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ON A CLASSIFICATION OF PARA-SASAKIAN MANIFOLDS
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Abstract. We consider para-Sasakian manifolds satisfying the curvature conditions
P ·R = 0, P ·Q = 0 and Q · P = 0, where R is the Riemannian curvature tensor, P is
the projective curvature tensor and Q is the Ricci operator.
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1. Introduction

In [14] Kaneyuki and Kozai defined the almost paracontact structure on a pseudo-
Riemannian manifold M of dimension (2n + 1) and constructed the almost para-
complex structure on M (2n+1) × R. In 2009, Zamkovoy [24] defined para-Sasakian
manifolds as a normal paracontact metric manifold. Thus a para-Sasakian manifold
is a subclass of paracontact metric manifolds. In [24], the author obtains a neces-
sary and sufficient condition for a paracontact metric manifold to be a para-Sasakian
manifold. Also D-homothetic transformations have been studied in para-Sasakian
manifolds in [24]. In the present paper, we characterize para-Sasakian manifolds
satisfying certain curvature conditions. Para-Sasakian manifolds have been studied
by several authors such as I. Mihai et al. ([19], [20], [21]) and De et al. ([11], [12],
[13], [16]) and many others.

In a Riemannian manifold, if there exists a one-to-one correspondence between
each coordinate neighborhood of M and a domain in Euclidean space such that any
geodesic of the Riemannian manifold corresponds to a straight line in the Euclidean
space, then M is said to be locally projectively flat. For n ≥ 1, M is locally
projectively flat if and only if the well known projective curvature tensor P vanishes.
Here P is defined by [22]

P (X,Y )Z = R(X,Y )Z −
1

2n
[S(Y, Z)X − S(X,Z)Y ],(1.1)

for all X,Y, Z ∈ χ(M), where R is the curvature tensor and S is the Ricci tensor of
type (0, 2). In fact, M is projectively flat if and only if it is of constant curvature.
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Thus the projective curvature tensor is the measure of the failure of a Riemannian
manifold to be of constant curvature.

The paper is organized as follows:

Section 2 is equipped with some prerequisites about para-Sasakian manifolds.
In Section 3, we prove that if a para-Sasakian manifold satisfies P · R = 0 then
the manifold is an Einstein manifold. Next in Section 4, it is shown that if a para-
Sasakian manifold satisfies the curvature condition P · Q = 0, then the square of
the Ricci tensor S2 is the linear combination of the Ricci tensor S and the metric
tensor g. Finally, we prove that if a para-Sasakian manifold satisfies the curvature
condition Q · P = 0, then the trace of the square of the Ricci operator of a para-
Sasakian manifold is equal to −2n times of the trace Ricci operator.

2. Priliminaries

Let M be an (2n + 1)-dimensional differentiable manifold. If there exits a triplet
(φ, ξ, η) of a tensor field φ of type (1, 1), a vector field ξ and a 1-form η on M2n+1

which satisfies the relation [1, 2, 14]

φ2 = I − η ⊗ ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0,(2.1)

then we say the triplet (φ, ξ, η) is an almost paracontact structure and the manifold
is an almost paracontact manifold.

If an almost paracontact manifold M2n+1 with an almost paracontact structure
(φ, ξ, η) admits a pseudo-Riemannian metric g such that [24]

g(X,Y ) = −g(φX, φY ) + η(X)η(Y ),(2.2)

then we say that M2n+1 is an almost paracontact metric structure (φ, ξ, η, g) and
such a metric g is called compatible metric. Any compatible metric g is necessarily
of signature (n+ 1, n). The fundamental 2-form of M2n+1 is defined by

Φ(X,Y ) = g(X,φY ).(2.3)

An almost paracontact metric structure becomes a paracontact metric structure if

dη(X,Y ) = g(X,φY )(2.4)

for all vector fields X,Y , where

dη(X,Y ) =
1

2
[Xη(Y )− Y η(X)− η([X,Y ])].(2.5)

Paracontact manifolds have been studied by several authors such as Kaneyuki and
Williams [15], Calvaruso [4, 5], Cappelletti-Montano et al. [7, 8, 9], Martin-Molina
[18], Zamkovoy et al. [25] and many others.

An almost paracontact structure is said to be normal if and only if the tensor
Nφ−2dη⊗ξ vanishes identically, where Nφ is the Nijenhuis tensor of φ : Nφ(X,Y ) =
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[φ, φ](X,Y ) = φ2[X,Y ]+[φX, φY ]−φ[φX, Y ]−φ[X,φY ] [24]. A normal paracontact
metric manifold is known as para-Sasakian manifold. It is known [14, 24] that an
almost paracontact manifold is para-Sasakian manifold if and only if

(∇Xφ)Y = −g(X,Y )ξ + η(Y )X,(2.6)

for all vectors field X,Y , where ∇ is the Levi-Civita connection of the pseudo-
Riemannian metric. From the above equation it follows that

∇Xξ = −φX.(2.7)

Moreover, in a para-Sasakian manifold the curvature tensor R, the Ricci tensor
S and the Ricci operator Q satisfy [24]

R(X,Y )ξ = −(η(Y )X − η(X)Y ),(2.8)

R(ξ,X)Y = −g(X,Y ) + η(Y )X,(2.9)

S(X, ξ) = −2nη(X),(2.10)

Qξ = −2nξ,(2.11)

(∇Xη)Y = g(X,φY ),(2.12)

η(R(X,Y )Z) = −(g(Y, Z)η(X)− g(X,Z)η(Y )).(2.13)

Para-Sasakian manifolds have been studied by several authors such as Zamkovoy
[24], Martin-Molina [17], Cappelletti Montano et al [6] and many others.

A para-Sasakian manifold is said to be Einstein if [23]

S(X,Y ) = ag(X,Y ),(2.14)

where S is the Ricci tensor of type (0, 2) and a is a constant.

3. Para-Sasakian manifolds satisfying P ·R = 0

In this section we characterize para-Sasakian metric manifold satisfying P ·R = 0.
Suppose the manifold satisfies

(P (X,Y ) · R)(U, V )W = 0,(3.1)

for all smooth vector fields X,Y, U, V and W then we have

P (X,Y )R(U, V )W −R(P (X,Y )U, V )W − R(U, P (X,Y )V )W

−R(U, V )P (X,Y )W = 0.(3.2)

Substituting X = U = ξ in (3.2) implies

P (ξ, Y )R(ξ, V )W −R(P (ξ, Y )ξ, V )W −R(ξ, P (ξ, Y )V )W

−R(ξ, V )P (ξ, Y )W = 0.(3.3)
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Using (1.1), (2.9) and (2.10) we have

P (ξ, Y )R(ξ, V )W = −η(W )g(Y, V )ξ −
1

2n
S(Y, V )η(W )ξ.(3.4)

Again using (1.1), (2.9) and (2.10) we obtain

R(P (ξ, Y )ξ, V )W = 0,(3.5)

R(ξ, P (ξ, Y )V )W = 0.(3.6)

Finally, using (1.1), (2.9) and (2.10) we get

R(ξ, V )P (ξ, Y )W

= g(Y,W )η(V )ξ − g(Y,W )V +
1

2n
S(Y,W )η(V )ξ −

1

2n
S(Y,W )V.(3.7)

Substituting (3.4)-(3.7) in (3.3) yields

−η(W )g(Y, V )ξ −
1

2n
S(Y, V )η(W )ξ − g(Y,W )η(V )ξ + g(Y,W )V

−
1

2n
S(Y,W )η(V )ξ +

1

2n
S(Y,W )V = 0.(3.8)

Replacing W by ξ in (3.8) we have

−g(Y, V )ξ −
1

2n
S(Y, V )ξ − η(Y )η(V )ξ + η(Y )V

−
1

2n
S(Y, ξ)η(V )ξ +

1

2n
S(Y, ξ)V = 0.(3.9)

Using (2.10) in (3.9) and then taking inner product with ξ implies

S(Y, V ) = −2ng(Y, V ),(3.10)

which implies the manifold is an Einstein manifold.

Therefore, we can state the following:

Theorem 3.1. If a para-Sasakian manifold satisfies P · R = 0 then the manifold
is an Einstein manifold.

4. Para-Sasakian manifolds satisfying P ·Q = 0

Suppose the para-Sasakian manifolds satisfies P ·Q = 0, which implies

P (X,Y )QZ −Q(P (X,Y )Z) = 0,(4.1)

for all smooth vector fields X, Y and Z. Putting Y = ξ in (4.1) we have

P (X, ξ)QZ −Q(P (X, ξ)Z) = 0.(4.2)
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Using (1.1), (2.9) and (2.10) we have

P (X, ξ)QZ = g(X,QZ)ξ +
1

2n
S(X,QZ)ξ.(4.3)

Similarly using (1.1), (2.9) and (2.10) we obtain

Q(P (X, ξ)Z) = −2ng(X,Z)ξ − S(X,Z)ξ.(4.4)

Making use of (4.3) and (4.4) in (4.2) yields

g(X,QZ)ξ +
1

2n
S(X,QZ)ξ + 2ng(X,Z)ξ + S(X,Z)ξ = 0.(4.5)

Taking inner product with ξ in (4.5) we have

S2(X,Z) = −4nS(X,Z)− 4n2g(X,Z),(4.6)

where S2(X,Z) = S(QX,Z).

This leads to the following:

Theorem 4.1. If a para-Sasakian manifold satisfies the curvature condition P ·
Q = 0, then the square of the Ricci tensor S2 is the linear combination of the Ricci
tensor S and the metric tensor g.

For symmetric (0, 2)-tensor fields A and B on M define Kulkarni-Nomizu prod-
uct A∧̄B of A and B by ([3], p-47)

A ∧̄ B(X1, ..., X4) = A(X1, X4)B(X2, X3)−A(X1, X3)B(X2, X4)

+A(X2, X3)B(X1, X4)−A(X2, X4)B(X1, X3).

Here we recall the following lemma:

Lemma 4.1. [10] Let A be symmetric (0, 2)-tensor at point x of a semi Rieman-
nian manifold (M, g), dim M ≥ 3 , and let T = g ∧̄ A be the Kulkarni-Nomizu
product of g and A. Then the relation

T · T = αQ(g, T ), α ∈ R(4.7)

is satisfied at x if and only if the condition

A2 = αA+ λg, α ∈ R

holds at x.

Hence we have the following corollary:

Corollary 4.1. Let M be a para-Sasakian manifold satisfying the condition P ·Q =
0 then T · T = αQ(g, T ), where T = g ∧̄ S and α = −4n.
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5. Para-Sasakian manifolds satisfying Q · P = 0

Suppose para-Sasakian manifolds satisfying Q · P = 0. Therefore

(Q · P )(X,Y )Z = 0,(5.1)

which implies

Q(P (X,Y )Z)− P (QX, Y )Z − P (X,QY )Z − P (X,Y )QZ = 0,(5.2)

for all vector fields X, Y and Z.

Substituting Y = ξ in (5.2) implies

Q(P (X, ξ)Z)− P (QX, ξ)Z − P (X,Qξ)Z − P (X, ξ)QZ = 0.(5.3)

Using (1.1) and (2.10) in (2.11) we have

Q(P (X, ξ)Z) = [
1

2n
S(X,Z) + g(X,Z)]Qξ.(5.4)

Using (1.1) and (2.9) we obtain

P (QX, ξ)Z = [
1

2n
S(QX,Z) + g(QX,Z)]ξ(5.5)

Again using (1.1), (2.9) and (2.11) yields

P (X,Qξ)Z = −[S(X,Z) + 2ng(X,Z)]ξ.(5.6)

Finally, using (1.1) and (2.9) we have

P (X, ξ)QZ = [
1

2n
S(X,QZ) + g(X,QZ)]ξ.(5.7)

Substituting (5.4)-(5.7) in (5.3) yields

[
1

2n
S(X,Z) + g(X,Z)]Qξ − [

1

2n
S(QX,Z) + g(QX,Z)]ξ

+[S(X,Z) + 2ng(X,Z)]ξ − [
1

2n
S(X,QZ) + g(X,QZ)]ξ = 0.(5.8)

Taking inner product with ξ in (5.8) and using (2.11) we have

g(Q2X,Z) = −2ng(QX,Z).(5.9)

Let {e1, e2, e3, ..., e2n+1} be a local orthonormal basis of the tangent space at a
point of the manifold M . Then by putting X = Z = ei and taking summation over
i, 1 6 i 6 (2n+ 1) we have

Tr(Q2) =

2n+1∑

i=1

g(Q2ei, ei) = −2n

2n+1∑

i=1

g(Qei, ei) = −2nTr(Q).(5.10)

This leads to the following:
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Theorem 5.1. If a para-Sasakian manifold satisfies the curvature condition Q ·
P = 0, then the trace of square of the Ricci operator of a para-Sasakian manifold is
equal to −2n times trace of the Ricci operator.

Acknowledgement: The authors are thankful to the referees for pointing out some
typos in the paper.
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