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Abstract. The aim of our paper is to present Ps-transforms of the Kummer’s confluent
hypergeometric functions by employing the generalized Gauss’s second summation the-
orem, Bailey’s summation theorem and Kummer’s summation theorem obtained earlier
by Lavoie, Grondin and Rathie [9]. Relevant connections of certain special cases of the
main results presented here are also pointed out.
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1. Introduction

The generalized hypergeometric function ,F, with p numerator and ¢ denominator
parameters is defined as follows:
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where b; € C\ Zy,j € 1,q:={1,2,---,q}. Here and in the following text, let C, R
and Z, be the sets of complex numbers, real numbers, and non-positive integers,
respectively. The series converges for all z € C if p < ¢. It is divergent for all z # 0
when p > ¢ + 1, unless at least one numerator parameter is a negative integer in
which case (1.1) is a polynomial. Finally, if p = g+1, the series converges on the unit
circle |z| = 1 when Re (3" b; — Y- a;) > 0. The importance of the hypergeometric
series lies in the fact that almost all elementary functions such as exponential,
binomial, trigonometric, hyperbolic, logarithmic are its special cases. It should
be remarked here that whenever generalized hypergeometric functions reduce to
gamma functions, the results are important from the applications point of view.
Thus, the well-known classical summation theorems such as those of the Gauss
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second summation theorem, Bailey summation theorem and Kummer’s summation
theorem for the series o F} [11] given below play an important role in the theory of
hypergeometric functions.

The Gauss’s second summation theorem
a,b H TPz a+b+1))
sla+b+1) 12) " TA@+1)PE(b+1)

(1.2) gFl[

Bailey’s summation theorem

(1.3) A NCDINCICERY

TTEG+a)TEb—at1)

2

Kummer’s summation theorem
a,b 1} F(1+3a)l(14a-b)

l+a=b | 1" TA+a)(1+3a—b)

(1.4) gFl{

During 1992-96, in a series of three research papers, Lavoie et al. [7, 8, 9] have
generalized various classical summation theorems such as the Gauss second, Bailey
and Kummer ones for the o F series, as well as the Watson, Dixon and Whipple
ones for the 3F5 series. However, in our present investigation, we are interested in
the following generalized Gauss’s second summation theorem, Bailey’s summation
theorem and Kummer’s summation theorem given in [9]

a,b 1] _ DHrGativ+3i+Hr(da—Sb—1i+d)
(1.5) QFl{ sla+b+i+1) M B (Fa—30+1Ti

% Ai(ab) 4 Bi(ab) .
D(za+3)P(Go+zi+3-1551) T TGaT(gb+ai=13]) (7

(1.6) 2F1{ a,l—ba—l-z

1] = pigrer-n
2| 7 2=i-1T(1—a+ i+ 1)

% Ci(a,b) _ 4 Di(aqb) ] .
T(3b—3a+1)+T(30+3a—[F]) ' T(3b—3a)(5b+ga—5—13]) (7

a,b 4] _ 27" m(3)ra-b)r+a—b+i)
(1.7) 2F1[ lta—bati ’ 1} = T(I—b+ Lt 110

" B, (a.b) . Fi(a.b) ,
T(Za—bt it D (Fat bitd—[157]) | T(Za—b+iit DI (Zatii-[3]) [

respectively. Here, and in what follows, i = 0, +1,+2, +3, +4, +£5. Also, throughout
the paper, as usual, [x] denotes the greatest integer less than or equal to the real
number z and its absolute value is denoted by |z|. The coefficients which appear
in (1.5), (1.6) and (1.7) are listed in Tables 1-3 and that, for ¢ = 0, these equations
reduce, respectively to (1.2), (1.3) and (1.4).
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Table 1
) Ai(a, b) Bi(a, b)
5 | —(a+b+6)%+3(b—a+6)(b+a+6)+1(b— | (a+b+6)°+5(b—a+6)(b+a+6)—1(b—
a+6)?11(b+a+6)—2(b—a+6)+20 | a+6)>—17(b+a+6)—3(b—a+6)+62
4 | 3la+b+1)(a+b-3)—3(b—a+3)(b— | —2(b+a—1)
a—3)
3| 20b—a+4)—(b+a+4)+3 sb—a+4)+(b+a+4)—7
2 [ 5(b+a+3)-2 -2
1 ]-1 1
0 |1 0
NN 1
2| 3(b+a—1) 2
3| 5(8a+b—2) zBb+a—2)
4| 5(a+b=3)(a+b+1)—2(b—a-3)(b— | 2(b+a—1)
a+3)
S5 (b+a—4)2-I(b+a—4)b—a—4)— | (b+a—4)*+1(b+a—4)(b—a—4)—1(b—

T
T2
1(b—a—4)*+4(b+a—-4)—I(b—a—4)

a—4)2+8(b+a—4)—1(b—a—4)+12

Table 2
) C’i(a, b) Di(a, b)
5 | —(4b® — 2ab — a® — 22b+ 13a + 20) | 4b% + 2ab — a® — 34b — a + 62
4 2b-2)(b—4)—(a—1)(a—4) —4(b-3)
3 a—2b+3 a+2b—17
2 b—2 -2
1 -1 1
0 1 0
-1 1 1
-2 b 2
-3 2b—a a+2b+2
-4 2b(b+2) — a(a + 3) 4(b+1)
-5 4b* — 2ab — a® + 8b — Ta 46> +2ab — a®> +16b— a + 12
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Table 3

7 El(a,b) Fz(a,b)

5 | —4(6 +a—b)%+2b(6+a—0b) +b>— | 4(6+a—b)*+2b(6+a—b)—b*—34(6+
22(6 4+ a —b) — 13b — 20 a—b)—b+62

4 [ 2(a+0-3)a—b+1)—(b—1)(b—4) | —4a—b+2)

3 |3b—-2a—-5 20 —b+1

2 | 14a-0 -2

1] 1

0|1 0

NN 1

2la-b-1 2

3] 2a—-3b—4 20 —b— 2

41 2(a=b—=3)a—b—1)—bb+3) 4(a—b—-2)

5 4la—b—4)2—2b(a—b—4)—b*>+8(a— | 4(a—b—4)+2b(a—b—4)—b>+16(a—
b—4)—1Tb b—4)—b+12

The main objective of this paper is to derive three new interesting and general
Ps-transforms of the Kummer’s confluent hypergeometric functions by employing
the generalized Gauss’s second summation theorem, Bailey’s summation theorem
and Kummer’s summation theorem given in (1.5), (1.6) and (1.7), respectively.
Relevant connections of certain special cases of the main results presented here
with those earlier ones are also pointed out.

2. ‘Ps-transforms

The Ps-transforms or pathway transforms of the function f(¢) (¢ € R) is a function
Fp(s) of a complex variable s defined by (see, e.g., [6])

(1) Pa{f(t):s) = Fp(s) = / T @D f@yde (6> 1),

For the sufficient condition for the existence of the Ps-transform (2.1) to exist, we
refer the reader to [6]. The Ps-transform of the power function t#~! is given by [6,
p. 7, Eq. (32)]

pn—1, . d—1 a . F(,LL) .
(2.2)Ps{t" s 5} = (M) D) = sy (Rel) > 056> 1),

Furthermore, upon letting 6 — 1 in the definition (2.1), the Ps-transform reduces
to the classical Laplace transform (see, e.g., [13]):

(2.3) L{f(t);s} = /000 e St f(t)dt (Re(s) >0).
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In view of the power function formula (2.2), it is easy to derive the Ps-transform of
the generalized hypergeometric function to obtain the following formula (see, [6, p.
8, Eq. (42))):

(24) fooo[]_ + (6 — 1)5]_5i_1 t#*l qu|: C;)lv c '7220 ‘wt] dt
1, ", bg
r ai, -, Qp, b w
= [A(J(»l;))]ﬂ ;D+1Fq{ blv"'azq ‘A(J;s)}u

for p < ¢, Re(u) > 0, Re (W) > 0andd > lor for p = ¢, Re(u) >
0, Re (250200 > Re(w) and 6 > 1,
If p=¢q =1, we get the following formula :

(2.5) SO+ (6= Ds 7T e Ry { " ‘m} dt

_ I'(p) @, [b w
= nodgp 2F 1{ c ’—Aw;s)}

for Re(c) > 0, Re(u) > 0, Re (W) > Re(w)and § > 1. In the next section,

we shall demonstrate how one can obtain three rather general Ps-transforms of the
Kummer’s confluent hypergeometric functions by employing the results (1.5), (1.6)
and (1.7).

3. Ps-transforms of 1 Fi(a;b; x)

In this section, we establish the following integral formulas, asserted in Theorem(3.1),
Theorem(3.2) and Theorem(3.3).

Theorem 3.1. Let Re(b) >0, Re (W) >0 and 6 > 1. Then

a
La+b+i+1)
_ () TETEatib+li+r(da—Lo—1itd)
A T(Za—Z0+1[i[+2)

(3.1) S+ (6 = 1)) 7T 1 By [

t A(5;s)
o)

% A;(ab) I Bi(a,b)
D(za+3)D(zbtgits—15]) ' TGaT(zb+3i-15]) [

Theorem 3.2. LetRe(1—a+i) > 0(i = 0, %1, £2, +£3, £4, +5), Re (W)
0 and 6 > 1. Then

\

(3.2) JoSL+ (5= 1)s] wr tmoHi By { Z ‘tA(Zé;S)} dt
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_ I'(1—a+d) I'(3)I(b)I'(1—a)
T AT oF 2b—i- 1D (1—a+Lit+L]i])

% Ci(a,b) . D;(a,b) ]
T(3b—ga+3)+T(5b+5a—[15])  T(gb—3a)l(gb+za—35-15]) [~

Theorem 3.3. Let Re(b) > 0, Re (W) >0 and 6 > 1. Then

a
l+a—b+1

_ _T®)  D(Hra-prdta—bti
T [A(Ss9)]° T(1—b+3i+31i])

(33) [+ (06— 1)s] 7T 1F1[ ] - tA(a;s)] dt =

% Ei(a,b) + Fi(a,b)
D(ta—btiitD)T(Latiiti—[1E]) " T(Za—b+3i+H)T(fa+ii—[2]) (-

A(5;s)
2

Proof. In order to prove Theorem (3.1), setting w =
b+i+1)fori=0,+1,42,+3 +4,+5 in (2.5), we have

, p=">bandc= i(a+

o _ —5t7 b1 a t A(5;s)
(3-4) Jo L+ @ = Ds)mre 1F1[ Hatbtit1) | 2 ]dt
_ b Cl,,b 1
= REsP 2Fl[ La+b+i+1) ‘5}

We observe that the 3 F} appearing on the right-hand side of (3.4) can be evaluated
with the help of generalized Gauss’s second summation theorem (1.5). This yields
the desired formula (3.1).

The results in Theorem (3.2) and Theorem (3.3) can also be proven in a similar
way by applying summation theorems (1.6) and (1.7), respectively. O

4. Special Cases

The particular cases i = 0 of Theorem (3.1) to Theorem (3.3), reduce to the follow-
ing interesting and presumably new results for classical ones.

Corollary 4.1. Let Re(b) >0, Re (W) >0 and d > 1. Then

(4.1) S+ (5= 1)s) 50T o 1F1{

a t A(3;s)
tla+b+1) | 2 }dt
) TEI(E(a+b+1))
T [AG9)P D(gatg)T(5b+35)"

Corollary 4.2. Let Re(l —a) > 0,Re (W) >0 and 0 > 1. Then

[e’e] -t _a a A(6;s
(4.2) X+ (6 —1)s] 7Tt 1F1[ ) %} dt
_ _I'd—a) L(3b)(50+3)
T ROWT 7 TEbriar (o tat D)
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Corollary 4.3. Let Re(b) > 0, Re (25000 > 0 and 5 > 1. Then

(4.3) SO+ (8 — 1)s) 7T o1 1F1[ NG s)} dt

b
1+a-0
_ T TQA+3a)(1+a—b)
T IAG;9)]° T(1+a)T(14+3a—b)"

Similarly, for ¢ = 4+1, £2, +3, +4, 45, other results can also be obtained.

5. Concluding remarks

By letting § — 1 in the definition (2.1), the Ps-transform is reduced to the classical
Laplace transform. Hence, for § — 1, the results (3.1), (3.2) and (3.3) immediately
reduce to the corresponding results due to Kim et al. [5].

REFERENCES

1. D. ALLEN: Relations between the local and global structure of fnite semigroups.
Ph. D. Thesis, University of California, Berkeley, 1968.

2. P. ERDOS: On the distribution of the roots of orthogonal polynomials. In: Pro-
ceedings of a Conference on Constructive Theory of Functions (G. Alexits, S. B.
Steckhin, eds.), Akademiai Kiado, Budapest, 1972, pp. 145-150.

3. A. OSTROWSKI: Solution of Equations and Systems of Equations. Academic Press,
New York, 1966.

4. E. B. SAFF and R. S. VARGA: On incomplete polynomials II. Pacific J. Math. 92
(1981), 161-172.

5. Y. S. Kim, A. K. RATHIE and D. Cvijovic: New Laplace Transforms of Kum-
mer’s confluent hypergeometric functions, Mathematical and Computer Mod-
elling. 55 (2012), 1068-1071.

6. D. KuMAR: Solution of fractional kinetic equation by a class of integral transform
of pathway type. Journal of Mathematical Phy. 54 (2013), 1-13. Article ID 0435009.

7. J. L. Lavoig, F. GRONDIN and A. K. RATHIE: Generalizations of Watson’s
theorem on the sum of a 3F». Indian J. Math. 34 (1992), 23-32.

8. J. L. Lavoig, F. GRONDIN, A. K. RATHIE and K. ARORA: Generalizations of
Dizon’s theorem on the sum of a 3F>. Math. Comp. 62 (1994), 267-276.

9. J. L. Lavoig, F. GRONDIN and A. K. RATHIE: Generalization of Whipple’s
theorem on the sum of a 3F>. J. Comput. Appl. Math. 72 (1996), 293-300.

10. E. D. RAINVILLE: Special Functions, Macmillan Company, New York, 1960;
Reprinted by Chelsea Publishing Company, Bronx, New York, 1971.

11. L. J. SLATER: Generalized Hypergeometric Functions, Cambridge University
Press, Cambridge, London, and New York, 1966.

12. L.J. SLATER: Confluent Hypergeometric Functions, Cambridge University Press,
Cambridge, London, and New York, 1960.



380 R. K. Parmar, V. Rohira and A. K. Rathie

13. 1. N. Sneddon, The use of the Integral Transforms, Tata McGraw-Hill, New Delhi,
1979.

Rakesh K. Parmar

Department of Mathematics

University College of Engineering and Technology, Bikaner
Bikaner Technical University

Bikaner-334004, Rajasthan, India

rakeshparmar27@gmail . com

Vivek Rohira

Research Scholar

Department of Mathematics
Career Point University
Kota-325003, Rajasthan, India

vivekrohira@yahoo.com

Arjun K. Rathie

Department of Mathematics

Vedant College of Engineering and Technology
Rajasthan Technical University

Bundi, Rajasthan, India

arjunkumarrathie@gmail.com



