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RICCI SOLITONS IN a-COSYMPLECTIC MANIFOLDS *

Jay Prakash Singh and Chawngthu Lalmalsawma

Abstract. The aim of the paper is to study Ricci solitons in a-cosymplectic manifolds.
Projective, pseudo projective and Weyl conformal curvatures in an a-cosymplectic man-
ifolds admitting Ricci solitons have been studied under certain curvature conditions.
Also, gradient Ricci solitons in a-cosymplectic manifolds have been studied.
Keywords: Ricci soliton, gradient Ricci soliton, a-cosymplectic manifolds, cosympletic
manifolds, a-Kenmatsu manifolds

1. Introduction

The concept of Ricci soliton was introduced by Hamilton [8] while studying the
Ricci flow on surfaces. It is a generalization of an Einstein metric and is defined as
a triple (g, V, \) with g a Riemannian metric, V' a vector field, and A a real scalar
such that

(1.1) £vg+2S+2\g =0,

where S is the Ricci tensor of type (0,2) and £ denotes the Lie derivative operator
along the vector field V.

The Ricci soliton is said to be shrinking, steady and expanding accordingly as A
is negative, zero and positive, respectively [6]. If the vector field V is the gradient
of a potential function — f, then g is called a gradient Ricci soliton and the equation
(1.1) assumes the form

(1.2) VVf =S+ g

In 2008 Sinha and Sharma [17] started the study of Ricci solitons in contact
manifolds. Later Ricci solitons in contact and almost contact manifolds were studied
by many authors such as: Ricci solitons in contact metric manifolds by Tripathi
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[18], Ricci solitons in manifolds with a quasi-constant curvature by Bejan [2], Ricci
solitons in Lorentzian a-Sasakian manifolds by Bagewadi [1], Ricei solitons and
gradient Ricci solitons in three-dimensional trans-Sasakian manifolds by Turan, De
and Yildiz [19], Ricci solitons in Kenmotsu manifolds by Nagaraja [12], etc.

The paper is organized as follows: after the introduction and preliminaries, in
Section 3 we prove that the Ricci soliton in a Ricci semi-symmetric a-cosymplectic
manifold of dimension n (n > 2), is steady. Section 4 is dedicated to the study of
the pseudo-projective semi-symmetric manifold and the projective semi-symmetric
manifold. In Section 5 we prove that a Weyl semi-symmetric a-Kenmotsu manifold
of dimension n (n > 2), admitting a Ricci soliton is conformally flat. In Section 6
we study the a-cosymplectic manifold satisfying P(£, X) - S = 0. Finally, we prove
that if a gradient Ricci soliton in an a-cosymplectic manifold of dimension n (n > 2)
is expanding, then it is an n-Einstein manifold.

2. Preliminaries

An n-dimensional smooth manifold M is said to be an almost contact metric mani-
fold if it admits an almost contact metric structure (¢, £, 7, g) consisting of a tensor
field ¢ of type (1,1), a vector field &, a 1-form 7 and a Riemannian metric g com-
patible with (¢, £, n) satisfying [3]

¢’ =-I+n®¢  nE)=1, ¢£=0, nod=0,
and
9(0X, 9Y) = g(X,Y) = n(X)n(Y).
On such a manifold, the fundamental form & of M is defined as

O(X,Y) =g(¢X,Y), X,Y eT(TM).

In 1967 Blair [4] defined the cosymplectic structure as a quasi-Sasakian structure
satisfying dn = 0. It is to be noted that the notion of cosymplectic manifold
introduced by Libermann [11] is different from that of Blair [4]. An almost contact
metric manifold (M, ¢,&,n, g) is said to be almost cosymplectic [7] if dn = 0 and
d® = 0, where d is the exterior differential operator. The manifold defined by
M = N x R, where N is an almost Kéhlerian manifold and R is the real line is
the simplest example of the almost cosymplectic manifold [13]. An almost contact
manifold (M, ¢,£,n) is said to be normal if the Nijenhuis torsion

No(X,Y) = [¢X,0Y] = ¢[¢X, Y] = ¢[X, Y] + ¢*(X,Y) + 2dn(X, Y )¢

vanishes for any vector fields X and Y. A normal almost cosymplectic manifold is
a cosymplectic manifold.

An almost contact metric manifold M is said to be almost a-Kenmotsu if dn =0
and d® = 2an A @, a being a non-zero real constant.
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Kim and Pak [10] combined almost a-Kenmotsu and almost cosymplectic man-
ifolds into a new class called almost a-cosymplectic manifolds, where « is a scalar.
If we join these two classes, we obtain a new notion of an almost a-cosymplectic
manifold, which is defined by the following formula

dn=0, d®=2anAno,

for any real number «. A normal almost a-cosymplectic manifold is called an a-
cosymplectic manifold. An a-cosymplectic manifold is either cosymplectic under
the condition o = 0 or a-Kenmotsu under the condition a # 0, for a € IR.

On such an a-cosymplectic manifold, we have

(2.1) (Vx@)Y = afg(¢X,Y)E —n(Y)pX]
and
(2.2) Vx€ = —ag?X = alX — n(X)¢.

On an a-cosymplectic manifold M, the following relations are held ([14], [15])

(2.3) R(E, X)Y =a?[n(Y)X - g(X,Y)¢],

(2.4) R(X,Y)¢ = [n(X)Y —n(Y)X],

(2.5) S(&, X) = —a*(n — 1)n(X),

(2.6) n(R(X,Y)Z) = o®[n(Y)g(X, Z) = n(X)g(Y, 2)].

Using (2.2) we have

(2.7) £e9(X,Y) =2a9(X,Y) — 2an(X)n(Y).
From (1.1) and (2.7) we get

(2.8) S(X,Y) = an(X)n(Y) — (A + a)g(X,Y).
Equation (2.8) yields

(29) QX = an(X)¢ - (A + @)X,

(2.10) S(X,€) = (X)),

(2.11) r=(1—-n)a—An.

Comparing (2.5) and (2.10) we get
(2.12) A=a%(n—1).

Since a? > 0, for a € IR, from Equation (2.12) we get A > 0, for all n > 2. Thus
we can state the following:
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Lemma 2.1. A Ricci soliton in an n-dimensional a-cosymplectic manifold, n > 2,
is either steady or expanding.

We have already stated that an a-cosymplectic manifold is either cosymplectic
under the condition @ = 0 or a-Kenmotsu under the condition « # 0, for o € IR.
Thus we can state the following lemmas:

Lemma 2.2. A Ricci soliton in an n-dimensional a-cosymplectic manifold, n > 2,
is steady if and only if it is a cosymplectic manifold.

Lemma 2.3. A Ricci soliton in an n-dimensional a-cosymplectic manifold, n > 2,
is expanding if and only if it is an a-Kenmotsu manifold.

3. Ricci semi-symmetric a-cosymplectic manifold, n > 2

Consider an a-cosymplectic manifold which is Ricci semi-symmetric. Then we have
[5]
R(X,Y)-S=0.
Now we assume that the condition
(3.1) R(&,X)- S(Y, 2) =0

holds in M.
From (3.1) it follows that

(3:2) S(R(E, X)Y, Z) + S(Y, R(¢, X)Z) =0,
Using (2.3), (2.8) and (2.10), we get from (3.2)
o [2an(X)n(Y)(2) — an(Y)g(X, Z) — an(Z)g(X,¥)] =0,
or
(83) o [20(X)n(¥V)n(2) = n(¥)g(X, 2) ~ n(Z)g(X,Y)] = 0.
Contracting (3.3) over X and Y we get
(3.4) a*(n—1)n(2) =0.
In general, n(Z) # 0. Therefore, a = 0. Thus we can state the following;

Theorem 3.1. A Ricci semi-symmetric a-cosymplectic manifold, n > 2, admit-
ting Ricci soliton is a cosymplectic manifold.

By virtue of Lemma 2.2 we have

Corollary 3.1. A Ricci soliton in a Ricci semi-symmetric a-cosymplectic mani-
fold, n > 2, is steady.
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4. Pseudo projective semi-symmetric a-cosymplectic manifold, n > 2

We consider the pseudo projective curvature tensor P of type (1,3) which is defined
by [16]

P(X,Y)Z = aR(X,Y)Z+b[S(Y,Z)X —S(X,2Z)Y]

(4.1) — (= )9V, 2)X — g(X, Z)Y],

n'n—1

where R is a Riemannian curvature tensor of type (1,3), r is the scalar curvature
and a and b are a non-zero constant. From (4.1) we can define a (0, 4) type pseudo-
projective curvature tensor P as follows

P(X,Y,Z,W) = aR(X,Y,Z,W)+0b[S(Y,Z)g(X,W) — S(X, Z)g(Y,W)]
L () [g(Y, 2)g(X, W) - g(¥, U)g(Y, W)].

n'n—1
where R is a Riemannian curvature tensor of type (0,4), from which it follows that
L r
(4.2) > PleY, Zei) =[a+(n—DE[S(Y, Z) — —g(Y, 2)].
i=1
Again from (4.1) we obtain

n(P(X,Y)2) = [aa® + (== +b) + (A + a)b] x [n(Y)g(X, Z) = n(X)g(Y, 2)],

(4.3) n(P(X,Y)Z) = Bn(Y)g(X, Z) — n(X)g(Y, Z)],

where 8 = [aa® + L (%5 +b) + (A + a)b].

n—1

Now we assume that the condition
(4.4) R(&,X) - P(Y, Z)W =0

holds in M.
From (4.4) it follows that

R(§, X)P(Y, Z)W = P(R(, X)Y. Z)W — P(Y. R(§, X) )W
(4.5) —P(Y, Z)R(&, X)W = 0.
Using (2.3) in (4.5) we find
o? [n(P(K Z)W)X — P(Y,Z,W,X)¢ —n(Y)P(X, Z)W
+9(X,Y)P(E D)W = n(Z)PY, X)W + g(X, Z)P(Y,OW
(4.6) —n(W)P(Y, )X + g(X,W)P(Y, 2)¢| = 0,
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where P(Y, Z,W, X) = g(X, P(Y,Z)W).
Taking the inner product of (4.5) with £ we get
o2 [n(P(Y, 2)W)i(X) = P(Y, Z,W, X) = n(¥ ) (P(X, Z)W
+9(X,Y)n (P, Z2)W) = n(Z)n(P(Y, X)W) + g(X, Z)n(P(Y,E)W
(4.7) —n(W)n(P(Y. 2)X) + g(X. W)n(P(Y, 2)¢) | = 0.

~— —

By virtue of (4.3), (4.7) yields

(48) o [P(V,2,W,X) + B{g(X,Y)g(Z, W) — g(X, Z)g(¥,W)}] = 0.
Contracting (4.8) over X and Y and using (4.2) we get

(4.9) a2 [[a +(n—1)H{S(z,W) - %g(Z, W)+ B(n—1)g(Z, W)] —0.

We suppose that the a-cosymplectic manifold is an a-Kenmotsu manifold i.e.,
a # 0. Thus (4.9) can be written as

szw) = [£ - L0 gz w),
(4.10) S(Z,W) = pg(Z,W),

where p = [% - ai((::ll))b]

Hence we have the following theorem:

Theorem 4.1. A pseudo-projective semi-symmetric ca-Kenmotsu manifold, n > 2,
admitting a Ricci soliton is an Finstein manifold.

Again, contracting (4.9) over Z and W, we get
(4.11) n(n —1)a?p = 0.
From (4.11) it follows that
a’B =0,

or

(4.12) o?ac® + %( a T +b) + (A +a)b] = 0.
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If weputa=1and b= then (4.1) takes the form

(n (n—1)

P(X,Y)Z R(X,Y)Z — [S(Y, Z)X — S(X, Z)Y]

(n—1)
(4.13) = P(X,Y)Z,

where 15(X ,Y)Z is the projective curvature tensor and is a particular case of P.

Now putting ¢ =1 and b = —(nlfl) in (4.12) and making use of (2.12) we get

or
(4.14) a=0.
Thus we can state the following:

Theorem 4.2. A projective semi-symmetric a-cosymplectic manifold, n > 2, ad-
mitting a Ricci soliton is a cosymplectic manifold.

By virtue of Lemma 2.2 we have

Corollary 4.1. A Ricci soliton in a projective semi-symmetric a-cosymplectic
manifold, n > 2, is steady.

5. Weyl semi-symmetric a-cosymplectic manifold, n > 2

We consider the Weyl conformal curvature tensor C' of type (1,3) which is defined
by
1

CX,Y)Z = R(X,Y)Z = — [9(Y, 2)QX = g(X, 2)QY + 5(Y, 2)X

(5.1) —S(X,2)Y] + 9(Y. 2)X — (X, 2)Y],

(n—Dn-2)

where R is a Riemannian curvature tensor of type (1,3). From (4.1) we can define
a (0,4) type Weyl conformal curvature tensor C' as follows:

C(X,Y,Z,W) = R(X,Y,Z,W)— ﬁ[ (Y, Z)S(X, W)
- 9(X,2)S(Y, W)+ S(Y,Z)g(X, W) — S(X, Z)g(Y,W)]

b T g 0 D0 W) — g(X, 2)g(v W)

where R is a Riemannian curvature tensor of type (0,4). From which it follows that

(5.2) Z (e:,Y,Z,e;) = 0.
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Again, from (5.1) we obtain

(5.3) n(C(X,Y)Z) =0.
Now we assume that the condition

(5.4) R X)-CY,Z)W =0

holds in M.
From (5.4) it follows that

R(& X)C(Y, Z)W — C(R(&, X)Y, Z)W — C(Y, R(§, X) Z)W
(5.5) —C(Y, Z)R(&, X)W = 0.

Using (2.3) in (5.5) we find

a2 {n(C(Y, ZYW)X — C(Y, Z, W, X)¢ — n(Y)C(X, Z)W
+9(X,Y)C( 2)W —n(2)C(Y, X)W + g(X, Z)C(Y, W
(5.6) —n(W)C(Y,Z)X + g(X,W)C(Y, Z)§| =0,

where C(Y, Z,W, X) = g(X,C(Y,Z)W).
Taking the inner product of (5.6) with £ we get
o2 [n(CY, Z)W)n(X) = C(V. Z,W, X) = n(Y )n(C(X, )W)
+9(X,Y)In(C(E, 2)W) —n(Z)n(C(Y, X)W) + g(X, Z)n(C(Y,E )W)
(5.7) —n(W)(C(Y, 2)X) + g(X, W) (C(Y, 2)¢) | = 0.

By virtue of Equation (5.3), (5.7) yields

(5.8) 2C(Y,Z,W,X) =0.

We suppose that the a-cosymplectic manifold is an a-Kenmotsu manifold i.e.,
« # 0. Then we have

(5.9) CcY,Z,W,X)=0.
Thus we can state the following:

Theorem 5.1. A Weyl semi-symmetric a-Kenmotsu manifold, n > 2, admitting
a Ricci soliton is conformally flat.
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6. a-cosymplectic manifold, n > 2 satisfying P(§,X)-S=0
Making use of (2.3), (2.8) and (2.10) in (4.1) we get

a
n—1

+0) + A [N(2)Y — g(Y, Z)¢]
+abn(Y)n(Z)§ - g(Y, Z)¢],

P(&,Y)Z = [oa + %(

or

(6.1)  PEY)Z=pm2)Y —g(Y,2)¢] +7In(Y)n(2)§ — g(Y, 2)¢],

where 8 = [aza—i—%( a —|—b) —|—)\b] and v = ab.

n—1

Now we consider that a given manifold satisfies
P&, X)-5(Y,2) =0,
from which it follows that
(6.2) S(P(&,X)Y,Z)+S(Y,P(¢,X)Z) =0.
Using (6.1) in (6.2) yields

An(Y)S(X, Z) = Bg(X,Y)S(E, Z) +m(X)n(Y)S(E, Z)
_’yg(X? Y)S(g? Z) + 577(2)5()(7 Y) - ﬁg(X’ Z)S(&Y)
(6.3) Fn(X)n(2)S5(&,Y) = v9(X, Z2)S5(&,Y) = 0.

Making use of (2.8) and (2.10) in (6.3) we get

(aB = X7)2n(X)n(Y)n(Z) — g(X, Z)n(Y)
(6.4) —9(X,Y)n(Z)] =0.

Contracting (6.4) over X and Y we get
(6.5) (0B = X7)(1 = n)n(Z) = 0.
Putting Z = £ in (6.5) yields
(6.6) (aB = X7)(1—n) =0,
from which it follows that
(aﬁ — )\'y) =0,

a
n—1

(6.7) alo?a+ = (=== +b)] =0.
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We suppose that the a-cosymplectic manifold is an a-Kenmotsu manifold i.e.,
a # 0. Then (6.7) yields

[a2a+%(nil +b)] =0,

or

(6.8) o =——(

Thus we can state the following:
Theorem 6.1. If an a-cosymplectic manifold, n > 2, admitting a Ricci soliton
and satisfying P(£,X) - S = 0 is an a-Kenmotsu manifold, then it satisfies a® =
r 1 b
Cr(Logb),

By virtue of Lemma 2.3 we have

Corollary 6.1. If a Ricci soliton in an a-cosymplectic manifold, n > 2, satisfying
P(£,X)-S =0 is expanding, then o? = f%(ﬁ + g)

Fora=1and b= —(n—il), from (6.6)
ad = 0,
or
(6.9) a=0.

Thus we can state the following:

Theorem 6.2. An a-cosymplectic manifold, n > 2, admitting a Ricci soliton and
satisfying P(§,X) - S =0 is a cosymplectic manifold.

By virtue of Lemma 2.3 we have
Corollary 6.2. A Ricci solitons in an a-cosymplectic manifold, n > 2, satisfying

p(f,X) -8 =0 is steady.

7. Gradient Ricci soliton in a-cosymplectic manifolds

From Equation (1.2) we have
(7.1) VVf=5+Mg.
This can be written as

(7.2) VyDf = QY + XY,
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where D is the gradient operator of g. Using (7.2) we can obtain

(7.3) R(X,Y)Df = (VxQ)Y + (VyQ)X.

Taking the inner product of (7.3) with & we get

(7.4) g(R(X,Y)Df,€) = g((VxQ)Y,€) +g((VyQ)X,€).
Using (2.2) and (2.9) we have

(7.5) 9((VeQ)Y,€) =0,

and

(7.6) 9((VyQ)E,€) = 0.
By virtue of (7.5) and (7.6), Equation (7.4) yields

(7.7) g(R(£,Y)Df,€) = 0.
Again, using (2.3) in (7.7) we get

(7.8) 9(R(E Y)Df,€) = o®[n(Y)n(Df) — g(Y,Df)].
From (7.7) and (7.8) we have

(7.9) o®[n(Y)n(Df) —g(Y,Df)] = 0.

385

Now we suppose that a # 0, i.e., the given manifold is an a-Kenmotsu manifold.

Equation (7.9) yields

(7.10) n(Y)n(Df) =g(Y,Df).
From (7.10) we obtain
(7.11) Df = (£f)€.
Using (7.11) in (7.2)
(7.12) Y(EHE+aleN)[Y —n(Y)E] = QY + Y.

Taking the inner product of (7.12) with X, we obtain

(T13)Y (£ )n(X) + (&) [9(X,Y) = n(X)n(Y)] = S(X,Y) + Ag(X,Y).

Putting X = ¢ and using (2.10) in (7.13) we get

(7.14) Y(€f) = S(6,Y) + An(Y) = 0.
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or

From (7.14) it is clear that £f is constant. Thus (7.13) in (7.14) yields

a(6N)[9(X,Y) =n(X)n(Y)] = S(X,Y) + Ag(X,Y),

(7.15) S(X,Y) = [a(éf) = Ag(X,Y) — a(€f)n(X)n(Y).

Hence we can state the following:

Theorem 7.1. If an a-cosymplectic manifold, n > 2, admitting a gradient Ricci
soliton is an a-Ketmotsu manifold, then it is an n-Finstein manifold.

By virtue of Lemma 2.2 we have

Corollary 7.1. If a gradient Ricci soliton in an a-cosymplectic manifold, n > 2,
is expanding, then it is an n-Einstein manifold.
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