℓ
(

x+ b−1u(k)− u(n)a
)

)

dx = 0.

By using the change u(k) → −u(k), it can be seen that the contribution in the
above sum for any value of u(k) is a complex conjugate of the contribution from
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the value −u(k). Therefore, we have

(4.13)
∑

k∈N

Re

{

1

|b|

∫

K

f(x)ψℓ
(

x− u(n)a
)

Θk(x)dx

}

= 0.

where

(4.14) Θk(x) =

L
∑

ℓ=1

(

∑

n∈N

ψℓ
(

x+ b−1u(k)
)

ψℓ
(

x+ b−1u(k)− u(n)a
)

)

= 0.

To establish the required result, we consider three cases. First we consider the
case when x ∈ Ω. Since Ω is an a− periodic set, then x− u(n)a ∈ Ω for all n ∈ N0.
Therefore

(4.15) ψℓ(x− u(n)a) = 0, ∀n ∈ N0

Thus

(4.16)

L
∑

ℓ=1

(

∑

n∈N

ψℓ
(

x+ b−1u(k)
)

ψℓ
(

x+ b−1u(k)− u(n)a
)

)

= 0, ∀k ∈ N.

The second case is when x−b−1u(k) /∈ Ω for fixed k ∈ N. Then x−u(n)a−b−1u(k) /∈
Ω for all n ∈ N0. Therefore

(4.17)

L
∑

ℓ=1

(

∑

n∈N

ψℓ
(

x+ b−1u(k)
)

ψℓ
(

x+ b−1u(k)− u(n)a
)

)

= 0.

The third case is when x ∈ Ω and x−b−1u(k) ∈ Ω for fixed k ∈ N. Let Γ be any ball
of the radius at most b−1 and denote Γ∩Ω by Γ0 and (Γ− b−1u(k))∩ (Ω+ b−1u(k)
by Γ

′

. If the measure of Γ∩Γ
′

is zero, then x /∈ Γ0 a.e. or x /∈ Γ− b−1u(k) a.e, thus

(4.18)
L
∑

ℓ=1

(

∑

n∈N

ψℓ
(

x+ b−1u(k)
)

ψℓ
(

x+ b−1u(k)− u(n)a
)

)

= 0.

If the measure of Γ0 ∩ Γ
′

is positive. We define a function f ∈ L2(Ω) by

(4.19) f(x) =























exp{−argΘk0
(x)}, x ∈ Γ0 ∩ Γ

′

1 , x ∈ Γ0 ∩ Γ
′

− b−1u(k),

0 , otherwise.
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Then, by (4.13) we obtain
∫

Γ0∩Γ′

|Θk0
(x)| dx = 0.

It follows that Θk0(x) = 0, a.e, on Γ ∩ Γ
′

. Since Γ is an arbitrary ball of the radius

at most 1
b
, we conclude that Θk0

(x) = 0, a.e, in Ω. A simple computation shows
that

Θ−k0
(x) = Θk0

(x+ b−1u(k0))

Thus the desired result follows.

To proceed further, we first define some notations. For b1, b2, · · · , bL > 0, we
define

ν1 = min
16ℓ6L

{

1

|bℓ|

}

and for j > 2,

(4.20) νj = min
16ℓ6L

{

1

|bℓ|
: |bℓ| <

1

νj−1

}

.

Also, we define

Ij =

{

ℓ : |bℓ| =
1

νj
, 1 6 ℓ 6 L

}

.

Then there exists a unique j0 ∈ N such that

(4.21)

I 6= φ for 1 6 j 6 j0,

Ij1 ∩ Ij2 = φ, for j1 6= j2,

⋃j0
j=1 Ij = {1, 2, · · · , L}.

Theorem 4.2. Let j0 be a unique positive integer satisfying (4.21). Suppose that
Ψ = {ψ1, ψ2, . . . , ψL} ⊆ L2(Ω), and a, b1, b2, . . . , bL > 0 satisfy

(4.22)
L
∑

ℓ=1

1

|bℓ|

{

∑

n∈N0

ψℓ
(

x− u(n)a)
)

|2

}

= 1Ω,

(4.23)
∑

ℓ∈Ij

{

∑

m∈N0

ψℓ
(

x+ b−1u(m)
)

ψℓ
(

x+ b−1u(k)− u(m)a
)

}

= 0, for k ∈ N, 1 6 j 6 j0

a.e in K. Then the Gabor system G(a, b,Ψ) given by (2.7) is a tight frame for L2(Ω)
with A = 1.
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Proof. For fixed ℓ = 1, 2, . . . , L, using Lemma 4.1, we obtain
(4.24)

∑

m∈N0

∑

n∈N0

∣

∣〈f,Mu(m)bℓTu(n)aψ
ℓ〉
∣

∣

2

=
1

|bℓ|

∫

K

|f(x)|2|
∑

n∈N0

ψℓ
(

x− u(n)a)
)

|2 dx

+
∑

k∈N0

1

|bℓ|

∫

K

f(x)ψℓ
(

x− u(n)a
)

×

(

∑

n∈N

ψℓ
(

x+ b−1
ℓ u(k)

)

ψℓ
(

x+ b−1
ℓ u(k)− u(n)a

)

)

dx

which implies that,

(4.25)

L
∑

ℓ=1

∑

m∈N0

∑

n∈N0

∣

∣〈f,Mu(m)bℓTu(n)aψ
ℓ〉
∣

∣

2

=

∫

K

L
∑

ℓ=1

1

|bℓ|
|f(x)|2|

∑

n∈N0

ψℓ
(

x− u(n)a)
)

|2 dx+ (�),

where
(4.26)

(�) =

∫

K

L
∑

ℓ=1

∑

k∈N0

1

|bℓ|
f(x)ψℓ

(

x− u(n)a
)

(

∑

n∈N

ψℓ
(

x+ b−1
ℓ u(k)

)

ψℓ
(

x+ b−1
ℓ u(k)− u(n)a

)

)

dx.

On combining (4.26) with (4.22), it follows that

(4.27)

L
∑

ℓ=1

∑

m∈N0

∑

n∈N0

∣

∣〈f,Mu(m)bℓTu(n)aψ
ℓ〉
∣

∣

2
=

∫

K

|f(x)|2 dx+ (�).

Define
(4.28)

Θj
k(x) =

∑

ℓ∈Ij

{

∑

m∈N0

ψℓ
(

x+ b−1u(m)
)

ψℓ
(

x+ b−1u(k)− u(m)a
)

}

for 1 6 j 6 j0

Then, from (4.23) we obtain
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(4.29) (�) =
∑

k∈N







∫

K

j0
∑

j=1

1

|bj |
f(x)f(x− b−1

j u(k)Θj
k(x)







= 0.

From this together with (4.27), it follows that

L
∑

ℓ=1

∑

m∈N0

∑

n∈N0

∣

∣〈f,Mu(m)bℓTu(n)aψ
ℓ〉
∣

∣

2
=

∫

K

|f(x)|2 dx = ‖f‖, ∀f ∈ L2(Ω).

Therefore, the Gabor system G(a, b,Ψ) given by (2.7) is a tight frame for L2(Ω)
with A = 1.

From the above two theorems, we obtain the following theorem, which is a
necessary and sufficient condition for the multigenerator Parseval Gabor frame.

Theorem 4.3. Let Ψ = {ψ1, ψ2, . . . , ψL} ⊆ L2(Ω), and a, b > 0. Then the Gabor
system G(a, b,Ψ) given by (2.7) is a tight frame for L2(Ω) with A = 1 if and only if

L
∑

ℓ=1

1

|b|

{

∑

n∈N0

ψℓ
(

x− u(n)a)
)

|2

}

= 1Ω,

L
∑

ℓ=1

{

∑

n∈N

ψℓ
(

x+ b−1u(n)
)

ψℓ
(

x+ b−1u(k)− u(n)a
)

}

= 0,

hold a.e in K.
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