
FACTA UNIVERSITATIS (NIŠ)
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Abstract. We define a Bertrand-B curve α in the three dimensional sphere S
3(r) such

that there exists an isometry φ of S3(r), satisfying (φ ◦ β) (s) = X (s, t(s)) for another
curve β and both curves have common binormal geodesics at corresponding points. We
analyze the condition of being Bertrand-B curves in S

3(r) and prove that the immersed
curve with curvatures ε1, ε2 in S

3(r) is a Bertrand-B curve if and only if it satisfies
ε21 + ε22 = 1. Also, we analyze some conclusions about a pair of Bertrand-B curves in
S
3(r). As an application, we give an example that the conclusions are verified.
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1. Introduction

The theory of curves examines the geometric property of the plane and space
curves by means of algebraic and calculus methods. The most common applica-
tion areas of these methods are special curves such as helices, Bertrand curves,
Mannheim curves, etc. The special curves in ambient spaces (semi-Euclidean space
R

n+1
v , Galilean space G3, etc.) are generally characterized by the algebraic equa-

tions relating their curvature and torsion functions [1],[2],[3],[4]. For instance,
Bertrand curves and Mannheim curves in the three dimensional Euclidean space
R

3 are characterized by, respectively;

λκ+ µτ = 1 and κ = λ
(

κ2 + τ2
)

where λ 6= 0 and µ are some constants, κ and τ are the curvature and torsion
functions of these special curves, respectively [5],[6].

Naturally, it gives rise to the following question: Is it possible to extend the
studies concerning the mentioned curves to 3-dimensional Riemannian or Lorentzian
space forms? As an answer to this question, Choi et al. have given a definition
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of Bertrand curves in 3-dimensional Riemannian space forms M and they have
proved that a Frenet curve α with the curvature κ and the torsion τ in M is a
Bertrand curve. It satisfies τ = 0 or κ + aτ = b for constants a and b 6= 0 [7] as
a necessary and sufficient condition. Recently, a definition of Mannheim curves in
both Riemannian and Lorentzian space forms has also been given [8],[9]. All of the
surveys mentioned above are done with reference to the Frenet-Serret frame which
was adopted to formulate a space curve in ambient spaces. On the other hand, it is
known that there are other frames in which all invariant properties of a space curve
are investigated. These are called Bishop frames. The basic idea of creating such
frames is to provide minimum bending. The minimum bending of space curves has
a wide range of applications such as the creation of a continuous robot model from
the analysis of the DNA structure [10], [11]. Thus, it is appropriate to expect all
new types of curves that can be introduced on the Bishop frames to contribute to
such areas of application.

The notion of Bertrand B-curves in 3-dimensional Euclidean space has been
defined by Yerlikaya et al. and has been given the characterizations of Bertrand
B-curves related to mate [12]. In this paper, we expand the definition of Bertrand
B-curves to the three-dimensional sphere S

3(r) and give the algebraic qualification
of Bertrand B-curves in S

3(r).

2. Basic definitions and notations

Let S3(r) denote a three-dimensional sphere with the constant curvature c = 1,
defined by

S
3(r) =

{

(x1, x2, x3, x4) ∈ R
4 |

4
∑

i=1

x2
i = r2

}

, r > 0.

Note that we regard S3(r) as a subcase of R4 equipped with the inner product for
x, y ∈ TpS

3(r):
〈x, y〉 = x1y1 + x2y2 + x3y3 + x4y4

where TpS
3(r) denotes the tangent space of S3(r) at p ∈ R

4. We also need to
note the definition of wedge product (or cross product) in R

4. If x, y, z ∈ R
4,

the vector 〈x× y × z, w〉 is defined as a unique one that satisfies 〈x× y × z, w〉 =
det (x, y, z, w) for every w ∈ R

4

Let α = α(s) : I ⊂ R → S3(r) be an immersed curve and suppose, without
loss of generality, that α is parametrized by the arc-length parameter and there
exists an orthonormal frame {T,N,B} with functions {κ, τ} (called the curvature
and torsion of α) along α (called the Frenet-Serret frame), satisfying the derivative
formula

(2.1)

∇TT = κN − 1

r2
α ,

∇TN = −κT + τB ,

∇TB = −τN .
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where ∇ symbolises the Levi-Civita connection of R4.

On the other hand, a new version of the Bishop frame in a three dimensional
Euclidean space R

3 is introduced by Yılmaz and Turgut such that type-2 Bishop
and Frenet-Serret frames have a mutual vector field, i.e. binormal vector fields

[13]. They present both a relationship between Frenet and Bishop vectors and
type-2 Bishop derivative equation. From now on, it is possible to ask the following
question in the light of the mentioned work.

Question: Is it possible to get the covariant derivative equations of type-2

Bishop for an immersed curve in S3(r)?

As an answer to the above question, we need to be reminded of the following
expressions:

Definition 2.1. The rotation matrix for two arbitrary vectors in the Euclidean
plane is defined by the following expressions, respectively:

(

cos θ(s) − sin θ(s)
sin θ(s) cos θ(s)

)

or
(

cos θ(s) sin θ(s)
− sin θ(s) cos θ(s)

)

where θ(s) is the angle between two vectors [14].

Definition 2.2. Let α be an immersed curve in the three dimensional sphere
S3(r). Then, the Gauss formula of S3(r) along α is given by the following equation
for any vector field X :

X ′ = ▽sX − 〈X,α′〉α
where ′ and▽s are symbolised by the natural differentiation of R4 and the covariant
derivative of S3(r) along α, respectively [14].

We can now express the covariant derivative equation of type-2 Bishop using
the above definitions in S3(r) as follows:

∇sξ1 =
∇sξ2 =
∇sB =

−ε1B − cos θ(s)α,
−ε2B + sin θ(s)α,

ε1ξ1 + ε2ξ2

Remark 2.1.

(2.2)





T

N

B



 =





cos θ(s) sin θ(s) 0
−sin θ(s) cos θ(s) 0

0 0 1









ξ1
ξ2
B



 ,

(2.3) κ = −θ
′(s)

and

(2.4) cos θ(s) ε1(s) = − sin θ(s) ε2(s).
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3. Bertrand-B curves in 3-dimensional sphere

We begin by getting a crucial definition that is used to expand the concept of
Bertrand-B curves to the sphere S3(r).

Definition 3.1. For v ∈ TpS
3(r), let γv denote a unique maximal geodesic in

S3(r) with the initial velocity γ′

v(0) = v. Let

U =
{

v ∈ TS3(r) : 1 ∈ domain γv
}

and let exp : U → S3(r) be defined by

expp(v) = γv(1).

exp is called the exponential map of S3(r),where U is an open set in TS3(r) and
p is the start point of γv [14].

We can now give the definition of Bertrand-B curves:

Definition 3.2. Let α(s) be an immersed curve in a 3-dimensional simply con-
nected space form S3(r) and {ξ1α , ξ2α , Bα} be type-2 Bishop of α. With the aim of
exponential map, a ruled surface XBα

is defined such that

XBα
(s, t) = expα(s) (tBα(s)) .

An immersed curve β = β(s) in S3(r) is said to be a Bertrand-B mate of α if
the binormal vector field of β determined by β(s) = XBα

(s, t(s)) is congruent to
Bα(s0) or −Bα(s0) for each s0. By the time an immersed curve α in S3(r) accepts
its Bertrand-B mate, we call α a Bertrand-B curve in S3(r).

Another concept related to this exponential map: parallelism can be used to
transport tangent vectors from one point of a surface to another. Accordingly,
for p ∈ S3(r) and v ∈ TpS

3(r) with ‖v‖ = 1 are considered as vectors in R
4,

a relationship between the exponential map and the parallel transport P t(v) as
follows:

expp(tv) = cos t p+ sin t v

and
P t(v) = − sin t p + cos t v,

In the light of the concepts described above, our goal is to find the condition of
being a Bertrand-B curve for an arbitrary immersed curve in the three dimensional
sphere:

For α = α(s) let there be an immersed curve parametrized by arc-lenght in
S3(r), let β = β(s̄) with ‖β′ (s̄)‖ = 1 be a Bertrand-B mate of α. Note that we
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can assume, without loss of generality, that ds̄
ds

> 0 and the curve β(s̄) and Bβ (s̄),
called its binormal vector field, stated by

(3.1)
β (s̄) = expα(s) (t(s)Bα(s))

= cos (t(s))α (s) + sin (t(s))Bα(s)

and Bβ (s̄) = P t(s) (Bα(s)), where β(s̄) is the point in β corresponding to α(s).

By taking the derivative of the equation 3.1 in R
4 and applying the Gauss

formula and the Bishop type-2 equation of α, we get

(3.2) β′ (s̄) = {cos(t(s))}p α (s) + ds
ds

{cos(t(s)) cos θ(s) + ε1α(s) sin(t(s))} ξ1α(s)

+
ds

ds
{cos(t(s)) sin θ(s) + ε2α(s) sin(t(s))} ξ2α(s) + {sin(t(s))}p Bα(s).

Considering the fact that

〈β′, Bβ〉 = 0, 〈β′, β〉 = 0

and

(3.3) Bβ = −sin(t(s))α + cos(t(s))Bα

β′ is orthogonal to α and Bα in R
4. Thus from 3.2, we easily get

(3.4) {cos (t(s))}′ = {sin (t(s))}′ = 0.

Now that t is a non-zero smooth function, t(s̄) designate for µ 6= 0. Besides, 3.1
and 3.2 are respectively determined by

β(s̄) = cosµα(s) + sinµBα(s)

and

(3.5) β′(s̄) =
ds

ds̄

{

cosµ cos θ(s)
+ε1α(s) sinµ

}

ξ1α(s) +
ds

ds̄

{

sinµ ε2α(s)
+cosµ sin θ(s)

}

ξ2α(s̄)

from which,

ds̄/ds =

√

(cosµ cos θ(s) + ε1α(s) sinµ)
2 + (sinµ ε2α(s) + cosµ sin θ(s))2

or equivalently,

(3.6) ds̄/ds =
√

cos2µ+ sin2µ
(

ε21α(s) + ε22α(s)
)

.
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Now we can calculate the tangent vector of β with regard to the Frenet vectors of
α that is

(3.7) Tβ(s̄) = c1(s)Tα(s) + c2(s)Nα(s)

or bearing in mind that the equation 2.2
(3.8)
Tβ(s̄) = {c1(s) cos θ(s) − c2(s) sin θ(s)} ξ1α(s)+{c1(s) sin θ(s) + c2(s) cos θ(s)} ξ2α(s).

Equating the coefficients of the equations 3.5 and 3.8, we get a linear equation
system as follows:

cos θ(s) c1(s)− sin θ(s) c2(s) =
ds

ds̄
(cosµ cos θ(s) + ε1α(s) sinµ)

sin θ(s) c1(s) + cos θ(s) c2(s) =
ds

ds̄
(sinµ ε2α(s) + cosµ sin θ(s)) .

Solving this system according to the cramer method, the functions c1 and c2 are
determined such that

(3.9) c1(s) =
ds

ds̄
cosµ

(3.10) c2(s) =
ds

ds̄
sinµ (cos θ(s) ε2α(s)− sin θ(s) ε1α(s))

By taking the covariant derivative of 3.7 with regard to s̄ in R
4 and using the chain

rule, the Gauss formula and the Frenet-Serret equation of α, we get

∇s̄Tβ(s̄) =

{

cosµ− c1(s)
ds

ds̄

}

α(s) +

{

c1
′(s)− c2(s)κα(s)

ds

ds̄

}

Tα(s)

+

{

c2
′(s) + c1(s)κα(s)

ds

ds̄

}

Nα(s) +

{

sinµ+ c2(s)
√

ε21α + ε22α
ds

ds̄

}

Bα(s).

In what follows, since ∇s̄Tβ(s̄) is proportional to

Nβ(s̄) = c3(s)Tα(s) + c4(s)Nα(s),

it reduces to
(3.11)

∇s̄Tβ(s̄) =

{

c1
′(s)− c2(s)κα(s)

ds

ds̄

}

Tα(s) +

{

c2
′(s) + c1(s)κα(s)

ds

ds̄

}

Nα(s).

Lemma 3.1. Let α(s) be an immersed curve parametrized by arc-length and let

β (s̄) be a Bertrand-B mate with ‖β′ (s̄)‖ = 1 in the three dimensional sphere S3(r).
Then, the following equalities hold:
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1. cosµ− c1(s)
ds
ds̄

= 0

2. sinµ+ c2(s)
√

ε21α + ε22α
ds
ds̄

= 0.

We can now evaluate two cases from the lemma 3.1 as follows:

Case 1.From lemma 3.1, we have

cosµ− c1(s)
ds

ds̄
= 0.

Then, from the equations 3.6 and 3.9 and the necessary arrangement, we can write

sin2µ cosµ
(

(ε21α + ε22α)− 1
)

cos2µ+ sin2µ
(

ε21α + ε22α

) = 0.

Subcase 1.1. Let cosµ = 0. 3.6 and 3.9- 3.10 is reduced to c1 = 0, c2 = ±1

and ds̄/ds =
√

ε21α + ε22α . According to the previous expressions, from 3.7, we get

Tβ = ±Nα. Then, apply these to 3.11:

(3.12) ∇s̄Tβ(s̄) = ± κα
√

ε21α + ε22α

Tα(s).

We distinguish four subcases according to the sign of the vector field.

Subsubcase 1.1.S1. (Tβ = Nα,∇s̄Tβ(s̄) > 0 ). Eq. 3.12 becomes

∇s̄Tβ(s̄) =
κα

√

ε21α + ε22α

Tα(s)

from which, ‖∇s̄Tβ(s̄)‖ = κα√
ε2
1α

+ε2
2α

and Nβ = Tα. From the wedge product in

E4, Bβ is given by

Bβ = − sinµα+ cosµBα = Pµ(Bα).

Thus β is a Bertrand-B mate of α.

Reasoning as in the subsubcase 1.1, one says whether β is a Bertrand-B mate
of α or not.

Subcase 1.2. Let sinµ = 0, say µ = πk , k ∈ Z. Thus, β is isometric to α.

Subcase 1.3. Let ε21α+ε22α = 1. Eqs. (3.6) and (3.9)-(3.10) is reduced to ds = ds̄,
c1 = cosµ and c2 = ± sinµ . According to the previous expressions, from 3.7, we
get Tβ(s̄) = cosµTα(s)± sinµNα(s). Then, apply these to 3.11:

(3.13) ∇s̄Tβ(s̄) = κα(s) {± sinµTα(s) + cosµNα(s)}
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from which,

‖∇s̄Tβ(s̄)‖ = |κα(s)|
Note that if κα(s) = 0, then ∇s̄Tβ(s̄) = 0, that is, β is a geodesic in S3. Its
principal normal vector field Nβ is given by

Nβ(s̄) = ± sinµ Tα(s) + cosµ Nα(s).

Considering the wedge product in E4, the binormal vector field Bβ is obtained
by

Bβ(s̄) = sinµα(s) − cosµBα(s)

= Pµ (Bα((s))) .

Thus β is a Bertrand-B mate of α.

Case 2. From the lemma 3.1, we have

sinµ+ c2(s)
√

ε21α + ε22α
ds

ds̄
= 0.

Then, from the equations 3.6 and 3.10 and the necessary arrangement, we can write

sinµ cos2µ
(

1− (ε21α + ε22α)
)

cos2µ+ sin2µ
(

ε21α + ε22α

) = 0.

In this case, it is clear that the curve β is again a Bertrand-B mate of α, examined
as in the case 1.

Proposition 3.1. Let α = α(s) be an immersed curve parametrized by arc-lenght

in S3(r) with curvatures ε1α and ε2α and β(s̄) = cosµα(s)+ sinµBα(s). Then, we

have

• When 0 < µ < π
2 , β is not a Bertrand-B mate of α.

• When π
2 < µ < π, β is a Bertrand-B mate of α

• If κα = 0 then β is a geodesic in S3(r).

Theorem 3.1. Let α = α(s) be an immersed curve in the 3-dimensional sphere

S3(r) with curvatures ε1α and ε2α . Then, α is a Bertrand-B curve if and only if

ε21α + ε22α = 1.

After finding the condition of being a Bertrand-B curve in the three dimensional
sphere S3(r), we can now give results concerning a pair of Bertrand-B curves:
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Let α(s) and β(s̄) be a pair of Bertrand-B curves having the Bishop type-2
frames {ξ1α , ξ2α , Bα} and

{

ξ1β , ξ2β , Bβ

}

, respectively, then there exists a differen-
tiable function t(s̄) such that

(3.14) β (s̄) = cos (t(s))α (s) + sin (t(s))Bα (s)

where β(s̄) is the point in β corresponding to α(s).

Proposition 3.2. Let α and β be a pair of Bertrand-B curves in S
3. Then the

following properties hold:

1. The function t(s̄) is constant.

2. The angle between the tangent vectors Tα(s) and Tβ(s̄) at corresponding points

equals to µ.

3. The angle between ξ1α and ξ1β vectors at corresponding points is constant.

4. The angle between ξ2α and ξ2β vectors at corresponding points is constant.

Proof. (1) It can be seen that the function t(s̄) is the constant from Eq. (3.4), which
completes the proof.

(2) Taking the derivative of Eq. (3.1) with respect to s in R
4, we have

Tβ(s̄)
ds̄

ds
= cosµ Tα(s) + sinµ {ξ1α(s) ε1α (s) + ξ2α(s) ε2α (s)} .

By multiplying the previous equation with Tα(s), we get

〈Tβ(s̄), Tα(s)〉 = cosµ+ sinµ { ε1α (s) cos θ (s) + ε2α (s) sin θ (s)}

where we use 〈ξ1α(s), Tα(s)〉 = cos θ(s) and 〈ξ2α(s), Tα(s)〉 = sin θ(s). Finally,
taking into account Eq.(2.4), we deduce (2).

(3) By a straightforward computation, we get

d
ds

〈

ξ1α(s), ξ1β (s̄)
〉

= −ε1α(s)
〈

Bα(s), ξ1β (s̄)
〉

− cos θ(s)
〈

α(s), ξ1β (s̄)
〉

− ds̄
ds

ε1β (s̄) 〈ξ1α(s), Bβ(s̄)〉− ds̄
ds

cos θ(s) 〈ξ1α(s), β(s̄)〉,

that jointly with (3.1), (3.3) and ξ1β ∈ Sp {Tα, Nα} yields

d

ds

〈

ξ1α(s), ξ1β (s̄)
〉

= 0,

which completes the claim.
(4) Similarly as in the item (b), one can see that the proof of the claim can be

ended.
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Theorem 3.2. Let α and β be a pair of Bertrand-B curves in S
3 and let κα and

κβ be the curvatures of the pair, respectively. Then there exists a constant µ and η

such that the following relations hold:

1. κ2
β (s̄) = cos2 µ κ2

α (s) + sin2 µ
{

εp
2

1α
(s) + εp

2

2α
(s)

}

2. κ2
α (s) = cos2 µ κ2

β (s̄) + sin2 µ
{

εp
2

1β
(s̄) + εp

2

2β
(s̄)

}

3. cos 2η = cos 2µ
{

ε1α(s) ε1β (s̄) + ε2α(s) ε2β (s̄)
}

where ε1α , ε2α , ε1β and ε2β stand for the curvatures of α and β, respectively.

Proof. (1) By the covariant derivative of Eq. (3.1), we get Eq. (3.5). Using Eq.
(2.2) for the curve β, we have the following equation

{

cos θ (s̄) ξ1β (s̄) + sin θ (s̄) ξ2β (s̄)
}

ds̄
ds

= {cosµ cos θ (s) + sinµ ε1α (s)} ξ1α (s)

+ {cosµ sin θ (s) + sinµ ε2α (s)} ξ2α (s) .

On the other hand, we have a constant angle η because of the items (3) and (4) of
Proposition (3.2), thus we can write

(3.15) cos [θ (s̄)− η] =
ds

ds̄
{cosµ cos θ (s) + sinµ ε1α (s)}

(3.16) sin [θ (s̄)− η] =
ds

ds̄
{cosµ sin θ (s) + sinµ ε2α (s)} .

By taking the derivative of Eqs. (3.15) and (3.16) wrt s in R
4 and applying Eqs.

(2.3) and (2.4), we deduce (1). This ends the proof.
(2) Now we have to hold Eq. (3.1) according to the curve α:

α (s) = cosµβ (s̄) + sinµBβ (s̄).

Thus, a straightforward computation leads to the following two equations:

(3.17) cos [θ (s) + η] =
ds̄

ds

{

cosµ cos θ (s̄)− sinµ ε1β (s̄)
}

(3.18) sin [θ (s) + η] =
ds̄

ds

{

cosµ sin θ (s̄) + sinµ ε2β (s̄)
}

.

By following a similar path in the item (a), one can easily see that the claim con-
cludes.

(3) It is a consequence of the way followed by the multiplication of the Eqs.
(3.15-3.17) and (3.16-3.18).
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Example 3.1. Let α = α(s) be a model helix in the 3-dimensional sphere S
3(r), given

by
α (s) = (cos φ cos (as) , cos φ sin (as) , sinφ cos (bs) , sinφ sin (bs) ) ,

where s is arc-length when a2 cos2 φ + b2 sin2 φ = 1. Also, a straightforward computation
gives us the following Frenet apparatus of α:























































Tα (s) = (−a cosφ sin (as) , a cosφ cos (as) , − b sinφ sin (bs) , b sinφ cos (bs) )

Nα (s) = (− sinφ cos (as) , − sinφ sin (as) , cos φ cos (bs) , cos φ sin (bs) )

Bα (s) = (−b sinφ sin (as) , b sinφ cos (as) , a cos φ sin (bs) , − a cos φ cos (bs) )

κα =
√

(a2
− 1) (1− b2)

τα = ab

By applying the first two equations of the apparatus to (2.2), we get the Bishop-type 2
vector field as follows:

ξ1α (s) =

(

−f (s) sin (as) + sinφ sin θ (s) cos (as) , f (s) cos (as) + sinφ sin θ (s) sin (as) ,

− g (s) sin (bs)− cos φ sin θ (s) cos (bs) ,

g (s) cos (bs)− cos φ sin θ (s) sin (bs)

)

,

where f (s) = a cos φ cos θ (s) and g (s) = b sinφ cos θ (s). Similarly, we get the remaining
vector field ξ2α (s). Note a case that if b = 1

a
, then the curve α is a helix in S

3(r)
parametrized by arc-length with τ = 1. In such a case, by taking the covariant derivative
ξ1α (s) and ξ2α (s) with respect to s and using the derivative formula of the Bishop type
2, we obtain the following Bishop type 2 curvatures:

(3.19) ε1α (s) = − sin θ (s) , ε2α (s) = − cos θ (s)

from which
ε
2

1α
(s) + ε

2

2α
(s) = 1.

This means that the curve α with τ = 1 is a Bertrand-B curve in S
3(r). Morever, the

Bertrand-B partner curve β of α is given by β (s̄) = cosµα (s̄) + sinµBα (s̄) with

s̄ =
√

cos2 µ+ sin2 µ
{

ε2
1α

(s) + ε2
2α

(s)
}

s. Observe that the last equation supports Eq.

(3.6). Furthermore, by calculating the curvature of β, it is easy see that the item (1) of
the theorem (3.2) is satisfied when the curve α is a Bertrand-B curve, i.e. for ab = 1:

κβ (s) =
√

(a2
− 1) (1− b2) + sin2 µ

{(

(ab)2 − 1
)

(a2 + b2 − 2)
}

Consequently, we have the following proposition:

Proposition 3.3. A model helix with τ = 1 in the 3-dimensional sphere S
3(r) is

a Bertrand-B curve. Moreover, the Bertrand-B partner curve of a model helix in

S
3(r) is also a Bertrand-B curve.
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4. Conclusion

In this paper, we obtained a lemma which states the condition of what it takes to
be a Bertrand-B curve. In creating this lemma, we used another curve (mentioned as
β(s̄))as its mate and saw that it is possible for these curves to be Bertrand-B curves
only if their mates exist. In addition, some conclusions about a pair of Bertrand-B
curves in the three dimensional sphere (called a special Riemannian manifold) are
stated. On the other hand, recent studies show that Bishop frames have attracted
the attention of many scientists and geometers due to various applications in areas
from engineering to computer graphics. Hence, we hope that the results of this
study will serve the areas of application associated with Bishop frames.
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