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ON APPROXIMATION OF FIXED POINTS OF MEAN
NONEXPANSIVE MAPPINGS IN CAT(0) SPACES

Ali Abkar and Mojtaba Rastgoo

Abstract. A new iterative algorithm for approximating fixed points of mean nonexpan-
sive mappings in CAT(0) spaces is introduced. As a result, a �-convergence theorem
is established. The result we obtain improves and extends several recent results in the
literature. Finally, some numerical examples are presented to illustrate the main result
and to compare the new algorithm with some existing ones.
Keywords: Iterative algorithm; CAT(0) space; weak convergence; �-convergence;
mean nonexpansive mapping

1. Introduction

Fixed point theory of metric spaces was initiated by the celebrated Banach
contraction principle which states that every contraction on a complete metric space
has a unique fixed point; moreover, the fixed point can be approximated by Picard’s
iterates. Perhaps the most influential fixed point theorem in metric fixed point
theory is the theorem due to F. E. Browder and D. Gohde; in 1965, F. E. Browder
[10] and D. Gohde [9] independently proved that every nonexpansive self-mapping
of a closed, convex, and bounded subset of a uniformly convex Banach space has a
fixed point. Fixed point theory in Cartan-Alexandrov-Toponogov spaces, or briefly
in CAT(0) spaces, was first studied by W. A. Kirk (see [30, 29]. Among other things,
he proved that every nonexpansive mapping defined on a bounded closed convex
subset of a complete CAT(0) space has a fixed point. Since then the fixed point
theorems for various mappings in a CAT(0) space have been developed rapidly and
numerous papers have appeared (see for example [1, 2, 31, 15, 6, 17, 18] and the
references therein).

As a generalization of nonexpansive mappings, in 1975, Zhang [26] introduced
the concept of a mean nonexpansive mapping in Banach spaces and proved the exis-
tence and uniqueness of fixed points for this type of mappings in Banach spaces with
the normal structure. The mean nonexpansive mappings were extensively studied
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by Wu and Zhang [7], and by Yang and Cui [32]. In 2010, Nakprasit [13] provided
an example of a mapping that is mean nonexpansive but not Suzuki-generalized
nonexpansive and showed that increasing mean nonexpansiveness implies Suzuki-
generalized nonexpansiveness. In 2012, Ouahab [3] proved a fixed point theorem
for strong semigroups of mean nonexpansive mappings in uniformly convex Banach
spaces. In this paper, we shall study mean nonexpansive mappings in the context
of CAT(0) spaces.

Let (X, d) be a metric space and x, y be two fixed elements in X such that
d(x, y) = l. A geodesic path from x to y is an isometry c : [0, l] → c([0, 1]) ⊂ X such
that c(0) = x, c(l) = y. The image of a geodesic path between two points is called a
geodesic segment. A metric space (X, d) is called a geodesic space if every two points
of X are joined by a geodesic segment. A geodesic triangle represented by �(x, y, z)
in a geodesic space consists of three points x, y, z and the three segments joining
each pair of the points. A comparison triangle of a geodesic triangle �(x, y, z),
denoted by �(x, y, z) or �(x, y, z), is a triangle in the Euclidean space R2 such that
d(x, y) = dR2(x, y), d(x, z) = dR2(x, z), and d(y, z) = dR2(y, z). This is obtainable
by using the triangle inequality, and it is unique up to isometry on R2. Bridson and
Haefliger [16] have shown that such a triangle always exists. A geodesic segment
joining two points x, y in a geodesic space X is represented by [x, y]. Every point z
in the segment is represented by αx ⊕ (1 − α)y, where α ∈ [0, 1], that is, [x, y] :=
{αx ⊕ (1 − α)y : α ∈ [0, 1]}. A subset C of a metric space X is called convex if
for all x, y ∈ C, [x, y] ⊂ C. A geodesic space is called a CAT(0) space if for every
geodesic triangle � and its comparison �, the following inequality is satisfied:
d(x, y) ≤ dR2(x, y) for all x, y ∈ � and x, y ∈ �. Complete CAT(0) spaces are often
called Hadamard spaces (see [28, 24, 25]. Examples of CAT(0) spaces include the
R-tree, Hadamard manifolds, and the Hilbert ball equipped with the hyperbolic
metric. For more details on these spaces, see for example [19, 14, 8]. A geodesic
space (X, d) is called hyperbolic (see [12, 23]) if, for any x, y, z ∈ X,

d(
1

2
z ⊕ 1

2
x,

1

2
z ⊕ 1

2
y) ≤ 1

2
d(x, y).

The class of hyperbolic spaces include the normed spaces, CAT(0) spaces, and some
others. Bashir Ali in [4] presented an example of a hyperbolic space that is not a
normed space. Therefore, the class of hyperbolic spaces is more general than the
class of normed spaces.

Let C be a nonempty subset of a CAT(0) spaces (X, d). A self-mapping T : C → C
is called nonexpansive if d(Tx, Ty) ≤ d(x, y) for all x, y ∈ C. The mapping T is
called quasi-nonexpansive if Fix(T ) = {x ∈ C : Tx = x} �= Ø and d(Tx, p) ≤ d(x, p)
for all x ∈ C and p ∈ Fix(T ).

In 2015, Zhou and Cui in [11] introduced an iterative algorithm to approximate
fixed points of mean nonexpansive mappings in CAT(0) spaces; this algorithm is
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defined in the following way:




x1 ∈ C,
xn+1 = (1− tn)xn ⊕ tnT (yn),

yn = (1− sn)xn ⊕ snT (xn), n ≥ 1,

where {sn}∞n=1 and {tn}∞n=1 are some sequences in (0, 1).

In this paper, we introduce a new iterative algorithm for approximating fixed
points of mean nonexpansive mappings in CAT(0) spaces. Under suitable con-
ditions, we prove the �-convergence theorem for our algorithm. The results we
obtain improve and extend several recent results in the literature; they also com-
plement many known existing results. We then provide some numerical examples
to illustrate our main result. In this way, we display the efficiency of our proposed
algorithm.

2. Preliminaries

Throughout this article, (X, d) will stand for a metric space. We denote by N the
set of positive integers and by R the set of real numbers. We write xn ⇀ x to
indicate that the sequence {xn}∞n=1 converges weakly to x, and xn → x to indicate
that the sequence {xn}∞n=1 converges strongly to x.
We start by recalling some basic definitions.

Definition 2.1. Let C be a nonempty subset of (X, d). A mapping T : C → C is
said to be nonexpansive if

d(Tx, Ty) ≤ d(x, y), ∀x, y ∈ C.

Definition 2.2. Let C be a nonempty subset of (X, d). A mapping T : C → C is
said to be mean nonexpansive if

d(Tx, Ty) ≤ a d(x, y) + b d(x, Ty), ∀x, y ∈ C,

where a and b are two nonnegative real numbers such that a+ b ≤ 1.

Obviously, every nonexpansive mapping is a mean nonexpansive mapping (with
a = 1 and b = 0). Note that a mean nonexpansive mapping is not necessarily
continuous as the following example shows, so that mean nonexpansive mappings
are not necessarily nonexpansive.

Example 2.1. Suppose that T : [0, 1] → [0, 1] is a mapping defined by

Tx =




x

5
+

5

12
x ∈ [0, 1

2
);

x
6
+ 5

12
x ∈ [1

2
, 1].
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Then T is mean nonexpansive with a = 1
3
, b = 2

3
, but not continuous at x = 1

2
. Thus, T

is not a nonexpansive mapping.

Example 2.2. Suppose that T : [0, 1] → [0, 1] is a mapping defined by

Tx =




1− x

3
x ∈ [0, 1] is rational;

1+x
5

x ∈ [0, 1] is irrational.

Then T is mean nonexpansive with a = 1
3
, b = 2

3
, but not continuous at any point in [0, 1]

except x = 1
4
, the fixed point of T .

In 2008, Suzuki [27] introduced Suzuki-generalized nonexpansive mappings in Ba-
nach spaces.

Definition 2.3. Let C be a nonempty subset of (X, d). A mapping T : C → C is
said to be Suzuki-generalized nonexpansive if

1

2
d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ d(x, y)

for all x, y ∈ C.

In [13], Nakprasit provided an example of a mapping that is mean nonexpansive
but not Suzuki-generalized nonexpansive and showed that increasing mean nonex-
pansive mappings are Suzuki-generalized nonexpansive.
We now turn to some known facts regarding CAT(0) spaces.

Lemma 2.1. ([20], Lemma 2.5) Let (X, d) be a CAT(0) space. Then

d((1− α)x⊕ αy, z)
2 ≤ (1− α)d(x, z)

2
+ αd(y, z)

2 − α(1− α)d(x, y)
2

for all α ∈ [0, 1] and x, y, z ∈ X.

Lemma 2.2. ([5], Lemma 4.5) Let x be a given point in a CAT(0) space (X, d) and

{tn} be a sequence in a closed interval [a, b] with 0 < a ≤ b < 1 and 0 < a(1−b) ≤ 1

2
.

Suppose that {xn} and {yn} are two sequences in X such that

1. lim supn→∞ d(xn, x) ≤ r,

2. lim supn→∞ d(yn, x) ≤ r,

3. lim supn→∞ d((1− tn)xn ⊕ tnyn, x) = r

for some r ≥ 0. Then limn→∞ d(xn, yn) = 0.
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Theorem 2.1. ([11], Theorem 3.1) Let C be a nonempty bounded closed convex
subset of a complete CAT(0) space (X, d) and T : C → C be a mean nonexpansive
mapping with b < 1. Then T has a fixed point.

Theorem 2.2. ([11], Theorem 3.2) Let (X, d) be a complete CAT(0) space and
C be a nonempty bounded closed convex subset of X. Let T : C → C be a mean
nonexpansive mapping with b < 1, and let {xn} ⊂ C be an approximate fixed point
sequence (i.e., limn→∞ d(xn, Txn) = 0) and {xn} ⇀ ω. Then T (ω) = ω.

Definition 2.4. Let {xn} be a bounded sequence in a CAT(0) space (X, d).

1. The asymptotic radius r({xn}) of {xn} is given by

r({xn}) := inf
x∈X

{r(x, {xn})},

where r(x, {xn}) := lim supn→∞ d(xn, x).

2. The asymptotic center A({xn}) of {xn} is the set

A({xn}) := {x ∈ X : r(x, {xn}) = r({xn})}.

In 2006, Dhompongsa et al proved that A({xn}) consists of exactly one point for
each bounded sequence {xn} in a CAT(0) space (see Proposition 7 in [22]). We
recall that a bounded sequence {xn} in X is said to be regular if r({xn}) = r({un})
for every subsequence {un} of {xn}. It is known that every bounded sequence in
a Banach space has a regular subsequence. It is now time to give the concept of
�-convergence in a CAT(0) space.

Definition 2.5. [31] Let (X, d) be a CAT(0) space. A sequence {xn} in X is said
to �-converge to x ∈ X if and only if x is the unique asymptotic center of all
subsequences of {xn}. In this case, we write � − limn→∞ xn = x and x is called
the �-limit of {xn}.

Proposition 2.1. ([5], Proposition 3.12). Let {xn} be a bounded sequence in a
CAT(0) space (X, d) and let C ⊂ X be a closed convex subset which contains {xn}.
Then,

• � − limn→∞ xn = x implies {xn} ⇀ x;

• if {xn} is regular, then {xn} ⇀ x implies �− limn→∞ xn = x.

Lemma 2.3. The following assertions in a CAT(0) space hold:

• [20] Every bounded sequence in a complete CAT (0) space has a �-convergent
subsequence.
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• [21] If {xn} is a bounded sequence in a closed convex subset C of a complete
CAT(0) space (X, d), then the asymptotic center of {xn} is in C.

• [20] If {xn} is a bounded sequence in a complete CAT(0) space (X, d) with
A({xn}) = {p}, {νn} is a subsequence of {xn} with A({νn}) = {ν}, and the
sequence {d(xn, ν)} converges, then p = ν.

Lemma 2.4. ([11], Lemma 4.4) Let C be a nonempty closed convex subset of a
complete CAT(0) space (X, d) and T : C → C be a mean nonexpansive mapping. If
{xn} is a sequence in C such that limn→∞ d(xn, T (xn)) = 0 and �−limn→∞ xn = p,
then T (p) = p.

Remark 2.1. By Lemma 2.4 and Proposition 2.1 (ii), if {xn} in Theorem 2.2 is regular,
then the condition b < 1 in Theorem 2.2 can be removed.

3. Weak Convergence Theorem

We begin this section by proving a �-convergence theorem for mean nonexpansive
mappings in CAT(0) spaces. Here we introduce a new iterative algorithm to ap-
proximate the fixed point of our mapping. We shall then compare our algorithm
with that of Zhou and Cui [11].

Theorem 3.1. Let (X, d) be a complete CAT(0) space, C be a nonempty, bounded
closed convex subset of (X, d) and T : C → C be a mean nonexpansive mapping with
b < 1. Let {αn}∞n=1, {βn}∞n=1 and {γn}∞n=1 be sequences in (0, 1), also {αn} be a

sequence in a closed interval [r, s] with 0 < r ≤ s < 1 and 0 < r(1 − s) ≤ 1

2
. Then

{xn}∞n=1 which is defined by

(3.1)




x1 ∈ C,
zn = T ((1− αn)xn ⊕ αnT (xn)),

yn = T ((1− βn)zn ⊕ βnT (zn)),

xn+1 = T ((1− γn)T (zn)⊕ γnT (yn)),

is �-convergent to some point p ∈ Fix(T ).

Proof. By using Theorem 2.1, we get Fix(T ) �= Ø. Next, we will divide the proof
into three steps.

Step 1. First, we will prove that limn→∞ d(xn, p) exists for each p ∈ Fix(T ),
where {xn} is defined by (3.3). For this purpose, let p ∈ Fix(T ), using the fact
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that {αn}∞n=1 ⊂ (0, 1) we obtain

d(zn, p) = d(T ((1− αn)xn ⊕ αnT (xn)), p)

≤ a

[
d((1− αn)xn ⊕ αnT (xn), p)

]

+b

[
d((1− αn)xn ⊕ αnT (xn), p)

]

≤ d((1− αn)xn ⊕ αnT (xn), p)

≤ (1− αn)d(xn, p) + αnd(T (xn), p)

≤ (1− αn)d(xn, p) + αnad(xn, p) + αnbd(xn, p)

≤ (1− αn)d(xn, p) + αnd(xn, p)

≤ d(xn, p)(3.2)

for all n ∈ N. Also, we have

d(yn, p) = d(T ((1− βn)zn ⊕ βnT (zn)), p)

≤ a

[
d((1− βn)zn ⊕ βnT (zn), p)

]

+b

[
d((1− βn)zn ⊕ βnT (zn), p)

]

≤ d((1− βn)zn ⊕ βnT (zn), p)

≤ (1− βn)d(zn, p) + βnd(T (zn), p)

≤ (1− βn)d(zn, p) + βnad(zn, p) + βnbd(zn, p)

≤ (1− βn)d(zn, p) + βnd(zn, p)

≤ d(zn, p)

≤ d(xn, p)(3.3)

for all n ∈ N. From (3.3), (3.4) and (3.5) and using the fact that {γn}∞n=1 ⊂ (0, 1),
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we conclude that

d(xn+1, p) = d(T ((1− γn)T (zn)⊕ γnT (yn)), p)

≤ a

[
d((1− γn)T (zn)⊕ γnT (yn)), p)

]

+b

[
d((1− γn)T (zn)⊕ γnT (yn)), p)

]

≤ d((1− γn)T (zn)⊕ γnT (yn), p)

≤ (1− γn)d(T (zn), p) + γnd(T (yn), p)

≤ (1− γn)ad(zn, p) + (1− γn)bd(zn, p) + γnad(yn, p) + γnbd(yn, p)

≤ (1− γn)d(zn, p) + γnd(yn, p)

≤ d(xn, p)(3.4)

Consequently, we have d(xn+1, p) ≤ d(xn, p) for all n ≥ 1. This implies that {xn}
is bounded and decreasing. Hence, limn→∞ d(xn, p) exists. Thus, {xn} is bounded.

Step 2. In this step, we will prove that limn→∞ d(xn, T (xn)) = 0. Without loss
of generality, we may assume that

(3.5) r := lim
n→∞

d(xn, p).

Therefore,

lim sup
n→∞

d(T (xn), p) ≤ lim sup
n→∞

[
ad(xn, p) + bd(xn, p)

]

≤ lim sup
n→∞

d(xn, p)

≤ r(3.6)

from (3.2), we conclude that

(3.7) lim sup
n→∞

d(zn, p) ≤ r
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now, we can write

r = lim sup
n→∞

d(xn+1, p) = lim sup
n→∞

d(T ((1− γn)T (zn)⊕ γnT (yn)), p)

≤ a

[
d((1− γn)T (zn)⊕ γnT (yn)), p)

]

+b

[
d((1− γn)T (zn)⊕ γnT (yn)), p)

]

≤ d((1− γn)T (zn)⊕ γnT (yn), p)

≤ (1− γn)d(T (zn), p) + γnd(T (yn), p)

≤ (1− γn)ad(zn, p)

+(1− γn)bd(zn, p) + γnad(yn, p) + γnbd(yn, p)

≤ (1− γn)d(zn, p) + γnd(yn, p)

≤ (1− γn)d(zn, p) + γnd(zn, p)

≤ d(zn, p),

which implies that

(3.8) r ≤ lim sup
n→∞

d(zn, p).

From (3.7) and (3.8), we have

r = lim sup
n→∞

d(zn, p)

= lim sup
n→∞

d(T ((1− αn)xn ⊕ αnT (xn)), p).

≤ a lim sup
n→∞

[
d((1− αn)xn ⊕ αnT (xn), p)

]

+b lim sup
n→∞

[
d((1− αn)xn ⊕ αnT (xn), p)

]

≤ lim sup
n→∞

d((1− αn)xn ⊕ αnT (xn), p)(3.9)
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Also

lim sup
n→∞

d((1− αn)xn ⊕ αnT (xn), p) ≤ lim sup
n→∞

[
(1− αn)d(xn, p) + αnd(T (xn), p)

]

≤ lim sup
n→∞

[
(1− αn)d(xn, p)(3.10)

+αnad((xn), p) + αnbd((xn), p)

]

≤ lim sup
n→∞

[
(1− αn)d(xn, p) + αnd((xn), p)

]

≤ lim sup
n→∞

d(xn, p) = r(3.11)

From (3.9) and (3.11), we have

(3.12) lim sup
n→∞

d((1− αn)xn ⊕ αnT (xn), p) = r

By using Lemma 2.2 with (3.5), (3.6) and (3.12), we have

(3.13) lim
n→∞

d(xn, T (xn)) = 0.

Therefore, Step 2 is proved.

Step 3. Define

Ω�(xn) :=
⋃

{νn}⊆{xn}

A({νn}) ⊆ Fix(T ).

We claim that the sequence {xn} �-converges to a fixed point of T and Ω�(xn)
consists of exactly one point. Assume that ν ∈ Ω�(xn). From the definition of
Ω�(xn), there is a subsequence {νn} of {xn} such that A({νn}) = {ν}. From
assertion (A1) in Lemma 2.3, there exists a subsequence {ρn} of {νn} such that
� − limn→∞ ρn = ρ ∈ C. Using Lemma 2.4, we conclude that ρ ∈ Fix(T ). Since
{d(νn, ρ)} converges, by assertion (A2) in Lemma 2.3, we obtain ν = ρ. Therefore,
Ω�(xn) ⊆ Fix(T ). Finally, we show that Ω�(xn) consists of exactly one point. Let
{νn} be a subsequence of {xn} such that A({νn}) = {ν} and let A({xn}) = {x}.
We have already seen that ν = ρ ∈ Fix(T ). Since {d(xn, ρ)} converges, by assertion
(A3) in Lemma 2.3, we have x = ρ ∈ Fix(T ), that is, Ω�(xn) = x. This completes
the proof.

4. Numerical Experiments and Comparison

In this section, we supply a numerical example of a mean nonexpansive mapping
satisfying the conditions of Theorem 3.1, and some numerical experiment results to
explain the conclusion of our algorithm.
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Example 4.1. Consider X = R with its usual metric, so X is also a complete CAT(0)
space. Let C = [−1, 1] which clearly is a bounded closed convex subset of X. Define the
mapping T : C −→ C by

Tx =




x

5
+

5

12
x ∈ [−1, 1

2
);

x
6
+ 5

12
x ∈ [1

2
, 1].

T is discontinuous at x = 0.5; consequently, T is neither nonexpansive nor contractive.
Now, we prove that T is mean nonexpansive.

Case 1: x, y ∈ [−1, 1
2
). By the definition of T,

d(T (x), T (y)) =
1

4
d(

4

5
x,

4

5
y)

=
1

4
d(x− y

5
+

y

5
− x

5
, y − x+ x− y

5
)

≤ d(x, y) +
1

4
d(−y

5
,−x) +

1

4
d(

y

5
, x) +

1

4
d(−x

5
,−y

5
)

≤ 1

4
d(x, y) +

1

2
d(x, T (y)) +

1

4
d(T (x), T (y)).

This implies that d(T (x), T (y)) ≤ 1
3
d(x, y) + 2

3
d(x, T (y)).

Case 2: x ∈ [−1, 1
2
), y ∈ [ 1

2
, 1]. In this case, we have

d(T (x), T (y)) = d(
x

5
,
y

5
)

= d(
x

5
+

T (y)

5
− T (y)

5
,
y

5
+

T (x)

5
− T (x)

5
)

≤ 1

5
d(x, T (x)) +

1

5
d(T (x), T (y)) +

1

5
d(y, T (y))

≤ 1

5
d(x, T (y)) +

1

5
d(T (x), T (y)) +

1

5
d(T (x), T (y))

+
1

5
d(x, y) +

1

5
d(x, T (y))

=
2

5
d(x, T (y)) +

2

5
d(T (x), T (y)) +

1

5
d(x, y).

This implies that d(T (x), T (y)) ≤ 1
3
d(x, y) + 2

3
d(x, T (y)).

Case 3: y ∈ [−1, 1
2
), x ∈ [ 1

2
, 1]. The argument is similar to the one in Case 2.

Case 4: x, y ∈ [ 1
2
, 1]. The proof is the same as in Case 1.

Hence, T is mean nonexpansive by taking a = 1
3
, b = 2

3
.

Clearly, 0.5 is the only fixed point of the mapping T . Put αn = βn = γn =
1

n+ 100
. By

using MATHEMATICA, we computed the iterates of the algorithm for two different initial
points x1 = −0.9 ∈ [−1, 1] and x1 = 0.9 ∈ [−1, 1]. Finally, using numerical experiments we
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compared the Zhou and Cui iteration process with our algorithm (see Table 4.1). More-
over, the convergence behavior of these algorithms is shown in Figure 4.1. We conclude
that xn converges to 0.5.

Figure 1: Convergence behaviors corresponding to x1 = −0.9 and x1 = 0.9 for 30 steps.
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Figure 4.1: Convergence behaviors corresponding to x1 = −0.9 and x1 = 0.9 for 30
steps.

Example 4.2. Consider X = R2 equipped with the Euclidean norm. Let x = (x1, x2) ∈
R2, then the squared distance of x from the origin, O, is

‖x‖2 = x2
1 + x2

2.

Consider C = [−1, 1] × [−1, 1] which is a bounded, closed, and convex subset of X. We
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K is a nonexpansive mapping. This means that K is a mean nonexpansive mapping with
a = 1 and b = 0. Clearly, zero is the only fixed point of the mapping K. In this case, our
algorithm is the following:

(4.1)
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. By using MATHEMATICA, we computed the iterates

of the algorithm (4.1) for x(1) = (
1
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,
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) ∈ C for 500 steps. Finally, using numerical

experiments we compared the Zhou and Cui iteration process with our algorithm (4.1).
The convergence behavior of these algorithms is shown in Figure 4.2. The conclusion is
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Table 4.1: Numerical results corresponding to x1 = −0.9 and x1 = 0.9 for 30 steps.
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Example 4.2 Consider X = R2 equipped with the Euclidean norm. Let x = (x1, x2) ∈ R2, then the
squared distance of x from the origin, O, is

∥x∥2 = x2
1 + x2

2.

Consider C = [−1, 1]× [−1, 1] which is a bounded, closed, and convex subset of X. We define the mapping
K : C −→ C by

K(x1, x2) := (
1

3
x1,

1

3
x2)

K is a nonexpansive mapping. This means that K is a mean nonexpansive mapping whit a = 1 and b = 0.
Clearly, zero is the only fixed point of the mapping K. In this case, our algorithm is the following:




x(1) = (x(1)1 , x(1)2) ∈ C,
(z(n)1 , z(n)2) = K((1− αn)(x(n)1 , x(n)2) + αnK(x(n)1 , x(n)2)),

(y(n)1 , y(n)2) = K((1− βn)(z(n)1 , z(n)2) + βnK(z(n)1 , z(n)2)),

(x(n+1)1 , x(n+1)2) = K((1− γn)K(z(n)1 , z(n)2) + γnK(y(n)2)).

(13)

Put αn = βn = γn =
1

n+ 100
. By using MATHEMATICA, we computed the iterates of algorithm (13)

for x(1) = (
1

2
,
1

2
) ∈ C for 500 steps. Finally, by the numerical experiments we compared Zhou and Cui

iteration process with our algorithm (13). The convergence behaviors of these algorithms are shown in
Figure 2. The conclusion is that xn converges to (0, 0).

Figure 2: Convergence behaviors corresponding to x1 = (
1

2
,
1

2
) for 500 steps.
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