KENMOTSU MANIFOLDS ADMITTING SCHOUTEN-VAN KAMPEN CONNECTION

Nagaraja Gangadharappa Halammanavar and Kiran Kumar Lakshmana Devasandra

Abstract. The objective of the present paper is to study the Kenmotsu manifold admitting the Schouten-van Kampen connection. We study the Kenmotsu manifold admitting the Schouten-van Kampen connection satisfying certain curvature conditions. Also, we prove the equivalent conditions for the Ricci soliton in a Kenmotsu manifold to be steady with respect to the Schouten-van Kampen connection.

Keywords: Ricci solitons, Kenmotsu manifolds, Schouten-van Kampen connection, concircular curvature tensor, projective curvature tensor, conharmonic curvature tensor, shrinking.

1. Introduction

The Schouten-van Kampen connection has been introduced for studying non-holomorphic manifolds. It preserves - by parallelism - a pair of complementary distributions on a differentiable manifold endowed with an affine connection [2] [9] [17]. Then, Olszak studied the Schouten-van Kampen connection to adapt it to an almost contact metric structure [14]. He characterized some classes of almost contact metric manifolds with the Schouten-van Kampen connection and established certain curvature properties with respect to this connection. Recently, Gopal Ghosh [7] and Yildiz [24] studied the Schouten-van Kampen connection in Sasakian manifolds and f-Kenmotsu manifolds, respectively. Kenmotsu manifolds introduced by Kenmotsu in 1971[10] have been extensively studied by many authors [20] [15] [16]. In 1982, Hamilton [8] introduced the notion of Ricci flow to find a canonical metric on a smooth manifold. Since then the Ricci flow has become a powerful tool for the study of Riemannian manifolds. The Ricci soliton, considered to be a self-similar solution to the Ricci flow is a Riemannian metric g on a manifold M, together with a vector field V such that

(1.1)
$$(L_{\mathbf{V}}g)(X,Y) + 2S(X,Y) + 2\lambda g(X,Y) = 0,$$

Received September 07, 2017; accepted December 07, 2018 2010 Mathematics Subject Classification. Primary 53D10; Secondary 53D15. where $L_{\rm V}$ denotes the Lie derivative along V, and S and λ are respectively the Ricci tensor and a constant. A Ricci soliton is said to be shrinking or steady or expanding depending on whether λ is negative, zero or positive. A Ricci soliton is said to be a gradient Ricci soliton if the vector field V is the gradient of some smooth function f on M. In [18], Sharma started the study of Ricci solitons in the K-contact geometry. In 2016, the authors in [21] explained the nature of Ricci solitons in f-Kenmotsu manifolds with a semi-symmetric non-metric connection. Ramesh Sharma et al. [18] [19], De et al. [4][1], and Nagaraja et al. [12] [11] [13] extensively studied Ricci solitons in contact metric manifolds in many different ways.

This paper is structured as follows. After a brief review of Kenmotsu manifolds in Section 2, in Section 3 we obtain the expressions of the curvature tensor, Ricci tensor and scalar curvature with respect to the Schouten-van Kampen connection, study the curvature properties of the Kemotsu manifold admitting the Schouten-van Kampen connection, and prove the conditions for the Kenmotsu manifold admitting the Schouten-van Kampen connection to be isomorphic to the hyperbolic space. In the last section we prove the equivalent conditions for the Ricci soliton in a Kenmotsu manifold admitting the Schouten-van Kampen connection to be steady.

2. Preliminaries

A (2n+1)-dimensional smooth manifold M is said to be an almost contact metric manifold if it admits an almost contact metric structure (ϕ, ξ, η, g) consisting of a tensor field ϕ of type (1,1), a vector field ξ , a 1-form η and a Riemannian metric g compatible with (ϕ, ξ, η) satisfying

(2.1)
$$\phi^2 X = -X + \eta(X)\xi, \ \phi\xi = 0, \ g(X,\xi) = \eta(X), \ \eta(\xi) = 1, \ \eta \circ \phi = 0,$$

and

(2.2)
$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y).$$

An almost contact metric manifold is said to be a Kenmotsu manifold [3] if

$$(\nabla_X \phi) Y = -q(X, \phi Y) \xi - \eta(Y) \phi X,$$

where ∇ denotes the Riemannian connection of g. In a Kenmotsu manifold the following relations hold [6].

$$(2.4) \nabla_X \xi = X - \eta(X)\xi,$$

$$(2.5) (\nabla_X \eta) Y = g(\nabla_X \xi, Y),$$

$$(2.6) R(X,Y)\xi = \eta(X)Y - \eta(Y)X,$$

$$(2.7) S(X,\xi) = -2n\eta(X),$$

$$(2.8) S(\phi X, \phi Y) = S(X, Y) + 2n\eta(X)\eta(Y),$$

for any vector fields X, Y, Z on M, where R denote the curvature tensor of type (1,3) on M.

3. Kenmotsu manifolds admitting Schouten-van Kampen connection

Throughout this paper we associate * with the quantities with respect to the Schouten-van Kampen connection. The Schouten-van Kampen connection ∇^* associated to the Levi-Civita connection ∇ is given by [14]

(3.1)
$$\nabla_X^* Y = \nabla_X Y - \eta(Y) \nabla_X \xi + (\nabla_X \eta)(Y) \xi,$$

for any vector fields X, Y on M.

Using (2.4) and (2.5), the above equation yields,

(3.2)
$$\nabla_X^* Y = \nabla_X Y + g(X, Y)\xi - \eta(Y)X.$$

By taking $Y = \xi$ in (3.2) and using (2.4) we obtain

$$\nabla_X^* \xi = 0.$$

We now calculate the Riemann curvature tensor R^* using (3.2) as follows:

(3.4)
$$R^*(X,Y)Z = R(X,Y)Z + g(Y,Z)X - g(X,Z)Y.$$

Using (2.6) and taking $Z = \xi$ in (3.4), we get

$$(3.5) R^*(X,Y)\xi = 0.$$

On contracting (3.4), we obtain the Ricci tensor S^* of a Kenmotsu manifold with respect to the Schouten-van Kampen connection ∇^* as

(3.6)
$$S^*(Y,Z) = S(Y,Z) + 2ng(Y,Z).$$

This gives

$$(3.7) Q^*Y = QY + 2nY.$$

Contracting with respect to Y and Z in (3.6), we get

$$(3.8) r^* = r + 2n(2n+1),$$

where r^* and r are the scalar curvatures with respect to the Schouten-van Kampen connection ∇^* and the Levi-Civita connection ∇ , respectively.

From the above discussions we state the following:

Theorem 3.1. The curvature tensor R^* , the Ricci tensor S^* and the scalar curvature r^* of a Kenmotsu manifold M with respect to the Schouten-van Kampen connection ∇^* are given by (3.4), (3.6) and (3.8), respectively. Further, the curvature tensor R^* of ∇^* satisfies

- i) $R^*(X,Y)Z = -R^*(Y,X)Z$,
- ii) $R^*(X, Y, Z, W) + R^*(Y, X, Z, W) = 0$,
- iii) $R^*(X, Y, Z, W) + R^*(X, Y, W, Z) = 0$,
- $iv)R^*(X,Y)Z + R^*(Y,Z)X + R^*(Z,X)Y = 0,$
- v) S^* is symmetric.

From (3.6), it follows that

Theorem 3.2. A Kenmotsu manifold M admitting the Schouten-van Kampen connection is Ricci flat with respect to the Schouten-van Kampen connection if and only if M is an Einstein manifold with respect to Levi-Civita connection.

Now, if $R^*(X,Y)Z = 0$, then by virtue of (3.4), we get

(3.9)
$$R(X,Y,Z,U) = g(X,Z)g(Y,U) - g(Y,Z)g(X,U).$$

Thus, we state that

Theorem 3.3. Let M be a Kenmotsu manifold admitting the Schouten-van Kampen connection. The curvature tensor of M with respect to the Schouten-van Kampen connection vanishes if and only if M with respect to the Levi-Civita connection is isomorphic to the hyperbolic space $H^{2n+1}(-1)$.

An interesting invariant of the concircular transformation is concircular curvature tensor. The concircular curvature tensor [22] C^* with respect to the Schouten-van Kampen connection ∇^* is defined by

(3.10)
$$C^*(X,Y)Z = R^*(X,Y)Z - \frac{r^*}{2n(2n+1)} \{g(Y,Z)X - g(X,Z)Y\},$$

for all vector fields X, Y, Z on M.

If C^* vanishes, the conditions in theorem (3.1) are satisfied.

Definition 3.1. A Kenmotsu manifold with respect to the Schouten-van Kampen connection ∇^* is said to be ξ - concircularly flat if $C^*(X,Y)\xi = 0$.

In view of (3.4) and (3.8) in (3.10), we get

(3.11)
$$C^*(X,Y)Z = R(X,Y)Z + g(Y,Z)X - g(X,Z)Y - \frac{r + 2n(2n+1)}{2n(2n+1)} \{g(Y,Z)X - g(X,Z)Y\}.$$

By taking $Z = \xi$ in (3.11) and then using (2.1) and (2.6), we find

(3.12)
$$C^*(X,Y)\xi = \frac{r + 2n(2n+1)}{2n(2n+1)}R(X,Y)\xi.$$

Thus, from (3.4), (3.8), (3.11) and (3.12), we have the following theorem:

Theorem 3.4. Let M be a Kenmotsu manifold admitting the Schouten-van Kampen connection. In M, the following three conditions are equivalent:

i) M is ξ - concircularly flat,

$$ii) r = -2n(2n+1),$$

iii)
$$r^* = 0$$
.

Definition 3.2. A Kenmotsu manifold is said to be ϕ -concircularly flat with respect to the Schouten-van Kampen connection ∇^* if

$$(3.13) g(C^*(\phi X, \phi Y)\phi Z, \phi W) = 0,$$

for any vector fields X, Y, Z on M.

Using (3.10) in (3.13), we have

$$g(R^*(\phi X, \phi Y)\phi Z, \phi W) = \frac{r^*}{2n(2n+1)} \{g(\phi Y, \phi Z)g(\phi X, \phi W) - g(\phi X, \phi Z)g(\phi Y, \phi W)\}.$$
(3.14)

Let $\{e_1, e_2, e_3, \dots e_{2n+1}\}$ be a local orthonormal basis of vector fields in M. Then $\{\phi e_1, \phi e_2, \phi e_3, \dots \phi e_{2n+1}\}$ is also a local orthonormal basis. If we put $X = W = e_i$ in (3.14) and summing up with respect to $i, 1 \leq i \leq 2n+1$, we obtain

$$\sum_{i=1}^{2n} g(R^*(\phi e_i, \phi Y)\phi Z, \phi e_i) = \frac{r^*}{2n(2n+1)} \sum_{i=1}^{2n} \{g(\phi Y, \phi Z)g(\phi e_i, \phi e_i) - g(\phi e_i, \phi Z)g(\phi Y, \phi e_i)\}.$$
(3.15)

From (3.15), it follows that

(3.16)
$$S^*(\phi Y, \phi Z) = \frac{r^*(2n-1)}{2n(2n+1)}g(\phi Y, \phi Z).$$

Using (2.1), (3.6) and (3.8) in (3.16), we get

(3.17)
$$S(\phi Y, \phi Z) + 2ng(\phi Y, \phi Z) = \frac{(r + 2n(2n+1))(2n-1)}{2n(2n+1)}g(\phi Y, \phi Z).$$

By using (2.2) and (2.8) in (3.17), we obtain

$$(3.18)S(Y,Z) + 2n\eta(Y)\eta(Z) + \left\{2n - \frac{(r+2n(2n+1))(2n-1)}{2n(2n+1)}\right\}g(\phi Y, \phi Z) = 0.$$

Hence by contracting (3.18), we get

$$(3.19)$$
 $r = -2n.$

By substituting the equation (3.19) in (3.10), we get

(3.20)
$$C^*(X,Y)Z = R(X,Y)Z + \frac{1}{2n+1} \{ g(Y,Z)X - g(X,Z)Y \}.$$

This leads to the following:

Theorem 3.5. Let the Kenmotsu manifold M admitting the Schouten-van Kampen connection be ϕ -concircularly flat. Then M is of constant sectional curvature $-\frac{1}{2n+1}$ if and only if the concircular curvature tensor C^* vanishes.

We consider

(3.21)
$$C^*.S^* = S^*(C^*(X,Y)Z,U) + S^*(Z,C^*(X,Y)U).$$

By making use of (3.10) and (3.6) in (3.21), we obtain

$$C^*.S^* = S(R(X,Y)Z - \frac{r}{2n(2n+1)} \{g(Y,Z)X - g(X,Z)Y\}, U)$$

$$+ S(Z,R(X,Y)U - \frac{r}{2n(2n+1)} \{g(Y,U)X - g(X,U)Y\}).$$

Suppose $C^*.S^* = 0$. Then we have

$$(3.23) S^*(C^*(X,Y)Z,U) + S^*(Z,C^*(X,Y)U) = 0.$$

Taking $U = \xi$ in (3.23) and using (3.6), it follows that

$$(3.24) S^*(Z, C^*(X, Y)\xi) = 0.$$

Making use of (2.1), (2.6) and (3.11) in (3.24), we get

(3.25)
$$\frac{r+2n(2n+1)}{2n(2n+1)}S^*(Z,\eta(X)Y-\eta(Y)X)=0.$$

Replacing X by ξ in (3.25) and using (2.1) and (3.6), we see that

(3.26)
$$\frac{r + 2n(2n+1)}{2n(2n+1)} \{ S(Z,Y) + 2ng(Z,Y) \} = 0.$$

Contracting (3.26) with respect to Y and Z, we get

$$(3.27) r = -2n(2n+1).$$

From (3.22) and (3.27), we obtain

(3.28)
$$S(Y,Z) = -2ng(Y,Z).$$

Thus M is an Einstein manifold.

Again, by substituting (3.27) in (3.11), we obtain

(3.29)
$$C^*(X,Y)Z = R(X,Y)Z + \{g(Y,Z)X - g(X,Z)Y\}.$$

Thus, from the above discussion and using (3.4), (3.8) and (3.12), we state the following:

Theorem 3.6. Let M be a Kenmotsu manifold admitting the Schouten-van Kampen connection. Then $C^*.S^* = 0$ if and only if S(Y,Z) = -2ng(Y,Z). Further if $C^* = 0$ then M is isomorphic to the hyperbolic space $H^{2n+1}(-1)$.

Theorem 3.7. If in a Kenmotsu manifold M admitting the Schouten-van Kampen connection, $C^*.S^* = 0$ holds, then the following three conditions are equivalent:

i) M is ξ - concircularly flat,

ii)
$$r = -2n(2n+1),$$

$$iii) r^* = 0.$$

The projective curvature tensor [23] P^* with respect to the Schouten-van Kampen connection ∇^* is defined by

(3.30)
$$P^*(X,Y)Z = R^*(X,Y)Z - \frac{1}{2n} \{ S^*(Y,Z)X - S^*(X,Z)Y \}.$$

If the projective curvature tensor P^* with respect to the Schouten-van Kampen connection ∇^* vanishes, then from (3.30), we have

(3.31)
$$R^*(X,Y)Z = \frac{1}{2n} \{ S^*(Y,Z)X - S^*(X,Z)Y \}.$$

Now in view of (3.4) and (3.6), (3.31) takes the form

$$g(R(X,Y)Z,W) + g(Y,Z)g(X,W) - g(X,Z)g(Y,W) =$$

$$(3.32) \frac{1}{2n} [\{S(Y,Z) + 2ng(Y,Z)\}g(X,W) - \{S(X,Z) + 2ng(X,Z)\}g(Y,W)].$$

Now taking $W = \xi$ in (3.32), we obtain

$$(3.33) S(Y,Z)\eta(X) - S(X,Z)\eta(Y) = 2n\{g(X,Z)\eta(Y) - g(Y,Z)\eta(X)\}.$$

Again, setting $X = \xi$ in (3.33), we get

(3.34)
$$S(Y,Z) = -2ng(Y,Z).$$

Contracting the above equation (3.34), we get

$$(3.35) r = -2n(2n+1).$$

Using (3.34) in (3.31), we have $R^* = 0$.

Thus we state the following:

Theorem 3.8. Let M be a Kenmotsu manifold admitting the Schouten-van Kampen connection. In M, the vanishing of the projective curvature tensor with respect to the Schouten-van Kampen connection leads to the vanishing of the curvature tensor with respect to the Schouten-van Kampen connection.

By making use of (3.4) and (3.6) in (3.30), we get

(3.36)
$$P^*(X,Y)Z = R(X,Y)Z - \frac{1}{2n} \{ S(Y,Z)X - S(X,Z)Y \}.$$

Suppose $(P^*(X,Y).S^*)(Z,U)=0$ holds in a Kenmotsu manifold M. Then we have

(3.37)
$$S^*(P^*(X,Y)Z,U) + S^*(Z,P^*(X,Y)U) = 0.$$

Taking $X = \xi$ in the equation (3.37), we get

$$(3.38) S^*(P^*(\xi, Y)Z, U) + S^*(Z, P^*(\xi, Y)U) = 0.$$

By using (3.36), equation (3.38) turns into

(3.39)
$$S^*(Y,Z)\eta(U) + S^*(Y,U)\eta(Z) = 0.$$

In view of the equation (3.6), (3.39) becomes

$$(3.40) \quad S(Y,Z)\eta(U) + S(Y,U)\eta(Z) + 2n\{g(Y,Z)\eta(U) + g(Y,U)\eta(Z)\} = 0.$$

In (3.40), taking $U = \xi$ and contracting with respect to Y and Z, we get

(3.41)
$$S(Y,Z) = -2ng(Y,Z).$$

and

$$(3.42) r = -2n(2n+1).$$

Again, by substituting (3.42) in (3.30), we obtain

$$(3.43) P^*(X,Y)Z = R(X,Y)Z + \{g(Y,Z)X - g(X,Z)Y\}.$$

Thus we can state that

Theorem 3.9. In a Kenmotsu manifold M admitting the Schouten-van Kampen connection, $P^*.S^* = 0$ if and only if S(Y,Z) = -2ng(Y,Z). Further, if $P^* = 0$ then M is isomorphic to the hyperbolic space $H^{2n+1}(-1)$.

The conharmonic curvature tensor [5] K^* with respect to the Schouten-van Kampen connection ∇^* is defined by

$$K^*(X,Y)Z = R^*(X,Y)Z - \frac{1}{2n-1} \{S^*(Y,Z)X - S^*(X,Z)Y + g(Y,Z)Q^*X - g(X,Z)Q^*Y\}.$$

If the conharmonic curvature tensor K^* with respect to the Schouten-van Kampen connection ∇^* vanishes, then from (3.44), we have

$$(3.45) R^*(X,Y)Z = \frac{1}{2n-1} \{ S^*(Y,Z)X - S^*(X,Z)Y + g(Y,Z)Q^*X - g(X,Z)Q^*Y \}.$$

By using (3.4), (3.6) and (3.7) in (3.45), we get

$$g(R(X,Y)Z,W) + g(Y,Z)g(X,W) - g(X,Z)g(Y,W)$$

$$= \frac{1}{2n-1}[\{S(Y,Z) + 4ng(Y,Z)\}g(X,W)$$

$$- \{S(X,Z) + 4ng(X,Z)\}g(Y,W)$$

$$+ S(X,W)g(Y,Z) - S(Y,W)g(X,Z)].$$

Taking $W = \xi$ in (3.46), we obtain

$$(3.47) S(Y,Z)\eta(X) - S(X,Z)\eta(Y) - 2n\{g(X,Z)\eta(Y) - g(Y,Z)\eta(X)\} = 0.$$

Taking $X = \xi$ in (3.47), we get

(3.48)
$$S(Y,Z) = -2nq(Y,Z).$$

Contracting the equation (3.48), we get

$$(3.49) r = -2n(2n+1).$$

Using (3.48) in (3.45), we have $R^* = 0$.

Thus we state the following:

Theorem 3.10. Let M be a Kenmotsu manifold admitting the Schouten-van Kampen connection. In M, the vanishing of the conharmonic curvature tensor with respect to the Schouten-van Kampen connection leads to the vanishing of the curvature tensor with respect to the Schouten-van Kampen connection.

4. Ricci solitons in Kenmotsu manifold admitting Schouten-van Kampen connection

Suppose the Kenmotsu manifold M admits a Ricci soliton with respect to the Schouten-van Kampen connection ∇^* . Then

$$(4.1) (L_V^*g)(X,Y) + 2S^*(X,Y) + 2\lambda g(X,Y) = 0.$$

If the potential vector field V is the structure vector field ξ , then since ξ is a parallel vector field with respect to the Schouten-van Kampen connection (from (3.3)), the first term in the equation (4.1) becomes zero, hence M reduces to an Einstein manifold. In this case, the results in Theorem (3.6) and (3.9) hold.

If V is pointwise collinear with the structure vector field ξ , i.e. $V = b\xi$, where b is a function on M, then the equation (1.1) implies that

$$bg(\nabla_X^*\xi, Y) + (Xb)\eta(Y) + bg(X, \nabla_Y^*\xi) + (Yb)\eta(X) + \\ 2S^*(X, Y) + 2\lambda g(X, Y) = 0.$$

Using (3.3) and (3.6) in (4.2), it follows that

$$(4.3) (Xb)\eta(Y) + (Yb)\eta(X) + 2S(X,Y) + 2\{2n + \lambda\}g(X,Y) = 0.$$

By setting $Y = \xi$ in (4.3) and using (2.7), we obtain

$$(4.4) (Xb) = -\{2\lambda + \xi b\} \eta(X).$$

Again replacing X by ξ in (4.4), we get

$$(4.5) (\xi b) = -\lambda.$$

Substituting this in (4.4), we have

$$(Xb) = -\lambda \eta(X).$$

By applying d on (4.6), we get

$$(4.7) \lambda d\eta = 0.$$

Since $d\eta \neq 0$ from (4.7), we have

$$\lambda = 0.$$

Substituting (4.8) in (4.6), we conclude that b is a constant. Hence it is verified from (4.3) that

$$(4.9) S(X,Y) = -(2n+\lambda)g(X,Y) + \lambda \eta(X)\eta(Y).$$

This leads to the following:

Theorem 4.1. If a Kenmotsu manifold with respect to the Schouten-van Kampen connection admits a Ricci soliton (g, V, λ) with V, pointwise collinear with ξ , then the manifold is an η -Einstein manifold and the Ricci soliton is steady.

Acknowledgements The authors are grateful to the referees for their valuable suggestions towards the improvement of the paper.

REFERENCES

- 1. C. S. Bagewadi and G. Ingalahalli: Ricci solitons in Lorentzian α -Sasakian manifolds. Acta Mathematica. Academiae Paedagogicae Nyiregyhaziensis, **28** (2012), 59–68.
- 2. A. Bejancu and H. R. Farran: Foliations and geometric structures. Springer Science and Business Media, 580 (2006).
- 3. D. E. Blair: Contact manifolds in Riemannian geometry. Springer-Verlag, Berlin-New York, **509** (1976).
- 4. U. C. DE and Y. MATSUYAMA: Ricci solitons and gradient Ricci solitons in a Kenmotsu manifolds. Southeast Asian Bulletin of Mathematics, **37** (2013), 691–697.

- 5. U. C. DE and A. A. Shaikh: Differential Geometry of manifolds. Narosa Publishing House, New Delhi, (2007).
- 6. U. C. DE, A. YILDIZ and F. YALINIZ: On φ-recurrent Kenmotsu manifolds. Turkish Journal of Mathematics, **33** (2009), 17–25.
- G. GHOSH: On Schouten-van Kampen connection in Sasakian manifolds. Boletim da Sociedade Paranaense de Matematica, 36 (2018), 171–182.
- R. S. HAMILTON: The Ricci flow on surfaces. Contemp. Math., 71 (1988), 237– 261.
- S. IANUS: Some almost product structures on manifolds with linear connection. Kodai Math. Sem. Rep., 23 (1971), 305–310.
- 10. K. Kenmotsu: A class of almost contact Riemannian manifolds. Tohoku Mathematical Journal, Second Series, 24 (1972), 93–103.
- 11. H. G. NAGARAJA, D. L. KIRAN KUMAR and V. S. PRASAD: *Ricci solitons on Kenmotsu manifolds under D-homothetic deformation*, Khayyam J. Math., 4 (2018), 102–109.
- 12. H. G. NAGARAJA and C. R. PREMALATHA: Ricci solitons in f-Kenmotsu manifolds and 3-dimensional trans-Sasakian manifolds. Progress in Applied Mathematics, 3 (2012), 1–6.
- H. G. NAGARAJA and K. VENU: Ricci Solitons in Kenmotsu manifolds. Journal of Informatics and Mathematical Sciences, 8 (2016), 29–36.
- 14. Z. OLSZAK: The Schouten-van Kampen affine connection adapted to an almost (para) contact metric structure. Publications de l'Institut Mathematique, 94 (2013), 31–42.
- 15. G. Pathak and U. C. De: On a semi-symmetric connection in a Kenmotsu manifold. Bull. Calcutta Math. Soc., 94 (2002), 319–324.
- 16. D. G. Prakasha, A. T. Vanli, C. S. Bagewadi and D. A. Patil: Some classes of Kenmotsu manifolds with respect to semi-symmetric metric connection. Bull. Acta Mathematica Sinica, English Series, 29 (2013), 1311–1322.
- 17. J. A. Schouten and E. R. Van Kampen: Zur Einbettungs-und Krmmungstheorie nichtholonomer Gebilde. Mathematische Annalen, 103 (1930), 752–783.
- 18. R. Sharma: Certain results on K-contact and (k, μ) -contact manifolds. Journal of Geometry, **89** (2008), 138–147.
- 19. B. B. Sinha and R. Sharma: On para-A-Einstein manifolds. Publications De L'Institut Mathematique. Nouvelle Serie, **34** (1983), 211–215.
- 20. S. Sular, C. Ozgur and U. C. De: Quarter-symmetric metric connection in a Kenmotsu manifold. SUT. Journal of mathematics, 44 (2008), 297–306.
- 21. D. Tolga, E. Cumali and G. Ali: Ricci Solitons in f-Kenmotsu Manifolds with the semi-symmetric non-metric connection. NTMSC, 4 (2016), 276–284.
- 22. K. Yano: Concircular geometry I. Concircular transformations. Proceedings of the Imperial Academy, 16 (1940), 195–200.
- 23. K. Yano and M. Kon: Structures on manifolds. Series in Pure Mathematics, $\bf 3$ (1984).
- 24. A. YILDIZ: f-Kenmotsu manifolds with the Schouten-van Kampen connection. Publi. Inst. Math. (N. S), 102 (2017), 93–105.

Nagaraja Gangadharappa Halammanavar Department of Mathematics Bangalore University Jnana Bharathi Campus Bengaluru - 560 056 INDIA hgnraj@yahoo.com

Kiran Kumar Lakshmana Devasandra Department of Mathematics Bangalore University Jnana Bharathi Campus Bengaluru - 560 056 INDIA kirankumar250791@gmail.com