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CURVATURE TENSORS AND THE THIRD TYPE ALMOST GEODESIC
MAPPINGS *

Nenad O. Vesit

Abstract. Changes of curvature tensors of a non-symmetric affine connection space under
the third type almost geodesic mappings of both the first and the second type are given
in this paper. These curvature tensors are firstly presented as functions of a curvature
tensor of the corresponding associated space.

Keywords: Curvature tensors; affine connection space; geodesic mappings; affine con-
nection.

1. Introduction

Many authors have given their own contribution to the mappings between
affine connection spaces theory. Some of them include J. Mikes [1, 4, 12], I. Hinter-
leitner [2, 3], S. M. Mingi¢ [7, 9, 10], N. S. Sinjukov [11], M. S. Stankovi¢ [16, 17] and
many others.

An affine connection on an N-dimensional manifold M is a mapping V which
maps any pair (X, Y) of vector fields to a vector field VxY such that

(1.1) V(Y +2Z) = VxY + VxZ:
(1.2) Vx(fY) = fVxY + (X)Y:
(13) fo_,_gyz = fVxZ + ngZ,

for any vector field X, Y, Z and differentiable functions f, g on M.

Definition 1.1. [4] We call (M, V) a manifold with an affine connection, or a mani-
fold with a linear connection.
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In local coordinates with respect to a chart (U, ¢), ¢ = (x%,...,xN),

2 _y 9

0 0 = Vi aw T g

where the function L:‘j = L:‘j (x) characterizing the affine connection V are compo-

nents of the affine connection V relative to the chart under consideration. Manifolds
with an affine connection characterized by coefficients L!‘j, Lh # L", will be called

i’
non-symmetric affine connection spaces GAy.

We are particularly interested in non-symmetric affine connection spaces, i.e
spaces with affine connection coefficients LE‘J. non-symmetric by indices i and j, in

this paper. For this reason the following magnitudes are necessary:

(L5) Uy =5 (LhrLp) and Lh=2(L+ L)),

1
2
named symmetric and anti-symmetric part of the coefficient LT‘. respectively.

Let X'l 'A * be a random indexed magnitude. Anti-symmetrization without divi-
sion of it by indices jy, jy,1 <u<v<B,is

ilmiA e il IA _ il IA
(1.6) Xj1-~-[ju-~-jv]---jB T XJlu-]umleJB XJl-«-Jv-«-]uA-AJB

A symmetric affine connection space Ay is an associated space of a space GAy
with affine connection coefficients L[‘J. if its affine connection coefficients are equal

to the symmetric part of the coefficients L[‘J
Let us recall some other terms necessary in this paper. Unlike a symmetric

affine connection space, a non-symmetric affine connection space causes four types
of covariant differentiation (see [6]) defined as

igip... i1 ig-1Plat1eia
Tl.ll? I,.A I1|2 ia Z LILX
i dslk 1112 J.K pm ith2--js

pm

i...ia
Z L Tll Ja-1Pas1--J8"

mla
Mja
jam

INFRINTSN

(1.7)

Let£:1 - Mt £(t) = x(t) (I c Ris an open interval and £ ¢ U c M, (U, ¢)
with ¢ = (x'), isalocal chart) be a differentiable curve in an N-dimensional manifold
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with an affine connection GAy, and let A = x denote the corresponding tangent
vector field along ¢. A vector field X along ¢ is said to be parallel along ¢ if X satisfies
the condition

(1.8) VX =0,

forany t.

In case Xp = £(tp) and x; = £(t1) are points on a given curve £ = £(t), a vector X;
from the tangent space Ty, M in x; is a result of the parallel transport along ¢ from the
point X, to the point x; if along ¢, there exists a parallel vector field X(t) for which
X(to) = X and X(t;) = Xx;.

1.1. Curvature tensors of a non-symmetric affine connection space

There exists only one curvature tensor

(1.9) R =L

h h h
ik = Lijx — Lk + L‘.".L_— Li L

ik, j ij-ak ik —aj”

of the associated space An where ”,” denotes a partial derivative.

Four curvature tensors and eight derived ones [7] exist in a non-symmetric
affine connection space. M. Lj. Zlatanovic (see [20]) listed all curvature tensors of
a space GAy with affine connection coefficients L:‘j as:

h  _ yh h h h.
(1.10) Ri = Lijk—Lij * LijLak = Lickaj:
h  _ h h h h.
(1.11) I§ijk = Lji,k - Lki,j + L?i Lo = L?il‘ja’
(1.12) |§ihjk = Lihjk - LEij + L] Lo, — Ly ng + 2Lf<1j|‘2i;
h  _ yh h h h h
(1.13) Rig = Lijk—Liaj* Lijbee = Liilaj + 2L[ijLo\c/i’

and
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_ 1
h_ h h h h h h h ny.
(1.14) Rk = 3 (Lij,k = Lii + Liix — L j + Lijbea + Ljilax — Lickje — Lig Lnj)'
_ 1
h_ h h h h h h h ny.
(1.15) Rk = 3 (Lij,k = Liej + L — L * Lk + Uik — Libje — L Laj)'
— 1
h_ h h h h h h h ny.
(1.16) Rk = 3 (Lij,k = Liej + L = L + Lk + Lk = Lickey — L Lja)'
— 1
h_ h h h h
(1.17) 5ijk = 3 (Lij,k = Li; + Lilax — L Laj)
2 n h h h nl.
t o3 Uik = L + Lijhe — Libje + LG qui ;
- \%
oh _  gh n h h h.
(1.18) Ri = Lix—Laj+ 2L L%k — Lk + Lk
oh o _  gh h aph h h.
(1.19) Riw = Lix—Laj+ ik, — ZL%LM' =Lk
Sh o _ gh h h h h.
(1.20) Rik = L~ +Lijka— 2L;3<Lja' - Lilay:
Sh _ gh h h h h
(1.21) Riw = Lijx—Lij+ 2Lfi|-nvk - Likay — Lk

1.2. Geodesic and almost geodesic mappings

Let us remember what geodesic and almost geodesic lines of a symmetric affine
connection space are. Recall also what geodesic mappings between two such spaces
are.

Definition 1.2. [4, 11] A curve ¢ in space Ay is geodesic when its tangent vector
field remains in tangent distribution of £ during parallel transport along the curve.

Definition 1.3. [4, 11] Let Ay and Ay be manifolds with a symmetric affine con-
nection. A diffeomorphism f : Ay — Ay is called geodesic mapping of Ay onto
Ay if it maps any geodesic curve in Ay onto a geodesic curve in Ay.

Trying to generalize the concept of a geodesic mapping for Riemannian and
spaces of symmetric affine connection, N. S. Sinjukov introduced [11] the following
terms:

A curve | : x" = x"(t) is an almost geodesic line if its tangential vector A" =
dx"/dt # 0 satisfies the equations

—h _ - —h —h —h —h
(122) A(Z) = a(t)Ah + b(t)/\(l), A(l) = /\npAp, /\(2) = A(l)Hp/\p’

where a(t) and b(t) are functions of a parameter t, and || denotes a covariant deriva-
tion with respect to the connection in Ay.
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Definition 1.4. [4, 11] A mapping f of a symmetric affine connection space Ay
onto a space Ay is called an almost geodesic mapping if any geodesic line of the space
Ay is mapping into an almost geodesic line of the space Ay.

Sinjukov (see [11]) singled out three types of almost geodesic mappings, 7, 72, 73
for spaces without torsion (LFJ. - L?i = 0). Furthermore, he obtained curvature ten-

—h . . — .
sors R:‘jk and R;j, of symmetric affine connection spaces Ay and Ay functionally
connected with an almost geodesic mapping f of the third type satisfy the equation

—h

(1.23) Rijk = R?jk + Iﬁbijé{: - lpiké? + Gijk(ph,

where

(1.24) Yij = i — iy — oij(v + 9 ¢a);

(1.25) Oijk = Oijk — Oik;j +¢kf7ij —¢j6ik+0ij0kp(pp —Gikﬂjp(pp.

M. Stankovi€ [13, 14, 15] started an advancement of almost geodesic mappings
theory into non-symmetric affine connection spaces (spaces with torsion) theory.
The third type almost geodesic mappings of the first kind is determined by a
condition for the function li(x; A):

1.26 b Dupy AT
(1.26) 1 gAeAd 7

where 6.5A¢A% # 0. The third type almost geodesic mappings of the second kind is
determined by the condition

a)B LY
lzaa,;y)\)\/\

1.27 b=———,
( ) 2 OesA€A®

Let almost geodesic mapping f : GAn — GAy be the third type one of the 0-th
kind, 6 = 1,2, which inverse map f! is of the same type. This mapping has [18]
the property of reciprocity. This special class of the third type almost mappings is
denoted by Eg.

The basic equations which give the characterization of mappings of the first
kind '71-73 have the form

—h
(1.28) Lij Lij + pid] + 9o + aije" + 6;0] — 60"

(1.29) P = "+ vy,
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where 1, 0; are covariant vectors, " is a contravariant one, v is an invariant and
oij Is a symmetric tensor of the type (0, 2).

In the case of the class of almost geodesic mappings of the second kind '72-73, the
equation (1.29) is changed with the following one

(1.30) Pl = Y + voy.

Stankovi¢ obtained affine connection coefficients LE‘J. of a space GAy and E?j =
f(L:‘j) of a non-symmetric affine connection space GAy, in the case the third type
almost geodesic mapping of the first kind f : GAy — GAy, satisfy the equation

—h
(1.31) L = L?j + ¢i5? + l/}jéih + Gij(ph + Qjéih - Gié?.
1.3. Motivation

There exist five linearly independent curvature tensors into the set of twelve
ones [8]. In an attempt to simplify the calculation processes, different authors take
different 5-tuples of independent curvature tensors. This is what Minci¢, Stankovi¢
and Velimirovi¢ [10] and Zlatanovi¢ [20] have done in their research.

Research has started into the changes of curvature tensors of a non-symmetric
affine connection space GAy under the third type almost geodesic mappings. Basic
equations of the second type almost geodesic mappings of both the first and the
second kind are some of the results presented in [19]. Changes of independent

h _ ph h _ ph h _ ph h _ ph h
curvature tensors [20] }l<ijk = I?ijk, l§ijk = Fliijk, P§ijk = I;iijk, P}ijk = I?ijk and Iéijk =

1 (2ph h ;
3 (S%jk + Ffijk) are analyzed in [18].

The purpose of this paper is twofold. The first is an expression of curvature
tensors of a space GAy as linear functions of the corresponding curvature tensor
R:‘jk of the associated space Ay. The second - and the main one - is a presentation

of changes of all twelve curvature tensors of the space GAy under the third type
almost geodesic mappings of both the first and the second kind.

2. Change of curvature tensors

Before we present the results of our study, some predications should be pre-
sented. The firstis a proposition which connects covariant derivatives of a vector ¢"
with respect to connections of a non-symmetric space and the associated affine con-
nection one. We should emphasize that there exist only two covariant derivatives
of a vector (ph with respect to a non-symmetric affine connection.
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Proposition 2.1. [18] Covariant derivative go_hk of a vector ¢" from the space GAy based
on the connection of the associated space Ay and on the (p'l‘k is
1

(2.1) (p;hk = véE + l,bk(ph - Lgk(pa.

Covariant derivative (p,hk of a vector " from the space GAy based on the connection of
the associated space and on the (p?k, is
2

(2.2) (p;hk = véE + gl)k(ph + Lgk(p"‘.

v

Magnitudes v, 1 and @' in the equations (2.1, 2.2) are an invariant, a covariant vector
and a contravariant one, respectively. O

The following proposition analyzes the covariant derivative of affine connection
coefficients under our aimed almost geodesic mappings.

Proposition 2.2. [18] Let f : GAn — GAy be an almost geodesic mapping of the third

— . . —h
type between spaces GAn and GAy. Affine connection coefficients L:‘j and L;; of these
spaces satisfy the equation

—h
23) Lijx = Lijy + 0ije” + aijthip” = oijLi ¢
+ I,Di;k(s? + lpj;ké? + GijV(SE + Gj;kér - Gi;ké?/

where ;”” denotes a covariant derivative with regard to the associated space connection. O

The following propositions and lemma are necessary in the following research.

Proposition 2.3. [18] Let f : GAn — GAy be an almost geodesic mapping of the third
. - —h . .
type. Affine connection coefficients L:‘j and L; of these spaces satisfy the equation

—a—h
(2.4) CiLe = LijLhe + {0+ Lj 0 + 0,610] ~ L

v

61 = Lii6.0] — 601640
O

The next lemma is crucial for the main results of this paper.
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Lemma2.1. Let f : GAy — GAp be an almost geodesic mapping of the type '71?3.

Riemann-Christoffel curvature tensor defined with respect to the connection coefficients
h —1(h h
L =3 (L +L5)

—Lhopeh —peph

h _h
(2-5) Ri Lij ik, j i ak ik t)tj

ijk — I] k
. ) —h _ .
of the associated space Ay and the corresponding one R of the space Ay satisfy the

equation

—h
(2.6) Rij = Rij + Vi) = Yid] + pigd] + aijg” = iy @® + oikl 0P

\2

In case f is the third class almost geodesic mapping of the second type, the equation
(2.6) becomes

—h
2.7) Rij = Ry + Viid — Yid! + Pd) + aijeg” + aijL i p® = ffik'-,h)vfpp-
for yij and o defined in the equations (1.24, 1.25). O
We can start with the presentation of our results now. Based on the equations
(1.10 - 1.13), the following proposition holds:

Proposition 2.4. Curvature tensors (1.10 - 1.13) of a non-symmetric affine connection
space GA\ satisfy the equations

(2.8) Rik = Ric+ Lt‘l N L,hk i+ LﬁLgk L4 ng,
(2.9) R[‘Jk = R - |_[‘J ot Lf‘kj + Lﬁl_';k — L Lg],
(2.10) Rik = Ri+ Lt‘l ot L,hk i LﬁLgk L Lh - ZLTKLZI,
(2.11) R,hJk = R+ L{‘J ot |_,hkJ - Lﬁl_gk - Lfkl_gj - zu;ku;,,

where R?jk is a curvature tensor of the associated space Ay and denotes a covariant

derivative with regard to the connection of the associated space. D

Derived curvature tensors ﬁ[‘jk,v =1,...,8, can be expressed as linear functions
\
of curvature tensor R!‘jk defined with (1.9).
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Proposition 2.5. Derived curvature tensors ﬁ?ik,v =1,...,8, satisfy the equations
\

h  _ ph h h.
(2.12) 'fijk = Ry - Lijbu+ Lk
v v Vv
Sh _ ph h h.
(2.13) Ri = Rip+ LijLa + Lilag:
v Vv Vv
(214) Rl = R Ll LiLh;
31 J J \ Vo
— 1
h  _ ph h h h (o h (1 h
(2.15) I}ijk = Ryt 3 L+ Likgj + Lijlis + 215 L5 +3L6Lg;
v \ v Vv v Vv Vv
Sh _ ph _h h h h h .
(2.16) sijk = Rijk — Lij;k + Lik;j + LiLELa'k — L;LLaj + 4Lﬁ|‘ak’
v v VAR vy = v
Sh _  pho_yh h ( h h h.
(2.17) |§ijk = Rijk — Lij;k + Lik;j + L?jl‘ak — Lﬁ‘(LaJ— — 4Lﬁ<|‘ja’
v v VIR VAR v o—
Sh _ phoLgh h .\ h (h
(2.18) Rik = Rig+Lije—Lig + LiiLak — SLiklajs
v v VERY VoY
Sh _ ph o h h h h h h
(2.19) Ri = RijtLije— Ligg + Lijba = Liklay = 24 La — 2hijlbe:
v v v Vv Vo v -

Proof. The equations (2.12, 2.14) hold directly from the definition of covariant
derivative with regard to the associated space connection and these results are used
in [18].

For this reason we are going to prove the equation about the curvature tensor
Erik because it is the most complicated case in this proof. All other equations can be

proved by using the analogous processes with respect to the equations (2.8-2.11).
If we use the facts that L:‘j = L:‘j + L:‘j and L:‘j = %(Lt‘] + L'J?i), the bracketed
expression in the definition of the fourth derived curvature tensor becomes

h h h h (| h h (| h (| h o
Lik Lk T2 — 2L + Lf‘ijLt - Ll + LE‘iLak —-Lgla; + 2Lf(‘J.Lin =
\2

h h _h h _h arh _japh arh _japh ayh
Riik + Lijk = Likj + Ljix ~ Liij + Lijbie — Likbje + Ljilax — babaj + 2L; L%i-
\%2

We also have it that the following equation is valid:

(| h h _ h h h hy_oaph (| h
L?ija+Lj"iLak—(Lf}+Lij)(Lk£+Lkéx)+(Lj"i+Lj"i)(LlLk+Lavk)—ZL?J.L%—ZL?J.L%I(.
- \% - v - v

Finally, we obtain that the following holds:

h h _h h _yh ajh _yaph ajh _jyaph ayh _
gijk + Lk~ Lij + Ljik — Liij + Lijbke — Likbja + Ljilak = bilaj + 2L Lq/i =
\2

2R"

h h h h
IJ.k+l§ +2L§’ijvn+2L“L. +2L%L
\%2

s : L,
ijk J\E{ I\(/x kv| 4:/]

which after interchange of the corresponding result for F;ij proves this equa-
tion. O

Based on the results (2.3, 2.12-2.19) together with the equations (2.6, 2.7), we are
able to prove the following theorems.
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Theorem 2.1. Let f : GAn — GAy be the third type almost geodesic mapping of the
first kind and let there be

(2.20) \%/ij = ¢ij+ Oij + 6,0,
(2.21) Wiy = =05 + 605,
(2.22) Wiy = i+ 0+ 605,
(2.23) Wi = g+ Oy — 3010,

Curvature tensors Rh and Rt‘lk = f(R“k) u=1,...,4, satisfy the equations

(2.24) Rrjk = Trlk + \]I-’ij(st - %/ik(s? + \?[jk]é? + Uijk(ph

- aingk(p“ + aikLQj(p“ -L 000 + L“ eaah 2Lh \ O
\% \2

(2.25) R = R

;h ;h -
Riik + Wiy = Wid] + Yo} + oije”

|]k
- aingkw + aikLQj<p“ - 000 + L%@aé? - 2L;‘k9i;
\2 \%
(2.26) R:‘]k = F32”k + \y,,(s - ik(s'.‘ + \y[jkléh + k"

- ajj ak(p +oikL " —26,16h+2L“6a6h aLh 9J+2L!}9k;
\%

Bh —
(2.27) Rbc = R

sh sh
Rijic + Wiid — ‘}{ik(’j + Wiigd] + oiji”

- ajj avk(p“ + aikL[}j(p“ - 20;00 - 2Lj.’k6a6? + 2L§lk9j - 2L{‘jek,
\% \2 \%

for ¢ij and ojj defined in the equations (1.24, 1.25).

Proof. The equations (2.24, 2.26) are proved in [18]. The other two curvature
tensors from this theorem satisfy the equations

h _ ph h h h _ ph h
lek lek 2(Lljk lej) and lek lek+4LlekLa|’

which, together with the equation (1.31), implies the validity of the equations (2.25,
227). O

Corollary 2.1. Let f : GAny — GAy be the third type almost geodesic mapping of the
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second kind. Curvature tensors Brik and Erik = f(I3§‘jk), u=1,...,4, satisfy the equations

Bh _ h _.sh h h h
(2.28) Ri = Rije+ Yigd = Wikdj + Py + oijeep
h " h v h h h .
+ GijL%k(pa _GikLL\[/j(Pa —L%@abk+L%9abj —2Ljvk@i,
—h h h ch ch h
(2.29) Rik = Rt iy = Vi) + Yriadil + i

h h sh ch hp.
+ GijL%k(Pa_GikLaj(Pa_Lﬁeabk"'L%eabj —2ij6i,
v v %

B _ ph _sh _\p. sh Ch, o h
(2.30) F;ijk = F;ijk + %"Jék - %llk(sj + %/[Jk](si + ik
+ aijLh " — o] — 26;0f + 2L 0a0] - 2L;, 0; + 2L36;
v v v v v
nh _ h sh _<h _osh 2ol
(2.31) Rik = Rije+ Yo — Wikdj + Wjgoy + aijee

+ oi,-Lgvk(p“ — ol = 26;j6p — 2L5, 0,00 + 2L%9j - 230k,
\2 \2

i
for yij, oij, Wij,u = 1,...,4, defined as above. [J
u

The following theorem also holds, which is going to be proved.

Theorem 2.2. Let f : GAn — GAy be the third type almost geodesic mapping of the
second kind and let there be

(2.32) \?ij = ¢ij - 6i0;;
(2.33) ‘?ij = ¥ij— 6i0;;
(2.34) Wi = i+ 005

— 1 5 1,
(2.35) Vi = Y= 30— 300 - 3Ly0
(2.36) Wy = yij— Oij + 0i0; — 49i0;;
(2.37) Wy = - 0ij + 0i0; + 40:;;
(2.38) Wij = i+ Oij + 665
(2.39) Wi = i 0i0).

Curvature tensors ﬁ:‘. andRh = f(Rh),v=1,...,8, satisfy the equations
v ik v ik v ik
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(2:40) Rl = Rhor Yok = Vi) + Yol + o - vuLkaq?“ + ol
v

+  L§6.0) - LB o+ 2Lh \ Oi;
v

@249 '?nk = '§.h,k + \giiét - \giké? + \g[jk]é? + 0ije" — UijL?\(/k(Pa + 0wl "
v
- L§0.0f - (Lg(eﬂ + zeiek) o +20;60) + 2L], 0, + 2L}, 6;;
\2 \2 v v
(242) Rik = Elhjk + ?U“SE - ?ik‘S? + ‘?[jk]é? +oijp" - OijL%k(p“ +oilo°
+  L§6.0p + Z(L%Qa + ei@k)a? - 20;6,5] - 2176 — 2L%ej;
v v

(243) ﬁh = R +\P|]5 - |k(3 +‘~P[Jk]b +O'|]k(p = 0jj ak(p +O'|k|_a](p

ik Rij
2 La h h 2Lh oL
-3 5 ivk@a+6i9k o+ 5616@ +3 ijek+ 3 Jk@,+ Ikej,
\%
(244) ﬁrjk = R”k+\y”6 —‘I’uké +‘P[Jk]5 +0ijk@" — aij ak(p +okL“ [0°

) (Lﬁ' Ou + 49101 + L0 + 4aijep" 9“)52 +L§0u0] + (8930 - 4010} ]

- 2|_h (9.+2¢)+4L +4Lh9k+40.19k(p +4L" ka.,q) ;

(2.45) R:‘Jk = R”k+\I/,,6 —\I’.ké +\I’[Jk]6 + 0" - aij ”kq) U+ oull "
\/

- LU 00} + (Liavkeﬂ +40iYy — 4L lpﬂ 490k + 401 | O
= (B59n - Oy — 4 64) O - 2|_h 0~ 4LL0; ~ 4L} 00 + AL 0,
- 4L%oja(ph - 40i19kcph + 49ia,~k(p ;

(2.46) R = RN

Rijk + \I}ub ‘?iké? + \?[jk]éih +oipp” - O'ingvk({)a +oilo°

- (L;'j@a - eiej)é'; + SL%Qaé? — 40,000 - 6Lh 0i - 4Lh O — 4L%ej;
\2

(2.47) R = R

Rilk .,k+‘1’u<S —‘I’-k<3 +‘I’[Jk]5 +aije" - aij Mp +a.kLh "

\/

1
- 2("iai‘p“+'-§9w+24’i¢i+21Pi91+0i1<ﬂ“%+0i1¢“9ﬂ 35 9&)‘32
\%

- 2(1/) P+ i Ok — ity — O ek—EL;'ke )5';

= 2(Pi— i O+ 05+ 0,0,) O + 2 (Oio + 0301 ) "

- 2(I-P('Ukaz + ’«/)ink + oy + Uikej + 0jjiPx + UijUka(Pa)(Ph

= 20— AL~ 2 240, 20 + 250
for ¢ij and ojj defined in the equations (1.24, 1.25).

Proof. The equations (2.40, 2.42) are proved in [18]. The equation (2.41) holds
directly from the
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Bh _Rh h
RIlk = R ik + ZL?JLak

The equation (2.43) is a direct corollary of the following one:

Tarh h h h
Gl + 2L kLm + 3Lk, LL” = L:’] Ly + ZLTkLm +3L L
\%

+ (—L;‘J:ea, - seiej)o*k‘ - (SLﬂ(@a - eiek) 5;‘ + [—2Lj’k9a + 49j6k]5i“
\%2

+ 2Lh6k+4L 9,+6le6]

We can see that the following holds:

=h h h
RIjk = R”k + 4ijLak

The following equation is also valid:

a—h

T h h h h h
L,JLak = Lf’;Lak+LJk¢,+lelpJ+L ka,,(p +L 9k+¢,9kb + 10k,

+ 0ijOp" - Li@aéﬂ = 9i0;0 — P;0i0, — Gijp* 00y,

which proves the equation about the fifth derived curvature tensor.
Analogously, from the equation

B _Rh h
RIlk RIJk 4L“LW

we obtain that the equation (2.45) is valid.
It holds that

Bh h h
Ruk - lek 4L:XkLaJ

Based on the first of the results presented in Theorem 2.1 and Proposition 2.3, we
obtain that the equation (2.46) is correct.

Finally, we have that the following equation holds:

Bh _ ph h h
lek Ruk ZLﬁ Lak - 2La Lka

Furthermore, it is also valid
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—a—h

L”Lak [ Lka =LoLh +L“Lh

|] ak

+

+ (Ll a L Oat 201y +200+0ij0" Yo +0ij0" 00 ) O

+ it + Uik — Oty — 0:0) O + (Vi — Y0k + Oy + 06, ) O

+ (Lﬁ-ﬁka + ioj + o) + oi0; + 0ijiP — Oigji + TijokaP” — Uiij)(Ph
+ Lk = Ll + L + L 05 + Ly, 0ijo” — L 6,

which proves the equation (2.47). O

Corollary 2.2. Let f : GAny — GAy be the third type almost geodesic mapping of the

second kind. Curvature tensors Rh and R" = f(R" ), u=1,...,4, satisfy the equations

u ik I]k)

(248) Rh = R”k + \{Iijét - \{Jiké? + \{’[,klét‘ + Uijk([)h + Uing/k([) U.kth(P
+ ijeﬂbh L“9 o" + 2|_h i
h W..sh _ W, sh oW h h h o h
(2.49) R = R”k +\£}ijbk —‘gikbj +\£}[ik]6i +Gijk ¢ +GijL“vk(Pl —UikLU\‘/j(p“
- ijeﬂéc (L“ Ou + 20; ek)o" +20;0,8) + 2|_h O + 2L|k9,,
v
(2.50) Rh. = ?nk + \gijéﬂ - \giké? + %’[ik]é? + Uijk([)h + Uing/k(p U,kth(p

+ ijeﬂéc + Z(L%Qa + eiek) 5;‘ - 200, - 2L:‘j9k - ZL%Q,»;
\% \%

(2.51) Rl = R+ Wioh = Wied] + Wiigd] + 0 + il g oikLqu?“
\%
2 ho 4 h, 20
-3 (5|_%9a + eiek)éj + Eejekéi + §L99k + 3 JkG. +2L|k6,,
(2.52) ﬁ:‘]k = Ruk + ‘P,Jé - iké? + %}[Jk]é? + Oijk(ﬂh + oijLka(p“ _ O‘ikl-:qu)a
\%

- (Lﬁ.ea + 4005 + LY ii0a + 4oijp"0 )6'; + Lﬁﬁaé'; + (81/),'9;( - 4¢k91)5?
- 2|_h 6 +2¢)+4L VUj + AL 9k+40”9k(p +4Lak(7”(p ;
(253) Rk = R+ Wuol = Vo] + Wad] + o + il = Oik"%i@“
- Lg 0,00 + (L%Qa + 400k ALy — 4910, + 40, wk)ah
= (0 - Oy - 4yi6)) o) - 2Lh 6 - 4L%9J —4Lj6, + AL,
- 4L%Uja([)h — 40ijOkp" + 46iajk(p ;

(2.54) ﬁnk = R|]k+\IJ,,6 —\y,ka +\1J[Jk]5 +0ijk@" + aij ak(p - owlLho"
\%

- (ijeﬂ - eiej)a'; + 5|_%9a5;‘ — 40;0,5" - GL" 0; — 4|_h 6 —4L|k9,,
\%
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(2.55) E?jk = '§i“,-k + \gijéc - \gika? + \g[,-kléi“ + oijke" + Uing/k(p“ - owl "
\%

1 )
- Z(Lﬁl[)“+L3’29“+2¢i¢j+21pi9j+0ij(pal1bd+0ij(p“9“ + EL%’J-QM)DL‘
\%

1
- 2(¢i¢k+¢i6k—6ilpk—6i9k—ELﬁ(ea)é?—2(¢j¢k—¢j9k+ejlpk+ej9k) 5?
v

n
- 2(Lioke + Yo+ oithj + o) + 0ijt — Bi0j + 00k ” — 036k ) @

- 2L50i - AL - 2Ly — 215,05 - 2L 0ijg” + 2L3, 6;,
\2 \2

for aijx, Wij,v = 1,...,8, defined as above. [
\%

3. Conclusion

Thefirst result of this paper is representation of all curvature tensors and derived
tensors of a non-symmetric affine connection space GAy as linear functions of the
curvature tensor of the associated space Ayn. As a result of this, we connected
the curvature and derived curvature tensors of spaces GAy and GAy = f(GAN),
where f is the third type almost geodesic mapping of the first kind (Theorems 2.1
and 2.2). Corollaries of these theorems analyze the case when f is the third type
almost geodesic mapping of the second kind.

These results may help researchers interested in the third type almost geodesic
mapping theory. Furthermore, researches who need curvature tensors of non-
symmetric affine connection spaces and spaces associated to them may be interested
in the results about connections of the corresponding tensors.
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