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SOME SEMISYMMETRY CONDITIONS ON RIEMANNIAN MANIFOLDS

Ahmet Yıldız and Azime Çetinkaya

Abstract. We study a Riemannian manifold M admitting a semisymmetric metric con-
nection ∇̃ such that the vector field U is a parallel unit vector field with respect to the
Levi-Civita connection ∇. Firstly, we show that if M is projectively flat with respect to the
semisymmetric metric connection ∇̃ then M is a quasi-Einstein manifold. Also we prove
that if R · P̃ = 0 if and only if M is projectively semisymmetric; if P̃ ·R = 0 or R · P̃− P̃ ·R = 0
then M is conformally flat and quasi-Einstein manifold. Here R, P and P̃ denote Rieman-
nian curvature tensor, the projective curvature tensor of ∇ and the projective curvature
tensor of ∇̃, respectively.

1. Introduction

Let ∇̃ be a linear connection in an n-dimensional differentiable manifold M. The
torsion tensor T is given by

T(X,Y) = ∇̃XY − ∇̃YX − [X,Y] .

The connection ∇̃ is symmetric if its torsion tensor T vanishes, otherwise it is
non-symmetric. If there is a Riemannian metric � in M such that ∇̃� = 0, then the
connection ∇̃ is a metric connection, otherwise it is non-metric [24]. It is well known
that a linear connection is symmetric and metric if and only if it is the Levi-Civita
connection.

Hayden [13] introduced a metric connection ∇̃ with a non-zero torsion on a
Riemannian manifold. Such a connection is called a Hayden connection. In [12]
and [18], Friedmann and Schouten introduced the idea of a semisymmetric lin-
ear connection in a differentiable manifold. A linear connection is said to be a
semisymmetric connection if its torsion tensor T is of the form

(1.1) T(X,Y) = ω(Y)X − ω(X)Y,

where the 1-form ω is defined by

ω(X) = �(X,U),
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and U is a vector field. In [17], Pak showed that a Hayden connection with the
torsion tensor of the form (1.1) is a semisymmetric metric connection. In [23], Yano
considered a semisymmetric metric connection and studied some of its properties.
He proved that in order that a Riemannian manifold admits a semisymmetric metric
connection whose curvature tensor vanishes, it is necessary and sufficient that the
Riemannian manifold be conformally flat. For some properties of Riemannian
manifolds with a semisymmetric metric connection (see also [1], [6], [4], [5], [7],
[14], [21], [22]). Then, Murathan and Özgür [16] studied Riemannian manifolds
admitting a semisymmetric metric connection ∇̃ such that the vector field U is a
parallel vector field with respect to the Levi-Civita connection ∇.

On the other hand, if a Riemannian manifold satisfying the condition R · R = 0,
then the manifold is called semisymmetric ([19], [20]). It is well known that the
class of semisymmetric manifolds includes the set of locally symmetric mani-
folds (∇R = 0) as a proper subset. A Riemannian manifold is said to be Ricci-
semisymmetric if R · S = 0. The class of semisymmetric manifolds includes the set of
Ricci-semisymmetric manifolds (∇S = 0) as a proper subset. Evidently, the condi-
tion R ·R = 0 implies condition R ·S = 0. The converse is in general not true. Also, a
Riemannian manifold satisfying the condition R ·P = 0, then the manifold is called
projectively semisymmetric.

Motivated by the studies of the above authors, in this paper we consider Rie-
mannian manifolds (M, �) admitting a semisymmetric metric connection such that
U is a unit parallel vector field with respect to the Levi-Civita connection ∇. The
paper is organized as follows: In Section 2 and Section 3, we give the necessary
notions and results which will be used in the next section. In the last section, firstly
we show that if M is projectively flat with respect to the semisymmetric metric
connection ∇̃ then M is a quasi-Einstein manifold. Then we prove that if R · P̃ = 0 if
and only if M is projectively semisymmetric; if P̃ ·R = 0 or R · P̃− P̃ ·R = 0 then M is
conformally flat and quasi-Einstein manifold, where R, P and P̃ denote Riemannian
curvature tensor, the projective curvature tensor of ∇ and the projective curvature
tensor of ∇̃, respectively.

2. Preliminaries

An n-dimensional Riemannian manifold (Mn, �), n > 2, is said to be an Einstein
manifold if its Ricci tensor S satisfies the condition S = τ

n�, where τ denotes the
scalar curvature of M. If the Ricci tensor S is of the form

(2.1) S(X,Y) = a�(X,Y) + bA(X)A(Y),

where a, b are smooth functions and A is a non-zero 1-form such that

�(X,U) = A(X),

for all vector fields X. Then M is called a quasi-Einstein manifold [3].
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For a (0, k)-tensor field, k � 1, on (M, �) we define the tensor R · T (see [9]) by

(R(X,Y) · T)(X1, ...,Xk) = −T(R(X,Y)X1, ...,Xk) −(2.2)
.... − T(X1, ...Xk−1,R(X,Y)Xk).

In addition, if E is a symmetric (0, 2)-tensor field, then we define the (0, k+2)-tensor
Q(E,T) (see [9]) by

Q(E,T)(X1, ...,Xk; X,Y) = −T((X ∧E Y)X1, ...,Xk) − ....(2.3)
−T(X1, ...Xk−1, (X ∧E Y)Xk),

where X ∧E Y is defined by

(X ∧E Y)Z = E(Y,Z)X − E(X,Z)Y.

The Weyl tensor and the projective tensor of a Riemannian manifold (M, �) are defined
by

C(X,Y,Z,W) = R(X,Y,Z,W)

− 1
n − 2

{S(Y,Z)�(X,W) − S(X,Z)�(Y,W)

+ �(Y,Z)S(X,W) − �(X,Z)S(Y,W)}
+

τ

(n − 1)(n − 2)
{�(Y,Z)�(X,W)− �(X,Z)�(Y,W)},

and

P(X,Y,Z,W) = R(X,Y,Z,W)

− 1
n − 1

{
S(Y,Z)�(X,W) − S(X,Z)�(Y,W)

}
.(2.4)

respectively, where τ denotes the scalar curvature of M. For n ≥ 4, if C = 0, the
manifold is called conformally flat [24]. If P = 0, the manifold is called projectively
flat.

Now we give the Lemmas which will be used in the last section.

Lemma 2.1. [10] Let (Mn, �), n � 3, be a semi-Riemannian manifold. Let at a point
x ∈M be given a non-zero symmetric (0, 2)-tensor E and a generalized curvature tensor B
such that at x the following condition is satisfied Q(E,B) = 0.Moreover, let V be a vector at
x such that the scalar ρ = a(V) is non-zero, where a is a covector defined by a(X) = E(X,V),
X ∈ TXM.

i) If E = 1
ρa ⊗ a, then at x we have X,Y,Za(X)B(Y,Z) = 0, where X,Y,Z ∈ TXM.

ii) If E − 1
ρa ⊗ a is non-zero, then at x we have B = γ2 E ∧ E, γ ∈ R.Moreover, in both

cases, at x we have B · B = Q(Ric(B),B).

Lemma 2.2. [11] Let (Mn, �), n � 4, be a semi-Riemannian manifold and E be the
symmetric (0, 2)-tensor at x ∈M defined by E = α� + βω ⊗ ω, ω ∈ T∗XM, α, β ∈ R. If at x
the curvature tensor R is expressed by R = γ2 E ∧ E, γ ∈ R, then the Weyl tensor vanishes
at x.
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3. Semisymmetric metric connection

Let ∇ is the Levi-Civita connection of a Riemannian manifold M. It is known
[23] that if ∇̃ is a semisymmetric metric connection then

∇̃XY = ∇XY + ω(Y)X − �(X,Y)U,

where
ω(X) = �(X,U),

and X,Y,U are vector fields on M. Let R and R̃ denote the Riemannian curvature
tensor of ∇ and ∇̃, respectively. Then we know [23] that

R̃(X,Y,Z,W) = R(X,Y,Z,W) − θ(Y,Z)�(X,W)
+θ(X,Z)�(Y,W)− �(Y,Z)θ(X,W)(3.1)
+�(X,Z)θ(Y,W),

where
θ(X,Y) = �(AX,Y) = (∇Xω)Y − ω(X)ω(Y) +

1
2
�(X,Y).

Now assume that U is a parallel unit vector field with respect to the Levi-Civita
connection ∇, i.e., ∇U = 0 and ‖U‖ = 1. Then

(∇Xω)Y = ∇Xω(Y) − ω(∇XY) = 0.(3.2)

So θ is a symmetric (0, 2)-tensor field. Hence equation (3.1) can be written as

R̃ = R − � � θ,(3.3)

where � is Kulkarni-Nomizu product, which is defined by

(� � θ)(X,Y,Z,W) = θ(Y,Z)�(X,W) − θ(X,Z)�(Y,W)
+ �(Y,Z)θ(X,W) − �(X,Z)θ(Y,W).(3.4)

Since U is a parallel unit vector field, it is easy to see that R̃ is a generalized
curvature tensor and it is trivial that R(X,Y)U = 0. Hence by a contraction we find
S(Y,U) = w(SY), where S denotes the Ricci tensor of ∇ and S is the Ricci operator
defined by �(SX,Y) = S(X,Y). It is easy to see that we also have the following
relations [16]:

∇̃XU = X − ω(X)U,

R̃(X,Y)U = 0, R · θ = 0,(3.5)

θ2(X,Y) := �(AX,AY) =
1
4
�(X,Y),

and

S̃ = S − (n − 2)(�− ω ⊗ ω),(3.6)
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τ̃ = τ − (n − 2)(n − 1).(3.7)

Using (2.4), (3.1), (3.6) and (3.7), we get

C̃ = C,

and

P̃ = P − 1
n − 1

� � θ + G,(3.8)

where P̃ denotes the projective curvature tensor with respect to semisymmetric
metric tensor ∇̃ and G is defined by

G(X,Y,Z,W) =
n − 2
n − 1

{
�(Y,Z)ω(X)ω(W) − �(X,Z)ω(Y)ω(W)

}
.(3.9)

We also have the followings:

P̃(X,Y)U = 0,(3.10)

R · G = 0, G · R = 0.(3.11)

4. Main results

In this section, the tensors P̃, P̃ ·R and Q(θ,T) are defined in the same way with
(3.8), (2.2) and (2.3). Let P̃hi jk, (R · P̃)hi jklm, (P̃ ·R)hi jklm denote the local components of
the tensors P̃, R · P̃ and P̃ · R, respectively.

Theorem 4.1. Let (M, �) be a Riemannian manifold admitting a semisymmetric metric
connection. If M is projectively flat with respect to semisymmetric metric tensor ∇̃, then
M is a quasi-Einstein manifold.

Proof. Let (M, �) be a Riemannian manifold admitting a semisymmetric metric connection.
Then using (2.4) and (3.1) we have

P̃hi jk = Rhijk − (� � θ)hi jk

− 1
n − 1

{Sij�hk − (n − 2)[�i j�hk − �hk(ω ⊗ ω)i j](4.1)

− Shj�ik + (n − 2)[�hj�ik − �ik(ω ⊗ ω)hj]}
Now if M is projectively flat with respect to semisymmetric metric tensor ∇̃, then from (4.1)
we have

Rhijk = (� � θ)hi jk

+
1

n − 1

{
Sij�hk − Shj�ik

}

+
n − 2
n − 1

{
�hk(ω ⊗ ω)i j − �ik(ω ⊗ ω)hj − �i j�hk + �hj�ik

}
.
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Help of (3.4), we get

Rhijk =
{
�i j�hk − �ik�hj

}

+
1

n − 1

{
Sij�hk − Shj�ik

}

−n − 2
n − 1

{
�i j�hk − �hj�ik − �hk(ω ⊗ ω)i j + �ik(ω ⊗ ω)hj

}
(4.2)

+�ik(ω ⊗ω)hj − �hk(ω ⊗ ω)i j

+�hj(ω ⊗ ω)ik − �i j(ω ⊗ ω)hk.

Contracting (4.2) with �hj, we obtain

Sik =
n + τ − 2

n
�ik + (2 − n)(ω ⊗ ω)ik,

which gives us that M is a quasi-Einstein manifold.

Proposition 4.1. Let (M, �) be a Riemannian manifold admitting a semisymmetric metric
connection ∇̃. If U is a parallel unit vector field with respect to the Levi-Civita connection
∇, then

(R · P̃)hi jklm = (R · P)hi jklm(4.3)

(P̃ · R)hi jklm = (P · R)hi jklm − 1
n − 1

Q(� − ω ⊗ ω,R)hi jklm.(4.4)

Proof. Since U is parallel, we have R · θ = 0 and R · G = 0. So from (3.8), we obtain

R · P̃ = R · P − 1
n − 1

� � R · θ + R · G = R · P.(4.5)

Applying (3.1) in (2.2) and using (2.3) and (3.11), we get

(P̃ · R)hi jiklm = (P · R)hi jklm − 1
n − 1

Q(θ,R)hi jklm

− 1
2(n − 1)

(�hlRmijk − �hmRli jk − �ilRmhjk

+�imRlhjk − � jlRmkhi − � jmRlkhi

−�klRmjhi + �kmRlihi) + (G · R)hi jklm(4.6)

= (P · R)hi jklm − 1
n − 1

Q(θ +
1
2
�,R)hi jklm

= (P · R)hi jklm − 1
n − 1

Q(� − ω ⊗ ω,R)hi jklm.

This completes the proof of the Proposition.
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As an immediate consequence of Proposition 4.1, we have the followings:

Theorem 4.2. Let (M, �) be a Riemannian manifold admitting a semisymmetric metric
connection ∇̃ and U be a parallel unit vector field with respect to the Levi-Civita connection
∇. Then R · P̃ = 0 if and only if M is projectively semisymmetric.

Theorem 4.3. Let (Mn, �) be a semisymmetric n > 3 dimensional Riemannian manifold
admitting a semisymmetric metric connection ∇̃and S be the symmetric (0, 2)-tensor defined
by S = α� + βω ⊗ ω. If U is a parallel unit vector field with respect to the Levi-Civita
connection ∇ and P̃ · R = 0, then M is a conformally flat quasi-Einstein manifold.

Proof. Since the condition P̃ · R = 0 holds on M, from (4.4),we have

(P · R)hi jklm =
1

n − 1
Q(� − ω ⊗ ω,R)hi jklm(4.7)

After some calculations from (4.7), we get

(R · R)hi jklm − 1
n − 1

Q(S,R)hi jklm =
1

n − 1
Q(� − ω ⊗ ω,R)hi jklm.(4.8)

Since M is a semisymmetric Riemannian manifold, then from (4.8), we have

Q(S + � − ω ⊗ ω,R)hi jklm = 0.(4.9)

Now let S = α� + βω ⊗ ω, α, β ∈ R. Then from (4.9), we get

Q(λ1� − λ2ω ⊗ ω,R)hi jklm = 0,(4.10)

where λ1 = α + 1, λ2 = β + 1. So we have two possibilities:

rank(λ1� − λ2ω ⊗ ω) = 1(4.11)

or

rank(λ1� − λ2ω ⊗ ω) > 1.(4.12)

Suppose that(4.11) holds at a point x. Thus we have

λ1� − λ2ω ⊗ ω = ρz ⊗ z,

where z ∈ T∗XM and ρ ∈ R. Because of non-zero coefficient of �, this relation does not occur.
Thus the case (4.12) must be fullfilled at x. By virtue of Lemma 2.1, (4.10) gives us

R =
γ

2
((� − ω ⊗ ω) ∧ (� − ω ⊗ ω)), γ � 0, γ ∈ R.

So again from Lemma 2.2, we obtain C = 0, which give us that M is conformally flat.
Moreover, contracting (4.10) with �i j, we get

Q(λ1� − λ2ω ⊗ ω, S)hklm = 0,

which gives us
S = λ1� − λ2ω ⊗ ω,

whereλ1, λ2 : M −→ R are functions. So by virtue of (2.1), M is a quasi-Einstein manifold.
Thus the proof of the Theorem is completed.
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Theorem 4.4. Let (Mn, �) be a Ricci-semisymmetric n > 3 dimensional Riemannian
manifold admitting a semisymmetric metric connection ∇̃ and U be a parallel unit vector
field with respect to the Levi-Civita connection ∇ and R · P̃ − P̃ · R = 0, then M is a
conformally flat quasi-Einstein manifold.

Proof. Using (4.3) and (4.4), we obtain

0 = R · P̃ − P̃ · R = R · P − P · R
+

1
n − 1

Q(� − ω ⊗ ω,R)hi jklm

=
1

n − 1
�ik(R · S)hjlm − 1

n − 1
�hk(R · S)i jlm

+
1

n − 1
Q(S + � − ω ⊗ ω,R)hi jklm.

Since M is a Ricci-semisymmetric Riemannian manifold, (i.e. R · S = 0), then from the
above equation, we get

Q(S + � − ω ⊗ ω,R)hi jklm = 0.(4.13)

Using the same method in the proof of Theorem 4.3,we obtain M is a conformally flat quasi
Einstein manifold.

Example 4.1. Let M2n+1 be a (2n + 1)-dimensional almost contact manifold endowed with
an almost contact structure (φ, ξ, η), that is, φ is a (1, 1)-tensor field, ξ is a vector field, and η
is a 1-form such that

φ2 = I − η ⊗ ξ and η(ξ) = 1

Then
φ(ξ) = 0 and η ◦ ξ = 0.

Let � be a compatible Riemannian metric with (φ, ξ, η), that is

�(φX, φY) = �(X,Y) − η(X)η(Y),

or, equivalently
�(X, φY) = −�(φX,Y) and �(X, ξ) = η(X),

for all X,Y ∈ χ(M).Then M2n+1 becomes an almost contact metric manifold equipped with an
almost contact metric structure (φ, ξ, η, �). An almost contact metric manifold is cosymplectic
[15] , if ∇Xφ = 0. From the formula ∇Xφ = 0 it follows that

∇Xξ = 0, ∇Xη = 0 and R(X,Y)ξ = 0.

Then we have
P(X,Y)ξ = 0.

So we have the following relations:

T(X,Y) = η(Y)X − η(X)Y,

∇̃XY = ∇XY + η(Y)X − �(X,Y)ξ,
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and
θ =

1
2
� − η ⊗ η.

Hence ∇θ = 0 and R · θ = 0, which gives us R · P̃ = R · P.
A cosymplectic manifold M is said to be a cosymplectic space form if the φ-sectional

curvature tensor is constant c along M. A cosymplectic space form will be denoted by M(c).
Then the Riemannian curvature tensor R on M(c) is given by [15]

R(X,Y,Z,W) =
c
4
{�(X,W)�(Y,Z) − �(X,Z)�(Y,W)

+�(X, φW)�(Y, φZ) − �(X, φZ)�(Y, φW)

−2�(X, φY)�(Z, φW) − �(X,W)η(Y)η(Z)

+�(X,Z)η(Y)η(W)− �(Y,Z)η(X)η(W)+ �(Y,W)η(X)η(Z)}.
From direct calculation we get

S(X,W) =
nc
2
{
�(X,W)− η(X)η(W)

}
,

which gives us that M is a quasi-Einstein manifold.

5. Conclusions

Hayden [13] introduced a metric connection ∇̃ with a non-zero torsion on a
Riemannian manifold. Then, Friedmann and Schouten introduced the idea of
a semisymmetric linear connection in a differentiable manifold ([12], [18]). In
[23], Yano proved that a Riemannian manifold admits a semisymmetric metric
connection whose curvature tensor vanishes, it is necessary and sufficient that the
Riemannian manifold be conformally flat. Recently, Murathan and Özgür [16]
studied Riemannian manifolds admitting a semisymmetric metric connection ∇̃
such that the vector field U is a parallel vector field with respect to the Levi-Civita
connection ∇.On the other hand, if a Riemannian manifold satisfying the condition
R · R = 0 (R.S = 0), then the manifold is called semisymmetric ( Ricci semisymmetric)
([19], [20]). In this paper, firstly we show that if M is projectively flat with respect to
the semisymmetric metric connection ∇̃ then M is a quasi-Einstein manifold. Then
we prove that if R · P̃ = 0 if and only if M is projectively semisymmetric; if P̃ ·R = 0
or R · P̃ − P̃ · R = 0 then M is conformally flat and quasi-Einstein manifold.
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