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GENERALIZED MATRIX MULTIPLICATION AND ITS SOME

APPLICATION
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Abstract. In this paper, a generalized matrix multiplication is defined in R
m,n ×R

n,p

by using any scalar product in R
n, where R

m,n denotes set of matrices of m rows and
n columns. With this multiplication it has been shown that R

n,n is an algebra with
unit. By considering this new multiplication we define eigenvalues and eigenvectors of
square n× n matrix A. A special case is considered and generalized diagonalization is
also introduced.
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1. Introduction

The sign matrix is required for the definition of special matrices when the Euclid
inner product is used for the matrix multiplication in Lorentz space [5]. Ergin [1]
obtained the rotations in Lorentz plane by using Euclidean matrix multiplication. In
our former study [2], by introducing Lorentz matrix multiplication, special matrices
and the motions on Lorentz plane were defined without the need of sign matrix.
By this way, convenience in between the matrix multiplication and scalar product
in Lorentzian was obtained. Further definition of the matrix multiplication using
scalar product Rn of which index is ν were also given in [3].

Our aim in the present paper is to define a new matrix multiplication being
compatible with any scalar product in R

n. Some applications were also given.

Let Rm,n be the set of all m×n matrices. Rm,n with the matrix addition and the
scalar-matrix multiplication is a real vector space. More properties of the ordinary
matrix multiplication can be found in [4].

Let g be a scalar product on R
n which is nondegenerate symmetric bilinear form

g(x, y) =

n
∑

i,j=1

gijxiyj ,
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where x = (x1, . . . xn) , y = (y1, . . . , yn) ∈ R
n. For the standard basis {ei}1≤i≤n of

R
n, the matrix representation of scalar product is G = [gij = g (ei, ej)] ∈ R

n,n.

2. Generalized Matrix Multiplication and Properties

Let A1, . . . , Am denote the row vectors of A = [aij ] ∈ R
m,n and B1, . . . , Bp

denote the column vectors of B = [bjk] ∈ R
n,p. Then we define a new matrix

multiplication denoted by “•g”, as

A •g B =











g
(

A1, B
1
)

g
(

A1, B
2
)

· · · g (A1, B
p)

g
(

A2, B
1
)

g
(

A2, B
2
)

· · · g (A2, B
p)

...
...

...
g
(

An, B
1
)

g
(

An, B
2
)

· · · g (An, B
p)











=
[

g
(

Ai, B
j
)]

.

We call this multiplication as generalized matrix multiplication and if we let Ai to
be ith row of A and Bj to be jth column of B then (i, j) entry of A•gB is g

(

Ai, B
j
)

.
Note that A •g B is an m× p matrix. We will denote R

m,n with generalized matrix
multiplication by R

m,n
g . In the special case of g we get followings:

1. For g (x, y) =
n
∑

i=1

xiyi, A •g B coincides with usual matrix multiplication.

2. For g (x, y) = −x1y1 +
n
∑

i=2

xiyi, A •g B coincides with Lorentzian matrix mul-

tiplication defined in [2].

3. For g (x, y) = −
ν
∑

i=1

xiyi +
n
∑

i=ν+1

xiyi, A •g B coincide with Pseudo matrix

multiplication defined in [3].

Theorem 2.1. The following statements are satisfied.

1. For every A ∈ R
m,n
g , B ∈ R

n,p
g , C ∈ R

p,r
h , A •g (B •h C) = (A •g B) •h C.

2. For every A ∈ R
m,n
g , B, C ∈ R

n,p
g , A •g (B + C) = A •g B +A •g C

3. For every A,B ∈ R
m,n
g , C ∈ R

n,p
g , (A+B) •g C = A •g C +B •g C

4. For every k ∈ R, A ∈ R
m,n
g , B ∈ R

n,p
g , k(A •g B) = (kA) •g B = A •g (kB)

where g and h are nondegenerate symmetric bilinear forms on R
n and R

p, respec-

tively.
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Definition 2.1. The determinant of a matrix A = [aij ] ∈ R
n,n
g is denoted by detA

and defined as

det A =
∑

σ∈Sn

s(σ)aσ(1)1aσ(2)2 · · ·aσ(n)n,

where Sn is set of all permutations of the set {1, 2, · · · , n} and s(σ) is sign of the
permutation σ.

Let {Eij} be the standard basis of Rn,n and X = [xij ] ∈ R
n,n. Consider the

linear equation system X •g Eij = Eij for 1 ≤ i, j ≤ n. If we handle the equations
having the variables {x11, x12, . . . , x1n} , we obviously get















n
∑

i=1

gi1x1i = 1,

n
∑

i=1

gijxji = 0, (2 ≤ j ≤ n) .

Denoting the first column matrix of X by X1, the ordinary matrix form of above
system can be stated as

GTX1 =











1
0
...
0











.

Since G is symmetric and regular matrix, we deduce

X1 = G−1











1
0
...
0











.

If we proceed the same way for the equations having the variables {xj1, xj2, . . . , xjn} , 2 ≤
j ≤ n, we have

X =
1

detG

[

gij
]

,

where gij is (i, j) cofactor of G. Now we are ready to give the definition of identity
matrix.

Definition 2.2. Let g be a nondegenerate symmetric bilinear form on R
n, then

n× n identity matrix according to generalized matrix multiplication, is denoted by
In and defined by

In =
1

detG

[

gij
]

.
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Note that for every A = [aij ] ∈ R
n,n
ν , In •g A = A •g In = A. Indeed,

In •g A = In •g





n
∑

i,j=1

aijEij





=

n
∑

i,j=1

aij (In •g Eij)

=
n
∑

i,j=1

aijEij

= A.

Corollary 2.1. R
n,n
g with generalized matrix multiplication is an algebra with unit.

Definition 2.3. An n×n matrix A is g-invertible, if there exists an n×n matrix
B such that A •g B = B •g A = In. Then B is called g-inverse of A and is shown
by A−1

g .

Example 2.1. Let g (x, y) = x1y1 + x1y2 + x2y1 + 2x2y2 be a scalar product on R
2 and

A =

[

2 4
−2 3

]

∈ R
2
2. Then I2 =

[

2 −1
−1 1

]

and A−1
g =

[

9

7
−1

− 4

7

1

2

]

.

Definition 2.4. Let A = [aij ] be an m × n matrix. Then the transpose of A is
the n×m matrix AT obtained by interchanging the rows and columns of A, so that
the (i, j) th entry of AT is aji.

Theorem 2.2. Let A and B be matrices of the appropriate sizes so that the fol-

lowing operations make sense, and c be a scalar. Then

1. (A+B)
T
= AT +BT

2. (A •g B)
T
= BT •g A

T

3. (cA)
T
= cAT

4.
(

AT
)T

= A.

Proof. We only prove the property (2) . The others can be easily done.

(A •g B)
T

=
[

g
(

Ai, B
j
)]T

=
[

g
(

Aj , B
i
)]

=
[

g
(

Bi, Aj

)]

=
[

g
(

(

BT
)

i
,
(

AT
)j
)]

= BT •g A
T .
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Definition 2.5. Let A ∈ R
n,n
g . If AT = A and AT = −A then A is said to be

symmetric and skew-symmetric matrix, respectively.

Definition 2.6. Let A be an m × n matrix and denote the rows of A by Ai,

i = 1, . . . ,m. The elementary row operations on matrix A are:

1. Rij , the interchange of rows Ai and Aj ,

2. Ri (c) , the multiplication of row Ai by the nonzero scalar c,

3. Rij (a) , the addition of a times row Aj to row Ai, i 6= j.

Definition 2.7. Let In be identity matrix according to generalized matrix multi-
plication obtained from g nondegenerate symmetric bilinear form on R

n. An elemen-
tary matrix is an n× n matrix obtained from the identity matrix In by performing
on In a single elementary row operation. For the operations Rij , Ri (c) and Rij (a) ,
elementary matrices denoted by Eij , Ei (c) and Eij (a) , respectively.

Let In be identity matrix according to generalized matrix multiplication ob-
tained from g (x, y) = x1y1 + x2y2 − x2y3 − x3y2 − 2x3y3 nondegenerate symmetric
bilinear form on R

3. Then

I3 =





1 0 0
0 2

3 − 1
3

0 − 1
3 − 1

3





and the following are examples of elementary matrices:

E13 =





0 − 1
3 − 1

3
0 2

3 − 1
3

1 0 0



 , E3 (−6)





1 0 0
0 2

3 − 1
3

0 2 2



 , E31 (2)





1 0 0
0 2

3 − 1
3

2 − 1
3 − 1

3



 .

Theorem 2.3. Let R be an elementary row operation and let E be the correspond-

ing m×m elementary matrix. Then ,

R (A) = E •g A

where A is any m× n matrix.

Proof. The proof is similar to standard one.

Theorem 2.4. The determinants of the elementary matrices are given as

1. detEij = − det In

2. detEi (c) = c det In
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3. detEij (a) = det In

Proof. We omit the details since it is clear from the properties of determinant
function.

Theorem 2.5. Let E be an elementary matrix and A be an n× n matrix. Then

the following holds

det (E •g A) = (det In)
−1 · detE · detA.

Proof. Let A be a n× n matrix and E be an elementary matrix. Firstly, by taking
E = Ei (c), we get det (E •f A) = det (Ei (c) •f A) . The properties of determinant
function, Theorem 2.3 and Theorem 2.4 leads to

det (Ei (c) •g A) = c · detA

= (det In)
−1

· detEi (c) · detA.

For the other cases E = Eij (a) and E = Eij , the proof can be done similarly.

Theorem 2.6. For every A,B ∈ R
n,n
g , det(A •g B) = (det In)

−1
detA · detB.

Proof. Let A be a matrix obtained by multiplying elementary matrices E1 and E2.
From above theorem, we get

det (A •g B) = det ((E1 •g E2) •g B)

= det (E1 •g (E2 •g B))

= (det In)
−1

detE1 det (E2 •g B)

=
(

(det In)
−1

)2

detE1 detE2 detB

= (det In)
−1

det (E1 •g E2) detB

= (det In)
−1

detAdetB.

For A = E1 •g . . . •g Ek, where Ei is elementary matrix (1 ≤ i ≤ k) , the proof can
be done similarly. On the other hand, since every regular matrix can be written as
the multiplication of elementary matrices, for every regular matrix A

det (A •g B) = (det In)
−1

detA · detB.

If A is a singular matrix, then detA = 0 and det (A •g B) = 0. Thus the proof is
completed.

Corollary 2.2. If A is a regular matrix then detA 6= 0.

Eigenvalues and eigenvectors play an important role in matrix theory because of
its application in the areas of mathematics, physics and engineering. By this aim,
we define the eigenvalues and eigenvectors of square n× n matrix A by generalized
matrix multiplication.
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Definition 2.8. Let A ∈ R
n,n
g . An eigenvector of A is a nonzero vector x in R

n

such that
A •g x = λx

for some scalar λ. The scalar λ is called an eigenvalue of the matrix A, and we say
that the vector x is an eigenvector belonging to the eigenvalue λ.

Example 2.2. Let g (x, y) = 2x1y1 + 2x2y2 + x3y2 + x2y3 + 3x3y3 be a scalar product
on R

3 and

A =





1 0 0
2 1 −1
0 1 2



 ∈ R
3,3
g .

Then eigenvalues of A are λ1 = 2, λ2 = 3 and λ3 = 5. Some eigenvectors of A corresponding
to λ1, λ2 and λ3 are

u1 =





3

16

− 5

4

1



 , u2 =





0
−1
1



 , u3 =





0
− 1

2

1





respectively.

Theorem 2.7. The eigenvectors of a symmetric matrix A ∈ R
n,n
g corresponding

to different eigenvalues are orthogonal to each other.

Proof. For the eigenvectors x, y corresponding to two different eigenvalues λ, µ of
the matrix A, we can say that A •g x = λx and A •g y = µy, so

yT •g A •g x = λyT •g x = λg (x, y) .(2.1)

But numbers are always their own transpose, so

yT •g A •g x = xT •g A •g y

= xT •g µy

= µ
(

xT •g y
)

yT •g A •g x = µg (x, y) .(2.2)

From (2.1) and (2.2), we get

(λ− µ) g(x, y) = 0.

So λ = µ or g(x, y) = 0, and it isn’t the former, so x and y are orthogonal.

Example 2.3. Let g (x, y) = 2x1y1 + 2x2y2 + x3y2 + x2y3 + 3x3y3 and

A =





1 1 0
1 2 −1
0 −1 1



 ∈ R
3,3
g .
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A is a symmetric matrix. Then the eigenvalues of A are λ1 =
√

5+7

2
, λ2 = 7−

√

5

2
and

λ3 = 0. Some eigenvectors of A corresponding to λ1, λ2 and λ3 are

u1 =





− 1

2

√
5− 1

2

− 1

2

√
5− 3

2

1



 , u2 =





1

2

√
5− 1

2
1

2

√
5− 3

2

1



 , u3 =





−5

2

2
1





respectively. For i 6= j, we get

g (ui, uj) = u
T
i •g uj = 0.

Then {u1, u2, u3} form an orthogonal basis of R3
g.

Throughout the rest of the paper, g will denote the scalar multiplication function

g (x, y) =
n
∑

i=1

gixiyi, for the convenience of readers, where gi 6= 0 for 1 ≤ i ≤ n.

Hence, the unit matrix corresponding to the generalized matrix can be stated as

In =











1
g1

0 · · · 0

0 1
g2

· · · 0
...

...
. . .

...
0 0 · · · 1

gn











.

Definition 2.9. Let A ∈ R
n,n
g . If A−1 = AT

(

i.e.AAT = ATA = In
)

then A is
said to be g-orthogonal matrix.

Theorem 2.8. Let A ∈ R
n,n
g . Then

1. A is g-orthogonal if and only if the row vectors of A form an orthogonal basis

of Rn
g under the scalar product; and

2. A is g-orthogonal if and only if the column vectors of A form an orthogonal

basis of Rn
g under the scalar product.

Proof. We will only prove (1), since the proof of (2) is almost identical. Let
A1, . . . , An denote the row vectors of A. Then

A •g A
T =







g (A1, A1) · · · g (A1, An)
...

...
g (An, A1) · · · g (An, An)






.

It follows that A •g A
T = In if and only if for every i, j = 1, . . . , n

〈Ai, Aj〉 =

{ 1
gi

, i = j

0 , i 6= j
.

Then {A1, . . . , An} is an orthogonal basis of Rn
g .
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Definition 2.10. A matrix A is diagonalizable if there exists a nonsingular matrix
P and a diagonal matrix D such that

D = P−1 •g A •g P.

Theorem 2.9. Let all the eigenvalues of A ∈ R
n,n
g are real. Then A is diagonal-

izable if and only if it has n linearly independent eigenvectors.

Proof. Let x1, . . . , xn be n linearly independent eigenvectors of A associated with
the eigenvalues λ1, . . . , λn. That is,

A •g xi = λixi , i = 1, . . . , n .

Now, we denote P =
[

x1 · · · xn

]

. Since the columns of P are linearly inde-

pendent, P is invertible. Let D be diag
[

λ1

g1
, . . . , λn

gn

]

. Then

A •g P = A •g
[

x1 · · · xn

]

=
[

λ1x1 · · · λnxn

]

=
[

x1 · · · xn

]

•g diag

[

λ1

g1
, . . . ,

λn

gn

]

= P •g D.

Since A •g P = P •g D, it follows that D = P−1 •g A •g P which shows that A is
diagonalizable.

To prove the other direction we assume that A is diagonalizable. Then there

exists a nonsingular matrix P and a diagonal matrix D = diag
[

λ1

g1
, . . . , λn

gn

]

such

that

D = P−1 •g A •g P.

If we multiply above equation with P from the left, we get

A •g P = P •g D

which implies
A •g vi = λivi , i = 1, . . . , n(2.3)

where vi are columns of P. The equations (2.3) show that v1, . . . , vn are eigenvectors
of A corresponding to eigenvalues t1, . . . , tn. Furthermore, since P is invertible,
{v1, . . . , vn} are linearly independent.

Example 2.4. Let g (x, y) = −x1y1 − x2y2 + x3y3 and

A =





1 2 0
1 0 −1
1 −2 −2



 ∈ R
3.3
g .
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The eigenvalues of A are λ1 = −2, λ2 = 0,λ3 = −1 and eigenvectors corresponding these
eigenvalues are

u1 =





2
1
0



 , u2 =





2
−1
−2



 , u3 =





1
0
−1





respectively. Therefore

P =





2 2 1
1 −1 0
0 −2 −1



] and P−1 =





1

2
0 − 1

2
1

2
−1 − 1

2

1 −2 −2



 .

Finally

P
−1 •g A •g P =





2 0 0
0 0 0
0 0 −1



 .
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